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Abstract
Today’s disksare inexpensiveand havea large amountof capacity. As a result,

mostdiskshavea significantamountof excesscapacity. At thesametime, theper-
formancegap betweendisksand processors haswidenedto the point that many
workloadshavebecomediskbound. To improvetheperformanceof disks,wepro-
poseusingtheexcesscapacityof disksto replicateblocks. To dothis,thediskcon-
troller observessequencesof requeststo blocks and replicatesblocks on disk so
that they are in thesameorderondiskasin thesequences.Bydoingthis,whenthe
sequenceoccurs again, no seeksare neededbetweenaccessesto blocks in the
sequence. Our work showsthat thesesequencescanbereuseda large numberof
times,so they potentially can yield a large benefit. We also havean algorithm,
which weimplementedin theDiskSimsimulator, for detectingthesesequencesand
performing replication.
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Today’s disksare inexpensiveandhavea large amountof capacity. Asa result,

mostdiskshavea significantamountof excesscapacity. At thesametime, theper-
formancegap betweendisksand processors haswidenedto the point that many
workloadshavebecomediskbound. To improvetheperformanceof disks,wepro-
poseusingtheexcesscapacityof disksto replicateblocks. To dothis,thediskcon-
troller observessequencesof requeststo blocks and replicatesblocks on disk so
that they are in thesameorderondiskasin thesequences.Bydoingthis,whenthe
sequenceoccurs again, no seeksare neededbetweenaccessesto blocks in the
sequence. Our work showsthat thesesequencescanbereuseda large numberof
times,so they potentially can yield a large benefit. We also havean algorithm,
which weimplementedin theDiskSimsimulator, for detectingthesesequencesand
performing replication.

1. Intr oduction
Several technologytrendshave shapedthe way in which disks are usedby systems.

Capacityhasbeenincreasingatasteadyrateof about60%peryear, allowing fewerdisksto fulfill
thesamestoragerequirementthatmany hadpreviously. Disk seeklatency continuesto improve
(at about6% peryear),but hasnot donesoat thesamerapidpacethatcapacityhas. This unbal-
ancedgrowth canactuallyleadto poorerperformanceon systemsusingmoderndisks. A system
with many diskscanstripedataacrossthosedisksto overlapseeklatency andimprovebandwidth.
Larger diskscanleadto fewer disks,which in turn canleadto fewer concurrentseeksandless
overlap. Considerthecaseof a single,sufficiently largedisk, whereevery disk accessresultsin
thesystempayingthefull seekoverhead.In orderto dealwith this “problem” of excesscapacity,
I/O intensiveapplicationssuchasonlinetransactionprocessing(OLTP)oftendeterminethenum-
berof disksin a system(which canbe in the orderof hundredsor thousands)by the numberof
disk heads,ratherthantotal capacity[11]. This resultsin a largenumberof partially emptydisks
with dataplacedsuchthat theseekdistanceof every headin minimized[8]. Othertypesof sys-
temsoftenhaveunuseddiskspaceaswell. Inexpensivedisks(around$150)aretypically aslarge
as 40GB -- generally more than enough capacity for PCs or workstations.

A secondimportanttrendis therapid increaseof CPUperformanceasit follows Moore’s
curve. Becausea given seeklatency will result in a fasterprocessorstalling a larger numberof
cycles,seeklatency is quickly becominga systembottleneck.This is analogousto the“memory
wall” problem,in which waiting for memoryaccessareconstitutingan increasinglylarger per-
centage of processor activity.

We attemptto answera simple questionin this project: can unuseddisk capacitybe
exchangedfor reducedseeklatencies?We begin with the hypothesisthat disksmake repeated
accessesto datathatis physically “spreadout” acrossthedisk. Figure1 illustratessuchacase,in
which thedisk accessesblocks4, 31,and12,andthenmakesthesamethreeaccesseslater. Each
time theblocksareaccessedin thatorder, thedisk headincursa seekbetweeneach. We propose
a techniquethatidentifiesdependenciesbetweenthesethreeblocksduringtheir first accessesand
duplicatesthemonto the sametrack.Subsequentaccessesto the threeblockswill remapto the
areaonthediskwherethey arelaid outsequentiallyandeliminateseekingbetweentheblocks. In
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this way we remaptemporallocality identified in disk accessesto spatiallocality in duplicated
data.

Thestructureof this paperis asfollows: in Section2 we outlinerelatedwork, Sections3
and4 exploresanupperboundon theeffectivenessof sucha technique,Sections5 and6 discuss
the algorithm and implementation of our technique.  Section 7 concludes the paper.

2. Related Work
Many conventionaldisk driver andcontrolleralgorithmsattemptto scheduleaccessesto

minimizeseeklatency. However suchalgorithmsarelimited to simply reorderingaccesses,and
do not actuallyduplicateor relocatedataon thedisk. Althoughsuchreorderingcanhelpreduce
seektime,not all accessescanbereorderedor theremaynot beenoughpendingrequeststo pro-
vide sufficient schedulingselection. The examplepresentedin Figure1 would not benefitfrom
disk schedulingbecausethe disk headwould still needto seekbetweenthreedifferent tracks,
regardless of their order.

Oneof thefirst studiesthatattemptedto reduceseektimesthroughrewriting data,rather
than just scheduling,relocatedblocks basedon their accessfrequency [5]. If a block was
accessedagreaternumberof timesthanapredefinedthreshold,it wouldberelocatedto areserved
areain thecenterof thedisk. Themetricthatwasusedto determinewhetherto “shuffle” a block
wassimply thenumberof timesa block wasaccessed,andshuffled blockswereplacedanywhere
in thereservedarea.This techniquedid notattemptto write sequentialblocksto disk in theorder
thatthey wereaccessed,unlike our technique.Furtherer, shuffled blocksarerelocated,not dupli-
catedasin ourscheme.In ourmechanismagivenblockmayexist in several“traces”on thedisk.
Thedecisionof which oneto usecanbemadedynamicallybasedon observedproceedingblock
accesses.

Figure 1:  In a traditional disk, the full seek latency is paid when blocks 4, 31, and 12 are
accessed. With our technique, the seek latency is paid on the first accesses, but subsequent
accesses will map to replicated data
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Akyurek,et.al [1] duplicatedfrequentlyaccessedblocks,but againdid notexamineblock
accessesin thecontext of precedingor following block accesses.Duplicationin orderto reduce
latency wasalsoexaminedin [8], but only in termsof replicatingdatawithin a single track in
order to reduce rotational delay.

3. Traces
A disk traceis a log of thesequenceof accessesthataworkloadperformsandsomeinfor-

mationaboutthoseaccesses.Theinformationour traceshold is thetimeof theblock request,the
device thattherequestwasto (i.e.,whichdisk to requesttheblock from), thenumberof theblock
thatwasrequested,thesizeof therequest(i.e.,how many blocksto reador write), andthetypeof
access (read or write).

Wefirst attemptedto usethedisk tracesthatcomewith theDiskSimsimulator[3]. Unfor-
tunately, whenwe examinedthesetraces,we found that therewaslittle repetitionin the blocks
that wererequested(i.e., mostblockswereonly usedonceandthe restwereonly usedtwice).
Our optimizationsfor disk layout canonly affect performancewhenblocksareaccessedmany
times.  Therefore, these traces would not work for our study.

Next, we usedeightof thetendisk tracesthatPeiCaotook [9]. Table1 hasdescriptions
of thesetraces. To verify that Pei Cao’s tracesarerepresentative of disk accesses,we usedthe
emitterinterfaceof SimOSto collect a disk traceof SPECweb99.SPECweb99is a benchmark
for evaluatingtheperformanceof asystemthatis servingstaticanddynamicwebpages[10]. We
wereonly ableto simulateSPECweb99for thirty seconds,sinceit takesa longtimeto simulate(it
took14hoursto simulate30seconds).Thesimulatedsystemcontainedonly 128MB of memory
andthesizeof thefile setfor SPECweb99wasabout500MB. As aresultvery few files in thefile
setcouldfit in theOS’s or webserver’s file cache,somostfile accessesneededto go out to disk.
For the web server, the simulated system used Zeus.

Name Description of Workload # of requests

BigSort Sorts 200,000 line, 17 MB text file 30,932

J1 Trace driven cache simulator 14,206

J2 Search symbol names in large kernel source 20,799

J3 Search text strings in small kernel source 22,091

J4 Search text strings in large kernel source 34,934

J5 Search for key words in collection of text files 37,938

PQ7 Postgres performing selection 18,261

PJoin Postgres performing join 25,957

SPECweb99 Web server for static and dynamic pages 2,366

Table 1:  Descriptions of the disk traces that we used (note that the first eight are
fr om Pei Cao)
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4. Limit Study
Before implementingblock replicationwith temporallocality in the disk simulator, we

performeda limit study. This allowedusto seethepotentialbenefitof implementingthis optimi-
zationwithout having to worry aboutthe detailsof how to implementit. This alsoallows us to
betterunderstandthebehavior of workloadsusingthis optimization. Lastly, thelimit studygives
usan ideaof how long thesequencesof temporallylocal accessesandwhetherour implementa-
tion canuseastaticlengthfor thesequencesor if it needsto dynamicallydetectwhatlengthto use
for the sequences.

The limit studywalks througha disk traceoneaccessat a time. For eachaccessin the
trace,it constructsa sequencefor eachpossiblegroupingthatwasobservedso far up to a maxi-
mumlengththat is specifiedby theuser. Note that thesesequencesarenot sequencesof blocks,
but aresequencesof I/O requeststo thedisk. For thepurposesof our study, we choseto limit the
lengthof sequencesto tenrequestssothat theprogramfor the limit studywould produceresults
relatively quickly.

We first studiedtherelationshipbetweennumberof timeseachsequenceto the lengthof
the sequence.Figure2 shows graphsof the numberof timesthe sequencesof temporallylocal
accesses(labeleda tracesin thegraphs)areusedfor differentsequencelengths. Themaximum
curve correspondsto thenumberof timesthatonecanusethesequencethathasthelargestnum-
berof hits. For theaveragecurve,thecontrollerwouldcreateasequencefor eachtherequestseen
(whentherearemultiplesequencesthatit canusefor startingblock, it usestheonewith thehigh-
estnumberof hits). We thentake theaverageof thenumberof timeseachof thesesequencesis
used. Notethatmany of thesesequencesareseenonceandnever reused,sothey lower theaver-
age even though the controller probably would not replicate these blocks.

Fromlooking at thegraphs,we seetwo differentbehaviors in theworkloads. In BigSort,
J3,J4,J5,andSPECweb99,thenumberof timesoneusesthesequencesdropsoff quickly asone
increasesthelengthof thesequence.In thesecases,long sequenceshave little benefitover using
relatively shortsequences.In addition,it is relatively simpleto pick a staticlengthto usefor the
sequences(asequenceof length7 will holdmostof theaccessesto thesesequences).However, in
J1,J2,andPJoin,thenumberof timesoneusesthesequencesdropsoff fairly slowly asa function
of thelengthof thesequences.In thesecases,largesequencescontinueto beusefulin additionto
shortersequences.Unlike in thefirst setof workloads,it is difficult to choosea singlelengthto
usefor theseworkloads. PQ7appearsto bea hybrid of thesetwo behaviors,sincethenumberof
times that it usessequencesdropsoff more quickly than the secondbehavior, but much less
abruptlythanin thefirst behavior. Therefore,sincethereis no singlelengththatonecanusefor
thesequences,we believe thatoneneedsto useanadaptive mechanismfor choosinghow long of
traces to use.
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To getmoreinsightinto thetwo differentbehaviorsof temporalsequences,wealsolooked
thedistribution of how oftendifferentsequencesareused. In particular, we lookedat thenumber
of timeseachlengthtwo sequenceis used. In BigSort,theaccessesbetweendifferentsequences
arefairly distributed,in thattherearea largenumberof sequencesthatareusedasignificantnum-
berof times. Theaccessesto thesequencesdoesnot follow muchof apattern.At thesametime,
therearea few sequencesthatareusedmuchmorethantherestof thesequences,so it is impor-
tant to make sure that one includes these sequences in the replication.

In contrast,the behavior of J2 is very differentthanthat of BigSort. First, therearenot
thatmany sequencesthatareuseda largenumberof times. Also, theaccessesto thesequences

BigSort J1 J2

J3) J4 J5

PQ7 PJoin SPECweb99

Figure 2: Number of times uses temporal sequences (called traces here) of different lengths
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appearsto have a pattern. Lastly, thereis a singlesequencethat is useda largenumberof times
andis usedmoreoftenthanin thecaseof thesequenceswith high usein thecaseof Bigsort. In
particular, thissequencein J2is used42%of all requeststo thedisk. In comparison,thesequence
with the highest usage in BigSort consists only of 2% of all requests.

5. Algorithm
Thebasicdatastructurein ouralgorithmis a tableindexedby blocknumber. Whenadisk

requestis made,the startingblock of that requestis looked up in the table. The corresponding
tableentryindicatesall of theduplicated“traces”that blockexistsin. Thealgorithmwill identify
themostlikely candidateof these“traces”andremaptheincomingrequestto theduplicatedblock
number. It consistsof threephases:identifying “traces” to duplicate,the duplicationitself, and
updating the table to reflect the disk’s updated state.

Eachentry in thetablecorrespondsto a uniqueblock on thedisk,andconsistsof anarbi-
trary numberof “sections”thatcorrespondto blocksobservedto immediatelyprecedethis block.
Eachsectionconsistsof a previously identifiedblock number, a countof how many times that
block wasobservedto precedetheblock numberfor this entry, a mappingto a block therequest
shouldbe substitutedfor, anda valid bit to indicateif the mappingis valid. This tableis illus-
tratedin Table1. For every block request,thedisk checksto seeif anentryexists for thatblock
number. If it does,it checksto seeif a sectionin thatentryexistsfor theblock thatwasobserved
immediatelybeforethecurrentrequest.If sucha mappingexistsandis valid, thedisk will fetch
theblock identifiedin themappingfield ratherthantheoneactuallyrequestedandincrementthe
counter.  If either of entries do not exist, they will be added to the table.

If thecountfield exceedsa predefinedthresholdandno mappingexistsyet, thealgorithm
will inserta requestto duplicatetheblock in thediskqueue.Whenthediskprocessesthis request
andwritesthedata(to anunusedblock indicatedby a freelist), it updatesthevalid bit andmap-
ping field in thecorrespondingentry to indicatethat themappingis valid. Readsandwritesare
handledalmostidentically; themajordifferenceis thatwritesneedto bepropagatedto all dupli-
catedblocks. Wedealwith thisby invalidatingall theentriesthatablock to bewrittenappearsin

BigSort J2

Figure3: Maximum numberof timesthatusea length2 temporalsequencefor eachstarting
block
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andlazily updatingthemondisk. Thetableentriesareupdatedat thepoint thattheupdatesoccur
to the disk.

At this point we have saidnothingaboutwherethis algorithmandtableareimplemented.
They couldbeaddedto thedevicedriveror insidethediskat thecontroller. Althoughaddingit at
thedriver-level maybemorefeasiblethanchangingthecontrollerhardware,moreinformationis
availableto thecontroller, suchasdisk headposition(although[8] implementsa disk headposi-
tion predictorin). In eithercasethetableneednot beretainedin non-volatile memory, asblocks
alwaysexist in their original location-- losing the information in the tableonly meansthat the
disk will not benefit from our optimizations.

6. Implementation
WeusedtheDiskSimSimulationEnvironmentv2.0[3] to modelourdisk replicationalgo-

rithm. DiskSim modelsall aspectsof a storagesubsystem,including the OS driver, controller,
cache,andschedulingalgorithms. It hasbeenvalidatedagainstproductiondisksandis reputedto
be accurate and reliable.

Thereareseveral methodsin which the remappingtablecould be implementedin a real
system.Ourmodelusesahashtableindexedby startingblocknumbers.In thisway it cangrow
dynamicallybasedon how many differentblockshave every beenrequested.Althoughtypically
an entry exists for every physical block on disk, the table’s sizevariesdependingon how many
mappingsareretainedfor eachblock (in previousterminology, thenumberof sectionsperentry).
Becauseit is likely that many blockson a disk have never beenaccessedor areaccessedinfre-
quently, it is notcrucialthatweallow amappingto occurfor everyblockondisk. By limiting the
tableentriesto a subsetof blocks,we canduplicatetheseblocksa greaternumberof times. The
locationof this tablemayalsobea factorin its sizeor structure.If addedat thedisk controller, it
couldbein RAM insidethediskandwouldprobablybeasmall,fixedsize. If addedat thedriver,
moreelaboratealgorithmscouldexist thatharnesstheprocessingpowerof themainCPUanduti-
lize surplus system memory.

Other issuesexist in manipulatingtableentries,suchaswhenandhow to replacemap-
pingsfor a givenblock. Eachentrycanhold a certainnumberof mappings(in our implementa-
tion this is fixed,but onecanimaginea designthatallows a variablenumber);whenthis limit is

Block Req Prev Block Cnt Remap V Prev Block Cnt Remap V

2 ?? ?? ?? ?

4 2 1 ---- 0 20 1 ----

31 4 2 15 1

12 31 2 16 1

17 12 1 ----- 0

20 17 1 ------ 0

19 12 1 ------ 0

:Table 2:  Table state for the trace in Figure 1.
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reached,do we evict entriesto make roomfor others?What is this replacementpolicy basedon
(LRU, accessfrequency, etc.)? Whenanentry is evicted is it just droppedor would it bebenefi-
cial to storeit out to disk for possibleretrieval later? We leave many of theseissuesfor future
research.

7. Conclusion
At this point we have implementedthe tableandthealgorithmsthatmanipulatethe table

into DiskSim. The modifiedsimulatoris ableto identify repeatingsequencesof blocks,update
thetableif giventhresholdis exceeded,andsubstitutetheoriginal requestfor theremappedblock
number. Unfortunately, dueto simulatorcomplexity (andpoordocumentation)andlack of time,
we werenot ableto completelyintegrateour codeinto DiskSim andcollect averageseeklaten-
cies.

However, basedon severalassumptions,we anticipateour algorithmwould indeedreduce
seektimes:enoughexcessdisk spaceexistsfor a reasonableamountof duplication;disksareidle
enoughthat they canafford to spendtime duplicatingdata;disk controllerprocessorsaresuffi-
ciently powerful enoughthat they cankeeptrackof andmanipulatethe requireddatastructures;
RAM is cheap(if the table is implementedin the controller); and as processorsget fasterand
disksgetlarger, workloadswill beboundby diskseeklatency. Weplanto continuethiswork and
finish integrating our table into Disksim to collect latency results.

We alsobelieve that thereis a plenitudeof other interestingdatato collect andanalyze.
For example,how doescachebehavior affect theeffectivenessof our technique?It seemsthata
sufficiently largecachemaybeableto capturemany accessesthatwould otherwisecauseseeks.
Are therewaysfor thecontrollerto exploit its knowledgeof wherethedisk headis? Perhapsthis
could be usedto completelazy updatesof writes (in the casethat the headis passingover an
updated region anyway).  We leave these issues for future work.
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