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Table V. Speedup of N-Body Application, Multiprogramming Level = 2, 6 Processors,

100% of Memory Available

Topaz Original New
threads FastThreads FastThreads

1.29 1.26 2.4.5

operating system time-slices the kernel threads serving as virtual processors;

this can result in physical processors idling waiting for a lock to be released

while the lock holder is rescheduled. Performance is worse with Topaz

threads than with our system because common thread operations are more

expensive. In addition, because Topaz does not do explicit processor alloca-

tion, it may end up scheduling more kernel threads from one address space

than from the other; Figure 2 shows, however, that performance flattens out

for Topaz threads when more than three processors are assigned to the

application.

While the Firefly is an excellent vehicle for constructing proof-of-concept

prototypes, its limited number of processors makes it less than ideal for

experimenting with significantly parallel applications or with multiple, mul -

tiprogrammed parallel applications. For this reason, we are implementing

scheduler activations in C Threads and Mach; we are also porting Amber [6],

a programming system for a network of multiprocessors, onto our Firefly

implementation.

6. RELATED IDEAS

The two systems with goals most closely related to our own—achieving

properly integrated user-level threads through improved kernel support —are

Psyche [20] and Symunix [9]. Both have support for NUMA multiprocessors

as a primary goal: Symunix in a high-performance parallel UNIX implemen-

tation, and Psyche in the context of a new operating system.

Psyche and Symunix provide “virtual processors” as described in Sections

1 and 2, and augment these virtual processors by defining software inter-

rupts that notify the user level of some kernel events. (Software interrupts

are like upcalls, except that all, interrupts on the same processor use the

same stack and thus are not reentrant). Psyche has also explored the notion

of multimodal parallel programming in which user-defined threads of various
kinds, in different address spaces, can synchronize while sharing code and

data.

While Psyche, Symunix, and our own work share similar goals, the ap-

proaches taken to achieve these goals differ in several important ways.

Unlike our work, neither Psyche nor Symunix provides the exact functional-

ity of kernel threads with respect to 1/0, page faults and multiprogramming;

further, the performance of their user-level thread operations can be compro-

mised, We discussed some of the reasons for this in Section 2: these systems

notify the user level of some but not all of the kernel events that affect the
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address space. For example, neither Psyche nor Symunix notify the user level

when a preempted virtual processor is rescheduled. As a result, the user-level

thread system does not know how many processors it has or what user

threads are running on those processors.

Both Psyche and Symunix provide shared writable memory between the

kernel and each application, but neither system provides an efficient mecha-

nism for the user-level thread system to notify the kernel when its processor

allocation needs to be reconsidered. The number of processors needed by each

application could be written into this shared memory, but that would give no

efficient way for an application that needs more processors to know that some

other application has idle processors.

Applications in both Psyche and Symunix share synchronization state with

the kernel in order to avoid preemption at inopportune moments (e.g., while

spin-locks are being held). In Symunix, the application sets and later clears a

variable shared with the kernel to indicate that it is in a critical section; in

Psyche, the application checks for an imminent preemption before starting a

critical section. The setting, clearing, and checking of these bits adds to lock

latency, which constitutes a large portion of the overhead when doing high-

performance user-level thread management [2]. By contrast, our system has

no effect on lock latency unless a preemption actually occurs. Furthermore,

in these other systems the kernel notifies the application of its intention to

preempt a processor before the preemption actually occurs; based on this

notification, the application can choose to place a thread in a “safe” state and

voluntarily relinquish a processor. This mechanism violates the constraint

that higher priority threads are always run in place of lower priority threads.

Gupta et al. [9a] share our goal of maintaining a one-to-one correspondence

between physical processors and execution contexts for running user-level

threads. When a processor preemption or 1/0 completion results in there

being more contexts than processors, Gupta et al.’s kernel time-slices con-

texts until’ the application reaches a point where it is safe to suspend a

context. Our kernel eliminates the need for time-slicing by notifying the

application thread system of the event while keeping the number of contexts

constant.

Some systems provide asynchronous kernel 1/0 as a mechanism to solve

some of the problems with user-level thread management on multiprocessors

[9, 251. Indeed, our work has the flavor of an asynchronous 1/0 system: when
an 1/0 request is made, the processor is returned to the application, and

later, when the 1/0 completes, the application is notified. There are two

major differences between our work and traditional asynchronous 1/0 sys-

tems, though. First, and most important, scheduler activations provide a

single uniform mechanism to address the problems of processor preemption,

1/0, and page faults. Relative to asynchronous 1/0, our approach derives

conceptual simplicity from the fact that all interaction with the kernel is

synchronous from the perspective of a single scheduler activation. A sched-

uler activation that blocks in the kernel is replaced with a new scheduler

activation when the awaited event occurs. Second, while asynchronous 1/0

schemes may require significant changes to both application and kernel code,
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our scheme leaves the structure of both the user-level thread system and the

kernel largely unchanged.

Finally, parts of our scheme are related in some ways to Hydra [26], one of

the earliest multiprocessor operating systems, in which scheduling policy was

moved out of the kernel. However, in Hydra, this separation came at a

performance cost because policy decisions required communication through

the kernel to a scheduling policy server, and then back to the kernel to

implement a context switch. In our system, an application can set its own

policy for scheduling its threads onto its processors, and can implement this

policy without trapping to the kernel. Longer-term processor allocation deci-

sions in our system are the kernel’s responsibility, although as in Hydra, this

could be delegated to a distinguished application-level server.

7. SUMMARY

Managing parallelism at the user level is essential to high-performance

parallel computing, but kernel threads or processes, as provided in many

operating systems, are a poor abstraction on which to support this. We have

described the design, implementation and performance of a kernel interface

and a user-level thread package that together combine the performance of

user-level threads (in the common case of thread operations that can be

implemented entirely at user level) with the functionality of kernel threads

(correct behavior in the infrequent case when the kernel must be involved).

Our approach is based on providing each application address space with

a virtual multiprocessor in which the application knows exactly how

many processors it has and exactly which of its threads are running on

those processors. Responsibilities are divided between the kernel and each

application address space:

–Processor allocation (the allocation of processors to address spaces) is done

by the kernel.

—Thread scheduling (the assignment of an address space’s threads to its

processors) is done by each address space.

—The kernel notifies the address space thread scheduler of every event

affecting the address space.

–The address space notifies the kernel of the subset of user-level events that

can affect processor allocation decisions.

The kernel mechanism that we use to implement these ideas is called

scheduler activations. A scheduler activation is the execution context for

vectoring control from the kernel to the address space on a kernel event. The

address space thread scheduler uses this context to handle the event, e.g., to

modify user-level thread data structures, to execute user-level threads, and to

make requests of the kernel. While our prototype implements threads as the

concurrency abstraction supported at the user level, scheduler activations are

not linked to any particular model; scheduler activations can support any

user-level concurrency model because the kernel has no knowledge of user-

level data structures.
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