
Untangling Block Allocation Policies of ZFS

Swaminathan Sundararaman
Sriram Subramanian

Computer Sciences Department
University of Wisconsin, Madison

December 21, 2007

Abstract

The ZFS file system from Sun is the latest buzz word in
the file system community. The creators of ZFS claim to
have re-designed the file system from scratch, providing
new features and levels of reliability, performance and ef-
ficiency uncommon in traditional file systems. This in-
cludes dynamic block allocation that changes the blocks
sizes based on workloads. In this paper we have primar-
ily focused on the Block allocation policy of ZFS under
varied workloads. We have built our infrastructure based
on semantic block analysis and found that ZFS allocates
block based on the file offset that are being written and
not based on the workload. Block allocation policy works
poorly for random writes. We also found that ZFS merges
smaller blocks to one big block and as a result a single
block write gets converted to read-modify-write of a big-
ger block.

ZFS Intent log also has a poor block allocation policy
and for small block writes it wastes a significant amount
of storage space in the file system. Overall we find that
ZFS tells more that it actually does.

1 Introduction

ZFS is the latest buzz word in the file system community.
The developers of ZFS claim that its the last word in file
systems [10]. Sun actively advertises ZFS as their next
generation file systems. ZFS also had been ported to OSX
10, Linux (through FUSE), FreeBSD, and NetBSD.

ZFS has been designed to provide simple administra-
tion, transactional semantics, end-to-end data integrity
and immense scalability. Sun also claims that ZFS is not
an incremental improvement to existing technology; it is
a fundamentally new approach to data management. They
have blown away 20 years of obsolete assumptions, elim-
inated complexity at the source, and created a storage sys-
tem that is actually a pleasure to use [10].

Like other modern file systems there is no good docu-
mentation on the policies of ZFS. We are still in the dark
about how ZFS provides these new features. Even after
a wide scale acceptance of ZFS by other operating sys-
tems only a very high level documentation is provided by
Sun Micro Systems [10] and few random blogs by ZFS
developers exists [6, 7].

In order to uncover some of the policies of ZFS we have
used gray-box techniques [1]. Gray box technique is an
approach where the tester has information about some of
the inner workings of the system. We have specifically
used Semantic Block Analysis (SBA) [8] . SBA was used
to uncover polices of modern journalling file system such
as Ext3 [11], JFS [5], and ReiserFS [9]. SBA is a gray
box approach where the tester has information about the
on-disk layout and data-structures of the file system. In
SBA, the tester runs a customized workload and observes
the disk workload by inserting a pseudo device driver be-
tween the file system and the disk. By co-relating the
workload with the observed disk traffic SBA uncovered
the journalling policies of the file systems.

Unlike other file systems, ZFS allocates blocks of vary-
ing sizes based on the workload. Hence, we were specif-

1

ically interested in finding out the block allocation pol-
icy of ZFS. Also, ZFS never overwrites any block on the
disk, it always performs Copy-On-Write of blocks when-
ever they are over written. We wanted to find out how ZFS
reacted to synchronous workloads as it would have to cre-
ate new copies of all block at the leaf level up to the root
(or the uberblock). We take the SBA approach to uncover
the policies of ZFS by inserting a pseudo block-device
driver between ZFS and the disk. We ran specific work-
loads that exercised some of ZFS’s allocation policies and
analyzed the disk traffic to infer the internal block alloca-
tion policies.

From our analysis we found that ZFS has a naive block
allocation policy and does not dynamically change block
sizes on workloads. Contrary to what ZFS developers
claim, we found that the block allocation policy of ZFS
is purely based on the file offset to which a new block is
written to. Also, ZFS block allocation policy performs
poorly for random workloads.

ZFS dynamically re-organizes small blocks into one
single large block. As a consequence of this policy ZFS
suffers from reading additional blocks under some work-
loads. To be precise, ZFS reads the contents of the smaller
blocks even if blocks are not in memory, to merge then
into one single large block for small files. The dynamic
re-organization policy was not observed for large files.

From our analysis of ZFS’s performance on syn-
chronous workloads, we find that the current block allo-
cation policy for ZFS Intent Logs is very inefficient. ZFS
wastes on-disk space for the logs by allocating blocks of
larger sizes (an additional 4K block in most cases) than
required. It also wastes a significant amount of on-disk
space under some workloads.

The rest of this paper is as follows. In section 2 we
talk about the block allocation mechanism in ZFS and
also discuss the mechanism in ZFS to handle synchronous
workloads. Section 3 explains the infrastructure that was
used to uncover the block allocation policies of ZFS. In
Section 4 we discuss the block classification strategy that
we used to segregate blocks from the observed disk traf-
fic. Sections 5 and 5.5 explains our workloads, analysis
and inferences on ZFS’s block allocation and dynamic re-
organization strategy. Section 6 explains our workload
that helped in uncovering the ZIL block allocation pol-
icy along with the analysis on the observed disk traffic.
Section 7 talks about the related work and conclude in

Section 8.

2 Background

Traditional block allocation and free space management
strategies like bitmap and btrees don’t scale well and per-
form poorly when subjected to random frees (as they lack
locality). With a 128-bit file system like ZFS, these be-
come bottlenecks for performance. So instead, ZFS takes
an approach similar to the Log Structured File system.
As blocks are freed, they get added to a list of recently
freed blocks and this list represents the free space avail-
able. The space on the virtual devices are divided into
Meta-slabs, each having a space map that represents the
free space available. The space map is a time ordered log
of allocations and frees. When space is freed, the extent
gets appended to the space map, and each allocation is
represented as an extent in the space map. The space map
and its associated allocations and frees are maintained in
memory in the form of an AVL tree of free space sorted
by offset. By reconstructing the space map in memory
can also help in compacting the space map.

2.1 Dynamic Block Allocation

ZFS also has a dynamic block allocation policy. Unlike
traditional file-systems which have their block sizes fixed
at format time, ZFS can either dynamically select block
sizes depending on the nature of the workload or allow
the user to specify one (for example, for applications like
databases which have fixed size records, its beneficial to
fix the block size manually). Block sizes are allocated
dynamically up-to a 128k after which it remains constant.

2.2 ZFS Intent Logs

In certain applications, like databases, certain disk writes
are synchronous. For example, when the commit records
get flushed to disk, the database forces this to disk and
waits for the write to complete before it can proceed. In
these cases, ZFS would perform poorly with its copy-on-
write semantics as each synchronous write would require
all the blocks in the hierarchy up to the uber-block to be
re-written before the write system call can return. In-
stead ZFS chooses to use ZIL - ZFS Intent Logs. ZILs

2

Figure 1: ZIL Block Chaining. This figure illustrates the ZIL
Block Chaining mechanism. Each ZIL block has a pointer to
the next ZIL block. During crash recovery, the ZIL Blocks are
replayed starting from the ZIL Header can be reached from the
uber-block

accumulate in memory and when some data needs to be
synchronously written, then the ZILs are flushed to disk.
These can be later replayed in the event of a crash. ZFS
writes the data along with the log for data block size up
to 64KB. Beyond 64K it synchronously writes the data
block to the disk and blocks pointer to the log record.

ZIL consists of a ZIL header, ZIL blocks and ZIL
trailer. The header block is the starting point from which
the logs have to be replayed during crash recovery. The
current or the latest uber-block contains the pointer to the
ZIL header. The header points to a list of chained ZIL
blocks 1. The trailer (which is present in each ZIL block)
is responsible for establishing the chains. This raises
the interesting question of how these chains are main-
tained. When a ZIL block gets flushed to disk, the blocks
trailer should contain the location of the next block. So
ZIL blocks are preallocated and their addresses chained.
Preallocation results in wastage/internal fragmentationof
ZIL records. At the moment blocks are preallocated the
size of the current block is the only metric to go by to de-
termine the size of the next block. So if the current block
is 33k in size, then the next block is also 33k long.

The ZIL blocks are dynamically allocated and there is
no fixed location for these blocks, which translates to no
pre-defined limitation on the size of ZFS logs.

3 Infrastructure

We ran all our tests on a Sun ultra sparc 20 workstation
with 1 GB of memory and two Ide disks each of 75GB

in size. We installed the latest Solaris community ver-
sion available from the sun’s website (build 70b). In or-
der to capture the block traffic between the file system
and the disk we have implemented a pseudo block-device
driver (PBDD) in Solaris 11 using Layered Device Inter-
face (LDI). The LDI layer in Solaris provides a cleaner in-
terface for developers to implement pseudo device drivers
and hides all the complex details of implementing the
hooks to access and translate requests to the underlying
device. During implementation we found that Solaris did
not allow ioctls to block devices that are not registered as
a block device. We desperately needed Ioctl support for
our device driver to control collection of statistics inside
the driver. In order to overcome the limitation we used the
popular solution of adding another level of indirection be-
tween the file system and our pseudo block device driver.
We implemented a dummy pseudo-character device driver
that opened our pseudo block device driver and redirected
the ioctl requests. Later on we found that Solaris allowed
a particular device to be exported as both character and a
block device at the same time, which would have avoided
the additional transfer of ioctl messages from the charac-
ter driver to the block driver and vice versa.

Our block driver does selective classification of blocks
based on the flags set in the driver through ioctl calls. Af-
ter classification each block the PBDD asynchronously
writes a log record about the analysis to a log file. The
format of the log records are discussed in the following
section.

4 Block Classification Strategy

In order to co-relate the block traffic that reach the disk
with the workload, we devised a simple yet powerful way
of identifying different ZFS blocks. ZFS blocks can be
broadly classified as Uberblock (aka super-block in FFS
like file systems), ZIL blocks, data blocks and meta-data
blocks. The meta-data blocks are basically Meta-Object
Set (MOS), which can contain sets of meta-objects. Ob-
jects sets in ZFS are used to group related objects such as
objects in a file system, clone, snapshot, and volume. For
our workloads we did not have to look into the meta-data
structures of ZFS. We observed that ZFS first compresses
and writes the meta-data blocks before writing back to the
disk. The block classification methodology for uber, ZIL,

3

data and meta-data blocks are explained in section 2.2.

4.1 UberBlock

ZFS writes a new uberblock whenever it wants to create
a new persistent version on the disk. The uber-blocks
are 1024bytes in size and has a 64 bit magic flag to
identify the uber-blocks. The value of the magic flag is
0x00bab10c (oo-ba-block). PBDD exploits this informa-
tion to identify uber-blocks by its magic flag which is
written at a constant offset in each uberblock.

4.2 ZIL Blocks

ZFS does not overwrite any blocks on disk. It always does
Copy-On-Write (COW) in order to write back modified
disk blocks. The COW mechanism causes problems for
ZFS for synchronous workloads as it needs to write back
a chain of block starting from the data block (leaf node)
up to the uberblock (root node). This would bring down
the performance of ZFS for synchronous workloads. To
over come this problem ZFS writes the data to the log
file and flushes the logs back to the disk before returning
back to the user. This way the data is persistent (even
if a crash occurred before the data block is written to its
new location). The ZIL blocks are identified by the magic
flag which is present in the ZIL trailer structure of every
ZIL block. The ZIL trailer block contains a zioblock tail
structure which contains the magic flag field. In short, the
magic flag is always written at a constant offset from the
end of every ZIL block. PBDD uses this information to
identify ZIL blocks.

4.3 Data Blocks

Majority of the block that gets written in most of the
workloads are data blocks. In order to identify data blocks
we add a special 64 bit pattern at the start of every 512
byte offset. The 512 byte offset is chosen because its the
smallest block size that can be written to the disk. In or-
der to identify individual data blocks an unsigned long
long integer was added after the special pattern. The ap-
plication that generates the workload maintains a counter
that keeps track of number of 512 byte blocks written to
the disk. The application appends this value after the spe-
cial pattern for every 512 byte block. PBDD uses this

Figure 2: Experimental Setup. This figure shows the higher
level setup of our experiments. The applications run customized
workloads and the pseudo device driver observes the disk traffic
from the file system generated by the applications. It then tries
to infer policies from the generated block traces.

information to identify individual blocks within a large
data block. These sequence numbers are very useful to
detect if duplicates blocks are written back to the disk and
also for co-relating ZIL blocks writes with the actual data
block that is written after a brief interval of time.

4.4 Meta-data Blocks

The blocks that are not classified as uber, ZIL or data
blocks are automatically classified as meta-data blocks.
As mentioned before our analysis did not require un-
derstanding of the meta-data blocks. Hence we do not
uncompress and extract information from the meta-data
blocks.

5 Block Allocation Policy

Our first goal was to untangle the block allocation policy
in ZFS. ZFS claimed that blocks of various sizes are dy-
namically allocated based on the workload. We were cu-
rious to know how exactly blocks were allocated in ZFS.

4

In this section we first describe each experiment, its goal,
inferences from each experiment.

5.1 Sequential Writes to a Large File

In our first experiment we ran a sequential workload that
wrote blocks of varying sizes asynchronously to the disk
in each run. The goal of this experiment was to find
the default block size in ZFS. We varied the block size
in each run from 4KB to 1MB. In runs where the ap-
plication wrote block sizes that are lesser than 128KB,
we observed that ZFS cached subsequent block writes in
memory till the cached block size reaches 128KB. ZFS
then writes a single 128KB block instead of writing many
blocks of smaller size. This also helps ZFS to read a single
block while fetching the data back from the disk making
it more efficient by reducing the fragmentation of blocks.
Block writes greater than 128KB were still written in mul-
tiples of 128KB blocks by ZFS. From this experiment we
concluded that the maximum size of blocks in ZFS was
128KB.

5.2 Random Writes to a Large File

In our next experiment we wrote 4K blocks to a large file
by randomly seeking to different offsets (the maximum
seek offset was set to 4GB) within the file. We were ex-
pecting blocks writes of 4KB sizes but we observed that
ZFS wrote blocks of 128KB for each 4K block write. This
pattern of writing larger block sizes continued till block
sizes were less than 128K in size beyond which it always
wrote blocks of 128KB in size. This was also observed
in the previous experiment where we sequentially wrote
blocks of varying sizes to a file. Figure 3 shows the
results for block writes of 4KB size by the application.
The bottom line shows the expected block sizes (in this
case 4KB) but the top line shows the observed block size
(128KB). From this experiment we conclude that ZFS
block allocation policy does not work really well for small
random writes to a large file.

5.3 Random Writes to a Small File

In order to get a clear understanding of how ZFS allocated
blocks we wrote 4KB blocks to small files (maximum
seek offset was set to 128KB). Figure 4 shows one such

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10

B
lo

ck
 S

iz
e

in
 K

B
File Size in KB

 (Observed Block Size)
 (Expected Block Size)

Figure 3: Impact of Large Random Workloads on ZFS.The
figure shows the effect of random 4K blocks written inside a file
of size 4GB. This graph shows that ZFS always allocates blocks
of 128K even when the application performs 4KB writes.

run. Table 1 contains the offsets generated by the applica-
tions and the block sizes observed. From table 1 we can
see that when the first block is written at 36K offset the
block written by ZFS was 40K (36K plus the additional
4K data). The block sizes remain the same for the next
three writes of 4K blocks as offsets generated were less
than 40K. For the forth block which was written at 84K
byte offset the block size generated by the file was 88KB.
From this experiment we see ZFS does not do a good job
in allocating blocks even for small random writes to files
whose sizes are lesser than 4KB in size.

From the previous experiment an observant reader
would have noticed that the block size generation could
be very naive in ZFS. It could just be based on file offsets.
In order to verify our assumption we wrote 512 bytes at
different offsets to a small file. Figure 5 shows the block
sizes allocated by ZFS when 512 bytes were written to
a file at various offsets. Table 2 contains the offsets and
the block sizes generated by ZFS. From Figure 5 we can
clearly see that the block allocated by ZFS are directly
proportional to file offsets the blocks are written to.

5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

-2 0 2 4 6 8 10

B
lo

ck
 S

iz
es

 a
nd

 O
ffs

et
s

in
 K

B

Iteration

 (Observed Block Size)
 (Expected Block Size)

 (Offset)

Figure 4: Impact of small random Workloads on ZFS. The
figure shows the effect of random 4k byte blocks written inside a
file of size 128KB. This graph shows that ZFS always allocates
blocks based on file offsets.

Offsets Observed Block
in KB Sizes in KB

36 40
36 40
20 40
84 88
0 88

20 88
52 88
16 88
4 88

Table 1: File Offsets Vs Observed Block sizes for Random 4k
write to a small file

5.4 Block Allocation Policy

From the previous experiments it can be seen that ZFS
has very naive block allocation algorithm. The block sizes
are allocated based on the file offsets that the blocks are
written to. For file sizes that are lesser than 128K the
block size allocated to the file is the offset to which the
block is written to. For files larger than 128KB a new
block of 128K is allocated invariant of the amount of data
written to the file. This block allocation policy does not

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1 2 3 4 5 6 7 8 9 10

B
lo

ck
 S

iz
es

 a
nd

 O
ffs

et
s

in
 K

B
Iteration

 (Offset)
 (Block Size)

Figure 5: Random of 512 bytes to a small file.The figure
shows the effect of random 512 byte blocks written at various
file offsets. This graph clearly shows that ZFS block allocation
policy is purely based on file offsets.

Offsets Observed Block
in KB Sizes in KB

0 0.5
16 16.5
32 32.5
64 64.5

127 127.5
128 128
150 128

Table 2: File Offsets Vs Observed Block sizes for Random 512
byte writes to a small file

work for random write workload.

5.5 Dynamic Block Reorganization

While running our experiments we observed to ZFS
smartly merges small blocks to one single large blocks.
In order to understand this block re-organization policy
of ZFS we designed a few workload that would help us
get a better insight into it. We made sure the block writ-
ten to a file reaches the disk before the next write to the
file proceeds. This was achieved by making the applica-
tion sleep for a small duration of time (we observed that

6

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200

B
lo

ck
 S

iz
e

in
 K

B

File Size in KB

 (Observed Block Size)
 (Expected Block Size)

Figure 6: Effect of Small Sequential Writes on Block Allo-
cation. This graphs shows the observed block sizes writing 8k
blocks at regular time intervals.

ZFS wrote back the dirty blocks to disk ever 10 seconds,
hence we made the application sleep for 12 seconds be-
fore every write). In our first experiment we wrote blocks
of 8KB sizes sequentially to newly created file. As men-
tioned before we forcefully introduced a 12 second delay
between consecutive writes to the file. Figure 6 shows
the block sizes observed by our PBDD. It can be seen that
observed block sizes are significantly different from ex-
pected blocks sizes. This is because ZFS merges the pre-
viously written small block with the newly appended data
and writes back one single block. The linear graph for
observed block sizes show this policy of merging smaller
blocks of a file into a larger block for every subsequent
writes to a file. ZFS merges blocks till the file size reaches
128KB and after that it always allocated and blocks of
128KB. We varied the block sizes written to the file from
4K to 128K and observed that ZFS merged blocks in
all the cases whenever the total file size was lesser than
128KB.

In order to explain this more clearly we show the ob-
served block sizes when 32KB blocks were written to a
new file. From figure 7 we can see that when the first 32K
block was written, the observed block size is the same as
the expected block size (i.e, 32KB). When the next block
is written, the expected block size is 32KB but since ZFS
merged the previously written data with the new data that

is appended to the file it wrote a 64KB block instead of a
new 32KB block for the second write. We identified dy-
namic merging of blocks in ZFS as we added a counter to
every data block that is written to ZFS. In the above men-
tioned experiments the previously observed counter num-
bers (i.e 0 to 64 as the we increment the counter for ever
512 byte block) were repeated even during the subsequent
block write and the block size for the write was 64KB.
When the third block was written to the file the observed
blocks sized increased from 64K to 96K. This is because
it merged the previously written 64K with the new 32K
append and wrote one 96K big block to the disk. For
the fourth block the observed block size increased from
96K to 128K in size. For the subsequent block writes the
block size remains a constant as the file size is larger than
128KB.

In is important to differentiate these 128K block writes
with the first 128K block observed in PBDD. The first
128K was written by merging the previously written 96K
with the new 32K write to the file. Where as the next
128K block only contained 32K of data in it and the next
subsequent write to this 128K block resulted in a COW
to this 128K block. We can see that ZFS wastes a signif-
icant amount of space for small block writes to file that
are greater than 128KB. Even though the previously writ-
ten blocks would be reclaimed at a later time the blocks
would not be available until a background ZFS process
checks these blocks to reclaim them back.

Now that we have understood the block merg-
ing/reorganization policy of ZFS. We wanted to check if
ZFS does this in a smart way. i.e., merge block only if
they were in memory as it would be inefficient to read
back the previously written block before appending the
newly written data to the existing data and writing back
a larger block to the disk. We devised a new workload
to check how ZFS reacted in this case. In order to ob-
serve this the previous written block should not be in
memory. We unmounted and remounted the file system
between subsequent writes. Another was of achieving
this would be have a large number of small files whose
combined size would exceed the size of the memory and
then subsequent writes to the files in round robin fashion
would ensure that the previous blocks would no longer
be cached in memory. We chose the first approach as it
was much easier to implement. Also, the file we reopened
again in OAPPEND mode to ensure ZFS did not read

7

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300

B
lo

ck
 S

iz
e

in
 K

B

File Size in KB

 (Observed Block Size)
 (Expected Block Size)

Figure 7: Effect of Small Sequential Writes on Block Allo-
cation. This graphs shows the observed block sizes writing 32k
blocks at regular time intervals.

back the data to cache it in memory. In this experiment
we appended 4KB block to the file, slept for some time
to ensure that blocks reaches the disk. Unmounted and
remounted the ZFS file system. Finally opened the file
in O APPEND mode and repeated the above mentioned
steps.

From Figure 8 we can see that during block writes,
ZFS reads back the previously written data to the file to
append the newly written data to it and allocates and write
back a larger block back to the disk.

From all these experiments we observe that ZFS dy-
namically resizes the block till it file size is smaller than
128K after which its always allocates 128K and per-
forms copy-on-write on these blocks for writes of smaller
block size. It was also observed that the dynamic re-
organization policy would have terrible performance im-
pact when the smaller blocks are not in memory and
ZFS would suffer from small appends being converted to
Read-Modify-Write of blocks to the disk. This is similar
to the performance problem in RAID-4 where the parity
block has to read back from the disk to recompute the par-
ity and is written back with the new parity for every small
block write to the RAID.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140 160 180

S
iz

e
in

 K
B

File Size in KB

 (Append)
 (Data Read From Disk)

Figure 8: Block re-organization in ZFS. This graphs shows
sizes of block read from the disk while appending 4K blocks toa
file. Before appending a block, the file system is unmounted and
remounted again to ensure that the previously written blocks are
not cached in memory.

6 ZIL Block Allocation Policy

ZFS writes intent logs for blocks that are synchronous
written by means offsync call or opening the file
O DSYNCmode. In order to avoid writing block from
leaf to the root, ZFS writes the data to the log before re-
turning to the caller. The goal of the following experi-
ments was to find out how ZFS allocated ZIL blocks when
the blocks sizes varied. We also wanted to find out how
large synchronous block writes were handled by ZFS.

In the first workload we opened a file in ODSYNC
mode and wrote blocks of a fixed sizes till the file size
reached 1MB. In each run of the experiment we varied the
block size from 512 bytes to 512KB. Figure 9 shows the
ZIL block allocated for a few different block sizes writ-
ten by the application. It can be seen that for block sizes
lesser than 4KB, ZFS allocates 4KB sized ZIL blocks. To
be precise we observed this pattern till block sizes were
lesser than 4KB - 192 bytes. This is because ZFS also
writes some additional bytes that helps in replaying the
log information. The 192 bytes is the log record size for
writes and it varies with the different log record types (e.g,
create, delete, rename, access control information). We
observed that ZIL added the data after the log records

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12

Z
IL

 B
lo

ck
 S

iz
e

in
 K

B

Iteration

 (16K)
 (32K)

 (1024)
 (64K)

 (3072)

Figure 9: Effect of Block Writes on ZIL Block Sizes. This
graph shows the observed ZIL block sizes Vs Data block Sizes.
From the graph we observe that ZFS always allocates blocks in
multiples of 4K.

till the block sizes were lesser than 64K after that the
blocks were flushed to the disk and only the pointer to the
block were written to the log record. We believe this is a
good policy when the block sizes get larger as you have
to rewrite (or copy) the data blocks again to its original
position.

During the tests we also observed that ZFS always
flushed the first data block to the disk invariant of the
block size being written and creates a new on disk ver-
sion (by writing a new uberblock). We were puzzled why
ZFS only writes the first data block to the disk and from
then on uses the ZIL blocks to write data to it. When we
looked at the source code we found that that it pre-dirties
the first block so that subsequent writes to blocks that are
written synchronously to disk sync to convergence faster.

We found that ZIL log chaining performs inefficiently
under some workloads (especially when the block sizes
are between 32k and 64k). Figure 10 shows the problem
with ZIL block allocation and with log chaining. As men-
tioned in section 2.2, ZIL blocks are chained (i.e., each
ZIL block contains the pointer to the next block) and ZFS
never overwrites any block on disk. As a result it has to
pre-allocate the next block when the current log block is
written. The first ZIL block observed is the ZIL header
block. Even though the data contained in the header is

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12

Z
IL

 B
lo

ck
 S

iz
e

in
 K

B
Iteration

33K Writes

Figure 10: ZIL Block Allocation for 33KB Synchronous
Writes. This graphs shows the observed ZIL Block sizes for
33K synchronous writes. ZIL Performs poorly because of block
chaining, re-ordering of blocks and copy-on-writes.

less than 1K of data it still writes 4K blocks to the disk.
In this particular experiment ZFS writes 33K block sizes
the first three 33K writes does not generate ZIL blocks.
This is because the first 33k data block does not get writ-
ten in ZIL it is directly flushed to the disk. When the
second 33k write occurs due to dynamic re-organization
policy in ZFS it merges this block write with the previous
33K block to write one large 66K block. Since this block
size is greater than 64K ZFS flushes the data-block and
writes the block pointer in the log record. Even though
the total data in the ZIL block is less that 1K ZIL writes
a 4K ZIL block as the minimum block size of ZIL is 4K.
During the third 33K block write ZFS merges the current
data block with the previous written 66K data and writes
a 99K block. Once again as the data is greater than 64K,
ZIL only stores the block pointer to the newly written data
block.

When the next 33K write occurs the amount of data
crosses the 128K block boundary, hence ZFS writes back
the data block of 128K size and also a log block that con-
tains the data written to first 128K block. It writes the
remaining 4K as a separate log entry in the same ZIL
block. For the fifth 33K write we observe that its still
writes 128K block (i.e, it does a COW for the previous
created 128K block). This pattern keeps repeating. When

9

the pattern repeated again the ZIL does need to be created
again.

We also some more strange behavior for which we do
not have a logical explanation. The seventh ZIL log block
is the copy of the second log block. Also, the twelfth ZIL
log record is the duplicate of sixth ZIL block. This pattern
keeps repeating. Also, when the new 33K is appended to
the file whose size is greater than 33K it ZFS flushes the
128K data block to the disk but still writes the data to the
log when the write overlap two 128K blocks of the file.

7 Related Work

Traditionally file systems have been benchmarked using
specialized workloads. Some of the popular file system
benchmarking utilities are PostMark [4], IOzone [12],
Bonnie [2] , and Andrew benchmark [3]. IOzone bench-
marks perform synthetic read/write tests to determine
throughput. Andrew and Postmark benchmark are de-
signed to model realistic application workloads. All the
above mentioned benchmarks measure overall through-
put or runtime to draw high-level conclusions about the
file system. In contrast to our approach of using SBA,
none of these are intended to yield low-level information
about the internal policies of the file system.

8 Conclusions

Semantic block analysis provides a powerful method to
analyze and extract policies of file systems without actu-
ally looking at the file system code. We found that SBA
helped us to accurately figure out the block allocation
policies of ZFS. We found that ZFS currently has a very
poor block allocation policy. It allocates blocks based on
the file offsets the block is written to, till the file size is
less than 128k and allocates blocks of 128k for any block
write greater than 128k offset. This was true even when
the smaller block is not in memory. It was surprising to
see that when ZFS appends data to a smaller file, it read
the previous block back to the memory, then appends the
new data and writes a larger block to the disk. We also
found that ZFS constantly merges smaller blocks into a
larger block till the file sizes reaches 128KBytes. The ZIL
block allocation is also poor in its current form. It creates

and writes blocks in multiples of 4k blocks and due to
this it ends up writing blocks of larger sizes that neces-
sary. We only have touched upon the tip of the iceberg
and more analysis needs to be done to other policies of
ZFS. Some other interesting features that would be worth
investigating are versioning policy, meta slab, and RAID-
Z.

9 Acknowledgment

We would like to thank Prof. Remzi for his guidance and
for his constant encouragement to break his machines. We
would like to thanks Lakshmi and Nitin for helping us fix
the broken machines. Finally we would like to thank Sun
Micro Systems for donating Sun Ultra-20 workstation to
ADSL group for their research projects.

References
[1] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and

Control in Gray-Box Systems. InProceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP ’01), pages
43–56, Banff, Canada, October 2001.

[2] T. Bray. The Bonnie File System Benchmark.
www.textuality.com/bonnie/.

[3] J. H. Howard. An Overview of the Andrew File System. InPro-
ceedings of the Winter USENIX Technical Conference, February
1988.

[4] J.Katcher. PostMark: A New File System Benchmark.
Technical Report TR-3022, Network Applicance Inc.
www.netapp.com/techlibrary/3022.html/, October 1997.

[5] D. Kleikamp and S. Best. How the Journaled File
System handles the on-disk layout, May 2000. www-
106.ibm.com/developerworks/library/l-jfslayout/.

[6] N.Nadgir. Neelkanth Nadgir’s Blog on ZFS, ZIL etc.
www.blogs.sun.com/realneel/.

[7] N.Perrin. Neil Perrin’s Blog on ZFS, ZIL etc.
blogs.sun.com/perrin/.

[8] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Analysis and evolution of journaling file systems. InATEC’05:
Proceedings of the USENIX Annual Technical Conference 2005
on USENIX Annual Technical Conference, pages 8–8, Berkeley,
CA, USA, 2005. USENIX Association.

[9] H. Reiser. ReiserFS. www.namesys.com/, October 2004.

[10] Sun Micro Systems. ZFS - Open Solaris Community.
www.opensolaris.org/os/community/zfs/, 2007.

[11] T. Y. Ts’o and S. Tweedie. Planned extensions to the linux
ext2/ext3 filesystem. InProceedings of the FREENIX Track: 2002
USENIX Annual Technical Conference, pages 235–243, Berkeley,
CA, USA, 2002. USENIX Association.

[12] W.Norcutt. The IOZone Filesystem Benchmark.
www.iozone.org/.

10

