
CS736 project report Junfeng Zhang/Demai Ni 12/18/2000

 Page 1 of 12

Operating System Supports for Database System Revisit
-- CS736 project report

Junfeng Zhang Demai Ni

Abstract

Operating systems and Database systems are two major research and commercial
areas. Due to the different targets of services, database systems once complained about
poor operating system supports for database system [Ston81]. What is the situation
today? We choose Sun Solaris as an example of modern operating system, examining its
various components. We also go over PostgreSQL as the example of database system.
Our conclusion is, modern operating systems have provided lots facilities to help
database systems, and database systems are taking advantage of them.

1. Introduction:

Operating Systems and Database Management Systems are two areas that absorb much
attention in computer science and software industry. An operating system is identified as a
generic resource manager, while a database management system uses the services provided by
operating system to manager useful and important data. Due to the generic nature of Operating
system, database systems once complained about operating systems’ “Almost, but not exact”
services. Stonebraker criticized almost every aspect of operating system [Stone81]. Almost two
decade has passed since Stonebraker’s criticism. Both operating systems and database systems
evolve. What is the situation today?

In the first part of the paper, we briefly present Stonebraker’s criticism. Next Sun Solaris

is chosen as an example of modern operating system. Various components are examined and
evaluated from database systems’ view. Some tests are taken for detailed examination. After that
we also choose PostgreSQL as an example of database system, watching how it is using operating
system’s services. Finally we present our summary and conclusion.

2. Background:

In 1981 Michael Stonebraker wrote a paper complaining operating system’s poor support

for database management system, based on Unix system and INGRES relational database system
[Ston81]. He examined several operating system services, including buffer pool management, file
system, scheduling, process management and interprocess communication, and consistency
control. His criticism includes:

• Expensive overhead for buffer pool access. LRU page replacement algorithm does not
work well for all cases. Prefetching does not applied to database systems’ pseudo-random
access pattern. And no selective force out services.

• Data blocks are not physically contiguous. And tree structured file system adds overhead
to data access.

CS736 project report Junfeng Zhang/Demai Ni 12/18/2000

 Page 2 of 12

• Interprocess communication is poor. Task switch is expensive. Semaphore may cause
convoy problem. Message passing has high cost.

• Poor support for concurrent access on file data. And crash recovery is not satisfactory.

With all the problems he addressed, Stonebraker concluded that operating systems failed
to provide appropriate support for database systems, although they could have. He proposed a
small efficient operating system with only desired services.

This paper gives a good overview of operating systems support to database systems.
Since then almost twenty years has passed. Both operating systems and database systems evolve.
What modern operating systems look like? How well do they support database systems? In the
next section we will use Sun Solaris as an example, examining in detail with the services listed by
Stonebraker, see how its services support database systems.

3. SunOS (Solaris)

 SunOS is a UNIX system produced by Sun Microsystems. It is by far the most popular
UNIX system. Its first version used BSD-UNIX interface, and changed to System V interface in
later version [Vaha96]. Its current version is called Solaris. Solaris 7 conforms to POSIX.2,
SUSv2, and lots of other standards and specifications. In the following section we will look at its
file system, buffer cache management, process scheduling and interprocess management.

3.1 File Systems

Solaris’s file system adopts a variation of BSD fast file system [Mcku84], which is called
UFS (Unix file system)[Bert98]. UFS is described by the superblock, which contains the file
system layout information. UFS divides a disk partition into one or more cylinder groups, each
containing a set of consecutive cylinders. Each cylinder group keeps a copy of the superblock and
summary information about that group, including an inode bitmap, some inodes, and free block
lists. Each disk block can be further divided into more sub-blocks called fragments. A unique
inode is allocated for each file and directory. The inode is used to describe the file’s layout on
disk. It consists of some control data for that file, followed by twelve pointers for the first twelve
blocks of the file, one pointer for indirect block, one pointer for double indirect block, one pointer
for triple indirect block. The UFS has sophisticate file block allocation policy. It uses the
knowledge of the disk layout to place the data from the same file close to each other. To avoid
filling an entire cylinder group with one large file, it changes the cylinder group when the file size
reaches 48kilobytes and again at every megabytes. This is to ensure that small files can be located
close to their corresponding parent directory, which limits the seek time required to reach them.
UFS doesn’t perform pre-allocation. Blocks are added to the file when a write occurs, and not
before. The UFS is inherently a 32-bit package, but now it supports a 64-bit file size limit. Disk
addresses are limited to 32 bits, each addressing 512 bytes of data (typical disk sector size), for a
total of one terabyte for a file system. Users are limited to 2 gigabytes per file before Solaris 2.6,
and one terabytes after. Find the file information from a large directory can be slow. UFS uses
directory name lookup cache to fast this operation. UFS implements a file system clustering to
improve the read and write performance [Vaha96]. A parameter maxcontig describe the size of a
cluster. When a read request requires a disk access, the system will load the contiguous blocks of
the file starting at the specific block. Actual write to disk is performed when a full cluster is in the
cache, or sequential write pattern is broken. This technique improves the sequential read and
write.

CS736 project report Junfeng Zhang/Demai Ni 12/18/2000

 Page 3 of 12

Advisory and mandatory locks on files are included in Solaris. UFS supports shared and
exclusive locks. File locks can be on record granularity (bytes range with files). The system call
fcntl() provides the locking functions[Stev92][Programmer].

In the case that the system does not shutdown properly, a utility program called fsck is

used to maintain file system consistency[Vaha96]. This program examines the whole file system,
looks for inconsistencies, and repairs them if possible. The result of fsck is a limited form of crash
recovery—it returns the file system to a consistent state, not recoverying all the modification
before the system crash.

 UFS is designed on a Unix server-based approach. The typical workload is edit-compile-
link cycle of software development. This workload will have lots of small files, and those files are
accessed as a group. In view of this access pattern, the UFS adopts a design that favors small
files, and relatively bad support for large files. Database systems usually process a huge
repository of data. This obviously leads to some discrepancy.

 There are several issues why UFS gives a bad support for large files[Bert98]. The first
one is non-preallocation. Disk blocks are allocated at request, and one block each time. This
fragments large files. Although the disk allocation algorithm tries to put data block in one file
close to each other, it changes cylinder groups after each one megebytes to avoid flooding a
cylinder group by one file. This further separates the large file data. The last issue is about the
indirect pointer in inode. To ensure proper crash recovery, indirect pointer has to be initialized.
This requirement holds recursively for double indirect pointer and triple indirect pointer. This
decreases write performance.

Figure 1 shows a test1 on write

throughtput for large files. In this test data
are written into the file sequentially from
the beginning to the end. As we can see
from the figure, as the file sizes increases,
the througput decreases dramatically. We
see two steps in the figure. Those are
likely the indirect pointer and double
indirect pointer.

The record granularity of locks on
files gives database systems more
flexibility on concurrent access to file
data. With fsck, the file system will return
to a consistent state. But this does not

satisfy the ACID requirement from database system.

 Many people observe this problem, and come up with some solution. Log-structured file
system (LFS)[ROSE91] bundles writes and sequentially write modification to disks. Dr. Seltzer
gave a thorough discussion on UFS and LFS performance and transaction support[SELT93].
Veritas file system uses a extent-based disk allocation algorithm, and does metadata logging
[VERT]. Veritas file system are available for high-end Sun Servers.

3.2 Buffer Cache Management

 [1] All succeeding tests are done on CS lab nova machines, which has 640MB memory

Sequential Write

0

5

10

15

20

25

0 200 400 600 800

F ile S ize (M B)

Sequential W rite

Figure 1 write throughput v.s. File Size

CS736 project report Junfeng Zhang/Demai Ni 12/18/2000

 Page 4 of 12

To reduce disk traffic and eliminate unnecessary disk I/O, Solaris uses memory as the

buffer cache to cache the recently access file blocks[Bert98]. Buffer cache is integrated with the
virtual memory paging system, thus can grow at time. If a read request hits in the buffer cache,
the buffer is returned to the request without actually accessing the disk. The operating system will
prefetch several disk blocks into buffer cache if it detects sequential access. To prevent saturation
of virtual memory system, UFS implements a free-behind policy when reading large sequential
files. A block is replaced when no free buffer can be found for a request. The replacement
algorithm is called global clock-hand LRU replacement scheme. Memory is treated as a common
pool, with little per-process or per-file information used by the paging routines. The replacement
process scans memory pages, first turning off reference bits, and checking them later to see which
pages have been referenced. The scanning is done by a thread, called the pageout_scanner, which
maintains two pointers, called clock hands, into a list of the system's pages. One pointer indicates
the next page for which the reference bit is to be reset, and the other indicates which page is to be
checked for replacement. The two clock hands are advanced in unison. If the scan finds a page
that has not been referenced since the reference bit was reset, and it is not locked into memory,
that page is placed on a list, and the pageout thread frees it after doing any necessary disk
operations. There is a minimal check done to ensure that at least a few pages per process are
never freed by this scanning. File write is write-behind, which means modified data will be
written to disk only at its replacement. To maintain the consistency of the file system in case of
crash, metadata writes are synchronized.

A potential problem for integrating file buffer cache with virtual memory system is that a
large file might force out some program segments, resulting in a severe penalty. UFS uses a
priority paging [Prio98] algorithm to address this problem. It will flush some file buffer when the
free memory drops to some threshold. This technique achieves a 10-300% performance gains on
different workloads [Prio98].

 Caching data in kernel causes extra overhead for data access. It is advantageous only if
the data will be requested again later. If data will be only accessed once, or data set is too big to
fit into the memory, caching in kernel buffer is actually harmful. Database systems’ data sets are
usually much bigger than the memory size. And database systems usually have their own buffer
for the data block they accessed. Thus kernel buffer caching is not useful for database systems.
Database systems have a limited number of data access patterns – either scan the file or access the
record through an index. Chou etc. classified the database access into nine categories[Chou85].
For each category a work set is chosen and a replacement algorithm is applied. For those access
patterns, LRU is not necessary the best algorithm for all the cases.

 Another issue related to kernel caching is database system logging. Database system uses
logging to enforce a transaction model. Those log records have to be written to disk before the
write can finish. This effectively disables write-behind. Those records will not be read again
unless a recovery is processing. At any case, caching of log records will not be useful.

Buffer replacement policy has been a research area for database systems because it is
critical to their performance, and is possible because of the limited number of data access
patterns. While it is not touched very much by operating system research because of the un-
predictability of memory access in operating systems. Reiter etc. proposed the domain separation
algorithm[Reit76]. Chou etc. presented the DBMIN algorithm [Chou85]. Carey etc introduced
Priority-LRU and Priority-DBMIN policies[Care89]. Nicola etc. analyzed the Generalized Clock
Buffer replacement scheme[Nico92]. O’Neil etc proposed LRU-k algorithm[Onei93]. Johnson
etc. gave the “Two Queue” algorithm[John94].

CS736 project report Junfeng Zhang/Demai Ni 12/18/2000

 Page 5 of 12

3.3 UFS I/O interfaces

To address the problems presented above, and provide support for vaious programs, UFS
exports a wide range of interfaces for I/O operations [Vmsizing] [Bert98] [Programmer]. These
include:

• Asynchronous I/O: aioread/aiowrite/aiowait
aioread/aiowrite sends a disk request to the operating system, and returns immediately.
aiowait can be used to sychronously detect a completion of asynchronous request. The
completion can also be notified by a signal SIGIO

• Synchronous I/O: sync/fsync/fdatasync, O_DSYNC|O_RSYNC|O_SYNC
fsync will force the modified disk metadata/data written to disk before it returns.
fdatasync won’t force out the metadata. sync will schedule a flush of all dirty pages, but
will return before the flush is actualy done.

• Memory-Mapped files: mmap/madvise/memcntl/msync
mmap maps a file to the user process’s memory space. Missed file blocks are handled
through virtual memory page fault mechanism. This eliminates the kernel buffer cache
for the file blocks. But mmap cannot be used to files with sizes greater than the virtual
memory system.

• Vector I/O: readv/writev
readv/writev will read from/write to a contiguous range in the file into/from several non-
contiguous buffers. Each read/write still need a disk operation. But it only does one
metadata update.

• Direct I/O: directio
With directio on, operating system won’t perform any buffer caching for file block
accessed. It cannot be used to mmaped files and files with holes. Reads/writes have to be
sector aligned(512 byte). No prefetching is performed by the system.

• Raw device: /dev/rdsk
Raw device allows a program to directly access the storage devices just like directio, but
bypasses the file system interfaces.

 Database systems can use those interfaces for different data access/operation pattern.
Asynchronous I/O interfaces can be used when database system need to do some work on current
fetched data, and start fetching data for next operation. Synchronous I/O interfaces can be used to
ensure the data is written to the disk, like in the logging case. To bypass the kernel buffer

caching, database systems can use
mmap, directio and raw device
interfaces. Raw device interfaces
eliminates the file system overhead,
thus achieves the close to hardware
performance. mmap is good for
small read-only files. For large file,
mmap disables the priority paging
algorithm, and causes thrashing on
virtual memory system.

 Some tests are performed to
study different I/O interfaces
provided by Solaris.

R ead Throughput

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700

File Size(M B)

Sequential R ead Sequential m m ap read

R andom Read R andom m m ap Read

Figure 2 Read Throughput v.s. File Size

CS736 project report Junfeng Zhang/Demai Ni 12/18/2000

 Page 6 of 12

 The first test we took is
comparing mmap and read/write with
sequential and random access pattern on
various file sizes. We can see from
figure 2 that for sequential reads access,
mmap beats read() for all cases. This
win should come from the elimination
of kernel buffer access. For large files,
mmap beats read() marginally. This
comes from two points. The first is large
files read is dominated by disk activities.
Kernel buffer access overhead becomes
less important. The second is the benefit
of clustering for read. For sequential
writes, write() outperforms mmap for

small files. This must relates to write clustering, and the extra virtual memory overhead for mmap
like page table lookup, page fault handling etc. mmap interface has another drawback that it may
replace program segments because priority paging does not apply to it. For random access, all
interfaces start with a small throughput, and increases linearly as the file size grows after a
threshold about 50megabytes. This must relate to the clustering and kernel buffer. mmap does a
little better than read/write in these caese. The write throughput is higher than read throughput in
our study because we write the file twice. The second write on the file will write on the kernel
buffer, thus increases the throughput. From our result we can conclude: mmap is better than
read() for small file reads access. write() outperforms mmap for file writes. Caching wins for
random accesses.

 We also did some test on asynchronous interface, compared with standard read/write
interface. In this test we read a block to memory, sort it, and write it back to its original place.

At all file sizes, asynchronous

interface beats synchronous interface.
For this test, we used aiowait to
synchronously wait for the completion of
the I/O operation. If asynchronous wait
is used, we will expect a higher gain for
asynchronous interface for handling
operations on disk data.

3.4 Summary on UFS, its buffer cache, and its I/O interfaces

We examined UFS layout, its buffer cache, and its I/O interfaces. UFS fails to provide a
good support for large file, and its default buffer cache behaviour does not fit into database
systems’ requirement. UFS provides a variety of I/O interfaces to allow database systems to
bypass those problems. Some of them are effective.

A synchro us v.s. S ynchrono us

0.37
0.375

0.38
0.385

0.39
0.395

0.4
0.405

0.41

0 20 40 60 80 100

F ile Size (M B)

A synchronous Synchronous

Figure 3 Asynchronous v.s. Synchronous

Figure 2 Write Throughput v.s. File Size

W rite Throughput

0

5

10

15

20

25

0 100 200 300 400 500 600 700

File Size(M B)

Sequential W rite Sequential m m ap W rite

R andom W rite R andom m m ap W rite

CS736 project report Junfeng Zhang/Demai Ni 12/18/2000

 Page 7 of 12

XFS[XFS] achieves a throughput of >4GB/s using directio and extent-based allocation. It
also supports guranteed rate I/O, and lots of advanced feature like journaling, 64-bits. It is
available on IRIX system.

3.5 Processes management in Solaris

Solaris provides the traditional processes management. It also supports threads[Eykh92].

Solaris supports three different kinds of threads: kernel threads, lightweight processes

and user threads. The kernel thread is a fundamental lightweight object that can be independently
scheduled and dispatched to run on one of the system processors. It need not be associated with
any process and may be created, run and destroyed by the kernel to execute specific functions.
Lightweight processes provide multiple threads of control within a single process. They are
kernel-supported user thread. Each LWP is bound to its own kernel thread, and the binding
remains effective throughout its lifetime. LWPs are scheduled independently and may execute in
parallel on multiprocessors. User threads are implemented by the threads library. They can be
created, destroyed, and managed without involving the kernel. The threads library provides
synchronization and scheduling facilities.

 Applications using multithreads can achieve the same parallelism as applications using
multiple processes, with much less overhead. Switch between threads is much cheaper than
processes context switch since it does not need to change the virtual address. Creation/termination
of a process is more expensive than creating/deleting a thread. Communication and
synchronization between processes have a higher cost than those between threads. But
multiprocess applications have their advantages over multithread applications. Each process has
its own address space. Process does not have to protect its data explicitly from other processes.
While in a multithreaded process, those threads share the same address space. Every object in this
address space has to be protected since more than one thread can access this object. Some forms
of synchronization have to be provided to avoid the data corruption. If the number of threads goes
to a higher number, this may become a problem.

 A simple test is taken on Solaris 7 to examine multithread throughput. The test is similar
to the asynchronous one. The program reads a block from a file, sorts it, and writes it back to its
original places. Multithread version will make each thread working on a part of the file. Figure 4

shows the results.

From figure 4 we can see as the
number of threads increases, the
throughput increases/decreases a little
bit. But basically they are about the
same. Seems this means multithreads on
a single task single processor will not
increase the throughput very much.
Better use threads for hetero-services and
use them on multiprocessor systems.

Figure 4 Multithreads throughput

T hreads T hro ughput

0.478

0.479

0.48

0.481

0.482

0.483

0.484

0.485

0.486

0 2 4 6 8 10

N um bfer of T hreads

CS736 project report Junfeng Zhang/Demai Ni 12/18/2000

 Page 8 of 12

3.6 Processes Scheduling in Solaris

Solaris implements a fully preemptive system[Khan92]. User applications as well as
kernel activities are all preemptible. Processes(threads) are divided into two categories: The time-
sharing class and the real-time class. The real-time class has higher priorities than any time-
sharing process. Only superuser processes can enter the real-time class. Real-time applications
have fixed priority and time quantum. The only way to change them is by making a priocntl
system call explicitly. The time-sharing class is the default class for a process. It changes process
priorities dynamically and use round-robin scheduling for processes with the same priority. The
time slices given to a process depends on its scheduling priority. By default the lower priority of
the process, the large its time slice. The time-sharing class uses event-driven scheduling.
Operating system changes the priority of a process in response to specific events related to that
process. The scheduler penalizes (reduces its priority) the process each time it uses up its time
slice. On the other hand, the scheduler boosts the priority of the process if it blocks on an event or
resource, or if it takes a long time to use up its quantum.

A priority inversion problem might occur if a lower-priority thread holds a resource
needed by a higher priority process, thus blocks that higher priority process. Solaris uses a
technique called priority inheritance to address it. When a high-priority thread blocks on a
resource, it temporarily transfer its priority to the lower-priority thread that owns the resource.
When the lower-priority thread release the object, it surrenders its inherited priority. This will not
eliminate the priority inversion problem. But it allows the blocked process to restart quickly.

With a fully preemptive kernel and priority inheritance, Solaris is able to make the

processes dispatch faster. In Khanna’s originally measure[Khan92], the average dispatch latency
is 2ms. This number should have decreased many times with modern hardware.

3.7 Interprocess Communication

Solaris provides a large numbers of primitives for interprocess communication and
synchronization[Vaha96][Programmer]. Traditional IPC primitives like signals, pipes, and
semaphores are fully supported, with the addition of lots of new facilities. Message
queue(msgget/msgsnd/msgrcv) provides a way for multiprocess programs to exchange message
through shared message queue. Shared memory allows different processes access the same
physical memory region. The system call shmctl() can be used to pin the shared memory to RAM.
This is particularly useful for database systems because when they implement buffer pool with
shared memory, they need the knowledge that the buffer pool IS residing in the memory.

For short-term access to shared data, using semaphore is not acceptable because if a

process holding a hot lock is being swapped out of the processor, all the rest processes have to
wait until the process holding the lock back to processor again, thus causing a convoy problem.
To address this problem, light-weighted locks are provided. Atomic test-and-set primitive is
supported, and other locks are built on top of it. Spin-locks do a busy wait on an allocated lock.
This can be used for short-term locks. Solaris implements the adaptive locks. When a thread want
to access an allocated lock, if the owner of the lock is in sleep, this thread goes to sleep, otherwise
it does a spin. Read-writer locks synchronize read and modification of shared data, while
condition variable provides an event-driven synchronization.

3.8 Summary of Solaris’s processes management and IPC

CS736 project report Junfeng Zhang/Demai Ni 12/18/2000

 Page 9 of 12

Solaris puts much effort to decrease the dispatch latency. It also supports threads to
improve the system throughput and multitasking. Ample IPC and synchronization primitives are
provided to facilitate the processes communication.

 We have examined the Solaris system for its file system, its buffer cache, its processes
management, and its interprocess communication primitives. Now look at the other side of the
story. How does database systems evolve? Do they take advantage of all the facilities provided by
the effort of operating system? We choose PostgreSQL as an example for database system, and
look at how it handles client requests, how it manages its transactions, and how it uses the
operating system facilities.

4 PostgreSQL
4.1 System Overview

PostgreSQL[Momj00] is an
open source object-oriented relational
database system. It is originally called
Postgres[Ston86][Ston90], and was
developed in University of California
at Berkeley. It moves out to the open
source community in 1996, and
becomes PostgreSQL. Now it is
maintained by about fifteen
programmers, and is offering
commercial support to some degree.
We choose this because it is open
source project. We can examine it from
the source code level, thus gives us
more inside how it works.

PostgreSQL uses the

client/server model [Lane00].
Communication between clients and
server is through Unix socket. A
postmaster daemon is started at the
server, and listening to all the client
requests. Clients connect to the server at
a well-known port number. Once the
postmaster receives a valid request, it
spawns a new postgres backbend server
process to serve that request. PostgreSQL
will divide a relation into 2GB chunks if
the relation has a size bigger that 2GB
for the reason that most operating
systems only support user files with 2GB
up limit. Read/write relation data are
through standard read/write interface.

Database data are brought into a shared buffer pool created by shared memory. Unix kernel
usually provides additional buffering. Buffer pool is considered as global. LRU algorithm is used
for replacement policy. Dirty pages will be flushed to disk only at the replacement.

Figure 5 Clients/Server communication in
PostgreSQL

Figure 6 Inter-Server communication in
PostgreSQL

CS736 project report Junfeng Zhang/Demai Ni 12/18/2000

 Page 10 of 12

PostgreSQL supports transactions processing[Lane00][. Logging is used to ensure the ACID

properties of transactions. It choose a very different way to implement its logging. Each
transaction has a log record, which has only 2 bits, showing the transaction is in progress,
aborted, or committed. It implements a non-overwrite storage management. Modifications to
tuples are appended to the table. Older tuples will be removed sometime later by a vacuum
maintenance command issued periodically. Before a transaction commits, it has to force its
modified data page to disk before write the log record. This is done by the fsync() I/O interface.
Concurrent accesses to database tables are guaranteed using lock. It implements a multilevel
concurrent access control. Readers never wait for the writers. Writers will block each other only
when updating the same row. Waiting on locks is handled with per-process IPC semaphore.
Locking is a strict two phase locking — Once a transaction releases one locks, it cannot acquire
any other locks. Locks can be applied to tables, pages, or records(rows). Short-term locks are
used to protect data structure in shared memory. Those locks are implemented using spin-locks
based on platform-specific atomic test-and-set instructions.

4.2 Analysis

PostgreSQL tries to work on most Unix/Linux systems. To achieve this it can only use
features presented on most system. This generality makes PostgreSQL less efficient at some
systems. Specifically, at Solaris system, at least several optimizations can be achieved. First,
using threads instead of processes to handle requests. Threads have smaller creation overhead,
thus can serve user requests quicker. Current model suffers a long startup time for small
transactions. Another advantage of threads model is a thread consumes much less resource than a
process. For the same system, it can sustain much more threads than processes, thus can serve
much more requests. The reason why PostgreSQL people do not adopt thread model, partly
because of rewrite the system in thread model will have too much work. Another reason is those
people think there is no standard compatible thread implementation for all the systems they
support. A further reason they give is PostgreSQL supports user defined type and operation. With
a process model, a malicious user program will crash that particular process only, without
crashing the whole system. And this advantage does not apply to thread model. A second
optimization will be the shared memory. Locking the shared memory by shmctl() is only
available at Solaris, and only the superuser can make this call. Currently PostgreSQL has to be
run as a regular user. This effectively disables the “pinning” of shared memory. The third is I/O
interface. PostgreSQL uses the standard read/write to read/write from/to a file. As we see from
our previous analysis and test, there are other interfaces which can achieve higher throughput.
The fourth is the buffer pool. We already know LRU will not work well all the time. Flushing on
replacement slows down the buffer allocation. A better way may be using a separate process
(thread) to flush the dirty pages to disk on the background. Modification of PostgreSQL on
Solaris to adopt those optimizations is an interesting thing to do.

5 Summary and Conclusion

We revisited the operating system support for database system by looking inside a

modern operating system—Sun Solaris. We studied its file system, its buffer cache, and its ample
I/O interfaces. We further went over its threads support, its processes scheduling and interprocess
communication. After that we used PostgreSQL as an exmaple of database system. We checked
its client-server and inter-server communication, its transaction support and its storage system.
We pointed out several optimizations that PostgreSQL system can take under Solaris to improve
its performance.

CS736 project report Junfeng Zhang/Demai Ni 12/18/2000

 Page 11 of 12

 In conclusion, operating systems do not solve all the complains from database systems by
default. But they provide lots of facilities to help database systems to address those problems.
Database systems are taking advantage of those services from operating systems. But partly for
historic reason, partly for portability reason, some database systems have not exploited all the
facilities. The discrepancy between operating system services and database systems requirement
will exist as long as they target at different services. But the gap will decrease as operating
systems pay more attention to database systems.

Reference:

[Bert98] Bertonni, L. Jonathan, “Understanding Solaris Filesystem and paging”, Sun
Microsystems Technical report TR-98-55, 1998,
http://www.sun.com/research/techrep/1998/abstract-55.html
[Care89]Michael J. Carey, Rajiv Jauhari, Miron Livny: “Priority in DBMS Resource
Scheduling”. VLDB 1989: 397-410
[Chou85] Hong-Tai Chou, David J. DeWitt: “An Evaluation of Buffer Management Strategies for
Relational Database Systems”. Very Large Data Bases (VLDB) Conference 1985: 127-141
[Eykh92] Eykholt, J.R., etc “Beyond Multiprocessing: Multithreading the SunOS kernel”
Proceedings of the summer 1992 USENIX technical conference Jun 1992 pp.11-18
[Khan92] Khanna, S. "Realtime scheduling in SunOS5.0", proceedings of the winter 1992
USENIX technical conference, Jan, 1992
[John94]Theodore Johnson, Dennis Shasha: “2Q: A Low Overhead High Performance Buffer
Management Replacement Algorithm”. VLDB 1994: 439-450
[Lane00]Lane, Tom, “Transaction processing in PostgreSQL”, a talk on Open Source Database
Conference Oct. 2000, http://www.postgresql.org/osdn/index.html
[Mcku84] Marshall K. McKusick, William N. Joy, Samuel J. Le_er, and Robert S. Fabry. “A Fast
Filesystem For Unix”. ACM Transactions on Computer Systems, 2(3):181-197, 1984.
[Momj00] Momjian, Bruce, “PostgreSQL: Introduction and Concepts”, Addison-Wesley, 2000,
ISBN 0-201-70331-9, http://www.postgresql.org/docs/aw_pgsql_book/index.html
[Nico92] Victor F. Nicola, Asit Dan, Daniel M. Dias: “Analysis of the Generalized Clock Buffer
Replacement Scheme for Database Transaction Processing”. SIGMETRICS 1992: 35-46
[Onei93] Elizabeth J. O'Neil, Patrick E. O'Neil, Gerhard Weikum: “The LRU-K Page
Replacement Algorithm For Database Disk Buffering”. SIGMOD Conference 1993: 297-306
[Prio98] Richard Mc Dougall, Triet Vo, Tom Pothier , “Priority Paging”.
http://www.sun.com/sun-on-net/performance/priority_paging.html
[Programmer] Solaris Unix Programmer’s Manual 1997
[Reit76]Allen Reiter: “A Study of Buffer Management Policies for Data Management Systems”.
Technical Summary Report 1619, Mathematics Research Center, University of Wisconsin,
Madison, 1976

CS736 project report Junfeng Zhang/Demai Ni 12/18/2000

 Page 12 of 12

[Rose91] Mendel Rosenblum and John K. Ousterhout. “The Design and Implementation of a
Log-Structured File System”. In Proceedings of the Thirteenth ACM Symposium on Operating
Systems Principles, pp. 1-15. ACM, 1991
[Selt93] Seltzer, I. Margo, “File System Performance and Transaction Support”, Ph.D. Thesis for
Computer Science in University of California at Berkeley, 1993
[Stev92]Steve, W.Richard, “Advanced Programming In the Unix Environment”, Addison-
Welsley, 1992, ISBN 0-201-56317-7
[Ston81]Stonebraker, M., ‘‘Operating System Support for Database Management,’’
Communications of the ACM 24 7 (July 1981), 412-418.
[Ston86] Stonebraker, M. and Rowe, L. A. 1986. “The design of POSTGRES” In
Proceedings of the ACM-SIGMOD Conference on Management of Data, pp. 340--355.
[Ston90] Michael Stonebraker, Lawrence Rowe, and Michael Hirohama. "The implementation of
postgres." IEEE Transactions on Knowledge and Data Engineering, 2(1):125--142, 1990.
[Vaha96] Vahalia, Uresh , “Unix Internals—The new Frontiers”, 1996, Prentice-Hall inc. ISBN
0-13-101908-2
[VERT]Veritas file system white paper, 1996 (http://www.veritas.com)
[Vmsizing] “The Solaris Memory System – sizing, tools and architecture”, Sun Microsystems,
1998. http://www.sun.com/sun-on-net/performance/vmsizing.pdf
[XFS] XFS technical information, SGI corporate, http://www.sgi.com/ software/xfs/techinfo.html

