Untangling Block Allocation Policies of ZFS

Swaminathan Sundararaman
Sriram Subramanian

Computer Sciences Department
University of Wisconsin, Madison

December 21, 2007

Abstract ZFS has been designed to provide simple administra-
tion, transactional semantics, end-to-end data integrity
The ZFS file system from Sun is the latest buzz wordaimd immense scalability. Sun also claims that ZFS is not
the file system community. The creators of ZFS claiman incremental improvement to existing technology; it is
have re-designed the file system from scratch, providiagundamentally new approach to data management. They
new features and levels of reliability, performance and dfave blown away 20 years of obsolete assumptions, elim-
ficiency uncommon in traditional file systems. This itnated complexity at the source, and created a storage sys-
cludes dynamic block allocation that changes the bloden that is actually a pleasure to use [10].
sizes based on workloads. In this paper we have primar-_ike other modern file systems there is no good docu-
ily focused on the Block allocation policy of ZFS undenentation on the policies of ZFS. We are still in the dark
varied workloads. We have built our infrastructure basegbout how ZFS provides these new features. Even after
on semantic block analysis and found that ZFS allocatgsvide scale acceptance of ZFS by other operating sys-
block based on the file offset that are being written anéms only a very high level documentation is provided by
not based on the workload. Block allocation policy workSun Micro Systems [10] and few random blogs by ZFS
poorly for random writes. We also found that ZFS mergegvelopers exists [6, 7].
smaller blocks to one big block and as a result a single |n order to uncover some of the policies of ZFS we have
block write gets converted to read-modify-write of a bigrsed gray-box techniques [1]. Gray box technique is an
ger block. approach where the tester has information about some of
ZFS Intent log also has a poor block allocation policshe inner workings of the system. We have specifically
and for small block writes it wastes a significant amounsed Semantic Block Analysis (SBA) [8] . SBA was used
of storage space in the file system. Overall we find thatuncover polices of modern journalling file system such
ZFS tells more that it actually does. as Ext3 [11], JFS [5], and ReiserFS [9]. SBA is a gray
box approach where the tester has information about the
on-disk layout and data-structures of the file system. In
1 Introduction SBA, the tester runs a customized workload and observes
the disk workload by inserting a pseudo device driver be-
ZFS is the latest buzz word in the file system communityeen the file system and the disk. By co-relating the
The developers of ZFS claim that its the last word in filworkload with the observed disk traffic SBA uncovered
systems [10]. Sun actively advertises ZFS as their néixe journalling policies of the file systems.
generation file systems. ZFS also had been ported to OSXJnlike other file systems, ZFS allocates blocks of vary-
10, Linux (through FUSE), FreeBSD, and NetBSD. ing sizes based on the workload. Hence, we were specif-

ically interested in finding out the block allocation polSection 8.

icy of ZFS. Also, ZFS never overwrites any block on the

disk, it always performs Copy-On-Write of blocks when-

ever they are over written. We wanted to find outhow zF8 ~ Background

reacted to synchronous workloads as it would have to cre-

ate new copies of all block at the leaf level up to the rodtaditional block allocation and free space management
(or the uberblock). We take the SBA approach to uncowfategies like bitmap and btrees don’t scale well and per-
the policies of ZFS by inserting a pseudo block-deviégrm poorly when subjected to random frees (as they lack
driver between ZFS and the disk. We ran specific worlecality). With a 128-bit file system like ZFS, these be-
loads that exercised some of ZFS'’s allocation policies ag@me bottlenecks for performance. So instead, ZFS takes
analyzed the disk traffic to infer the internal block alloc&n approach similar to the Log Structured File system.
tion policies. As blocks are freed, they get added to a list of recently

From our analysis we found that ZFS has a naive bloffred blocks and this list represents the free space avail-
allocation po||cy and does not dynamica”y Change b|0@b|e The space on the virtual devices are divided into
sizes on workloads. Contrary to what ZFS developéYita-slabs, each having a space map that represents the
claim, we found that the block allocation policy of zFdree space available. The space map is a time ordered log
is purely based on the file offset to which a new block &f allocations and frees. When space is freed, the extent
written to. Also, ZFS block allocation policy performdlets appended to the space map, and each allocation is
poorly for random workloads. represented as an extent in the space map. The space map

ZFS dynamically re-organizes small blocks into or@nd its associated allocations and frees are maintained in
single large block. As a consequence of this policy ZFgemory in the form of an AVL tree of free space sorted
suffers from reading additional blocks under some worRY offset. By reconstructing the space map in memory
loads. To be precise, ZFS reads the contents of the sma#Ri also help in compacting the space map.
blocks even if blocks are not in memory, to merge then
into one _single Iarge block for small files. The dynamig_l Dynamic Block Allocation
re-organization policy was not observed for large files.

From our analysis of ZFS's performance on syFS also has a dynamic block allocation policy. Unlike
chronous workloads, we find that the current block all¢raditional file-systems which have their block sizes fixed
cation policy for ZFS Intent Logs is very inefficient. ZFSat format time, ZFS can either dynamically select block
wastes on-disk space for the logs by allocating blocks®izes depending on the nature of the workload or allow
larger sizes (an additional 4K block in most cases) thtfre user to specify one (for example, for applications like
required. It also wastes a significant amount of on-diglatabases which have fixed size records, its beneficial to
space under some workloads. fix the block size manually). Block sizes are allocated

The rest of this paper is as follows. In section 2 wéynamically up-to a 128k after which it remains constant.
talk about the block allocation mechanism in ZFS and
also discuss the_mechanism_ in ZFS_to handle synchronggg ZFS Intent Logs
workloads. Section 3 explains the infrastructure that was
used to uncover the block allocation policies of ZFS. Im certain applications, like databases, certain diskesrit
Section 4 we discuss the block classification strategy tlaaé synchronous. For example, when the commit records
we used to segregate blocks from the observed disk trgét flushed to disk, the database forces this to disk and
fic. Sections 5 and 5.5 explains our workloads, analysigits for the write to complete before it can proceed. In
and inferences on ZFS's block allocation and dynamic riétese cases, ZFS would perform poorly with its copy-on-
organization strategy. Section 6 explains our workloadite semantics as each synchronous write would require
that helped in uncovering the ZIL block allocation polall the blocks in the hierarchy up to the uber-block to be
icy along with the analysis on the observed disk traffice-written before the write system call can return. In-
Section 7 talks about the related work and concludestead ZFS chooses to use ZIL - ZFS Intent Logs. ZILs

in size. We installed the latest Solaris community ver-

Header Log Block Log Block sion available from the sun’s website (build 70b). In or-
I:l Log Record Log Record der to capture the bl(_)ck traffic between the file system
and the disk we have implemented a pseudo block-device
Log Record driver (PBDD) in Solaris 11 using Layered Device Inter-
Trailer face (LDI). The LDl layer in Solaris provides a cleaner in-
— terface for developers to implement pseudo device drivers

and hides all the complex details of implementing the
hooks to access and translate requests to the underlying
Figure 1: ZIL Block Chaining. This figure illustrates the ZIL device. During implementation we found that Solaris did
Block Chaining mechanism. Each ZIL block has a pointer tsot allow ioctls to block devices that are not registered as
the next ZIL block. During crash recovery, the ZIL Blocks arg plock device. We desperately needed loctl support for
replayed starting from the ZIL Header can be reached from tgr device driver to control collection of statistics insid
uber-block the driver. In order to overcome the limitation we used the
popular solution of adding another level of indirection be-

accumulate in memory and when some data needs tot\ﬁéen the file system and our pseudo block device driver.
synchronously written, then the ZILs are flushed to disk/e implemented a dummy pseudo-character device driver
These can be later rep|ayed in the event of a crash. Zthgt Opened our pseudo block device driver and redirected
writes the data along with the log for data block size dpe ioctl requests. Later on we found that Solaris allowed

to 64KB. Beyond 64K it synchronously writes the dat@ particular device to be exported as both character and a
block to the disk and blocks pointer to the log record. block device at the same time, which would have avoided

ZIL consists of a ZIL header, ZIL blocks and ziLthe additional transfer of ioctl messages from the charac-

trailer. The header block is the starting point from whictgr driver to the block driver and vice versa.

the logs have to be replayed during crash recovery. Théur block driver does selective classification of blocks

current or the latest uber-block contains the pointer to tha@sed on the flags set in the driver through ioctl calls. Af-

ZIL header. The header points to a list of chained zfter classification each block the PBDD asynchronously

blocks 1. The trailer (which is present in each ZIL blockyrites a log record about the analysis to a log file. The

is responsible for establishing the chains. This rais@mat of the log records are discussed in the following

the interesting question of how these chains are mas@ction.

tained. When a ZIL block gets flushed to disk, the blocks

trailer should contain the location of the next block. So .)

ZIL blocks are preallocated and their addresses chaindd. BloCk Classification Strategy

Preallocation results in wastage/internal fragmentatifon

ZIL records. At the moment blocks are prea”ocated tl'll@ Ol’der to CO-l’elate the blOCk traffiC that reaCh the d|Sk

size of the current block is the only metric to go by to devith the workload, we devised a simple yet powerful way

termine the size of the next block. So if the current blo&¥ identifying different ZFS blocks. ZFS blocks can be

is 33k in size, then the next block is also 33k long. broadly classified as Uberblock (aka super-block in FFS
The ZIL blocks are dynamically allocated and there [&e file systems), ZIL blocks, data blocks and meta-data

no fixed location for these blocks, which translates to m¥PCks. The meta-data blocks are basically Meta-Object
pre-defined limitation on the size of ZFS logs. Set (MOS), which can contain sets of meta-objects. Ob-

jects sets in ZFS are used to group related objects such as

objects in a file system, clone, snapshot, and volume. For
3 Infrastructure our workloads we did not have to look into the meta-data

structures of ZFS. We observed that ZFS first compresses
We ran all our tests on a Sun ultra sparc 20 workstatiand writes the meta-data blocks before writing back to the
with 1 GB of memory and two Ide disks each of 75GHisk. The block classification methodology for uber, ZIL,

data and meta-data blocks are explained in section 2.2.

Application
4.1 UberBlock I
ZFS writes a new uberblock whenever it wants to create
a new persistent version on the disk. The uber-blocks \ File System ‘
are 1024bytes in size and has a 64 bit magic flag to I
identify the uber-blocks. The value of the magic flag is MPeeudo Device Driver
0x00bab10c (oo-ba-block). PBDD exploits this informa- LI o o T T 1
tion to identify uber-blocks by its magic flag which is T 0S

written at a constant offset in each uberblock. ,L

Ty
4.2 ZIL Blocks

ZFS does not overwrite any blocks on disk. It always does
Copy-On-Write (COW) in order to write back modified
disk blocks. The COW mechanism causes problems for

ZFS for synchronous workloads as it needs to write bagire 2: Experimental Setup. This figure shows the higher
a chain of block starting from the data block (leaf nod@yel setup of our experiments. The applications run cuigtedn
up to the uberblock (root node). This would bring dowforkloads and the pseudo device driver observes the diffictra
the performance of ZFS for synchronous workloads. fiem the file system generated by the applications. It thies tr
over come this problem ZFS writes the data to the laginfer policies from the generated block traces.

file and flushes the logs back to the disk before returning

back to the user. This way the data is persistent (even

if a crash occurred before the data block is written to igformation to identify individual blocks within a large
new location). The ZIL blocks are identified by the magid@t@ block. These sequence numbers are very useful to

flag which is present in the ZIL trailer structure of everQeteCt if duplicates blocks are written back to the disk and
ZIL block. The ZIL trailer block contains a ziblock tail 2/So for co-relating ZIL blocks writes with the actual data

structure which contains the magic flag field. In short, tfRi0ck thatis written after a brief interval of time.
magic flag is always written at a constant offset from the
gnd qf every ZIL block. PBDD uses this informationtq 4 Meta-data Blocks
identify ZIL blocks.
The blocks that are not classified as uber, ZIL or data
4.3 Data Blocks blocks are automatically classifie(_j as meta-data_blocks.
As mentioned before our analysis did not require un-
Majority of the block that gets written in most of thelerstanding of the meta-data blocks. Hence we do not
workloads are data blocks. In order to identify data blocksicompress and extract information from the meta-data
we add a special 64 bit pattern at the start of every 5tcks.
byte offset. The 512 byte offset is chosen because its the
smallest block size that can be written to the disk. In or-
der to identify individual data blocks an unsigned lonp Block Allocation Policy
long integer was added after the special pattern. The ap-
plication that generates the workload maintains a coun€ur first goal was to untangle the block allocation policy
that keeps track of number of 512 byte blocks written to ZFS. ZFS claimed that blocks of various sizes are dy-
the disk. The application appends this value after the spamically allocated based on the workload. We were cu-
cial pattern for every 512 byte block. PBDD uses thigous to know how exactly blocks were allocated in ZFS.

In this section we first describe each experiment, its goal, 149

inferences from each experiment. (Observed Block Size) ——
140 + (Expected Block Size) ——

5.1 Sequential Writes to a Large File o 1207

X
In our first experiment we ran a sequential workload tBat 100
wrote blocks of varying sizes asynchronously to the disk go |
in each run. The goal of this experiment was to fumad
the default block size in ZFS. We varied the block sgZe
in each run from 4KB to 1MB. In runs where the a%- 40 |
plication wrote block sizes that are lesser than 128KB,
we observed that ZFS cached subsequent block writes in
memory till the cached block size reaches 128KB. ZFS 0 : : : : :
then writes a single 128KB block instead of writing many 0 2 4 6 8 10
blocks of smaller size. This also helps ZFS to read a single File Size in KB

block while fetching the data back from the disk maklnlg_;igJUIre 3: Impact of Large Random Workloads on ZFS. The

it more efficient by reducing the fragmentation of blOCkﬁgure shows the effect of random 4K blocks written insideesa fil

Block writes greater than 128KB were still written in mu'bf size 4GB. This graph shows that ZFS always allocates block

tiples of 128KB blocks by ZFS. From this experiment wgr 128K even when the application performs 4KB writes.
concluded that the maximum size of blocks in ZFS was

128KB.

60

5.2 Random Writes to a Large File

In our next experiment we wrote 4K blocks to a large filg!n- Table 1 contains the offsets generated by the applica-

by randomly seeking to different offsets (the maximu ns and the block _sizes obsgrveq. From table 1 we can
seek offset was set to 4GB) within the file. We were ex€€ that when the first block is written at 36K offset the
pecting blocks writes of 4KB sizes but we observed thBPCk written by ZFS was 40K (36K plus the additional
ZFS wrote blocks of 128KB for each 4K block write. Thig< data). The block sizes remain the same for the next
pattern of writing larger block sizes continued fill bIocIEhree writes of 4K blocks as offsgts genera_ted were less
sizes were less than 128K in size beyond which it alwa n 40K. For the fort_h block which was Wr_ltten at 84K
wrote blocks of 128KB in size. This was also observelYt€ offs_et the b_lock size generated by the file was 88K_B.
in the previous experiment where we sequentially wrofé®™ this experiment we see ZFS does not do a good job

blocks of varying sizes to a file. Figure 3 shows tHQ allocating blocks even for small random writes to files

results for block writes of 4KB size by the application\’.vhose sizes are lesser than 4KB in size.

The bottom line shows the expected block sizes (in this

case 4KB) but the top line shows the observed block sizeFrom the previous experiment an observant reader
(128KB). From this experiment we conclude that ZF®&ould have noticed that the block size generation could
block allocation policy does not work really well for smalbe very naive in ZFS. It could just be based on file offsets.

random writes to a large file. In order to verify our assumption we wrote 512 bytes at

different offsets to a small file. Figure 5 shows the block

sizes allocated by ZFS when 512 bytes were written to
a file at various offsets. Table 2 contains the offsets and
In order to get a clear understanding of how ZFS allocattitk block sizes generated by ZFS. From Figure 5 we can
blocks we wrote 4KB blocks to small files (maximuntlearly see that the block allocated by ZFS are directly
seek offset was set to 128KB). Figure 4 shows one symtoportional to file offsets the blocks are written to.

5.3 Random Writes to a Small File

180 180

Block Sizes and Offsets in KB

(Observed Block Size) —+— (Offset) ——
160 (Expected Block Size) —— @ 160 (Block Size) ——
(Offset) —— -
140 | S 140 ¢
120 ﬁ 120
100 f O 100 t
2
80 S 80
(]
60 _g 60
)
40 ¢ S 407
o
20 m 20
O 0 0 0 0 1 O 1 1
-2 0 2 4 6 8 10 0 8 9 10
Iteration Iteration

Figure 4: Impact of small random Workloads on ZFS.The Figure 5: Random of 512 bytes to a small file.The figure
figure shows the effect of random 4k byte blocks written éaid shows the effect of random 512 byte blocks written at various
file of size 128KB. This graph shows that ZFS always allocatiéle offsets. This graph clearly shows that ZFS block allimat

blocks based on file offsets. policy is purely based on file offsets.
Offsets | Observed Block Offsets | Observed Block
in KB Sizes in KB in KB Sizes in KB
36 40 0 05
36 40 16 16.5
20 40 32 32.5
84 38 64 64.5
0 88 127 127.5
20 38 128 128
52 88 150 128
16 88
4 83 Table 2: File Offsets Vs Observed Block sizes for Random 512

byte writes to a small file

Table 1: File Offsets Vs Observed Block sizes for Random 4k

write to a small file work for random write workload.

5.4 Block Allocation Policy 5.5 Dynamic Block Reorganization

From the previous experiments it can be seen that ZR#ile running our experiments we observed to ZFS
has very naive block allocation algorithm. The block sizesnartly merges small blocks to one single large blocks.
are allocated based on the file offsets that the blocks &reorder to understand this block re-organization policy
written to. For file sizes that are lesser than 128K tloé ZFS we designed a few workload that would help us
block size allocated to the file is the offset to which thget a better insight into it. We made sure the block writ-
block is written to. For files larger than 128KB a newen to a file reaches the disk before the next write to the
block of 128K is allocated invariant of the amount of dafidle proceeds. This was achieved by making the applica-
written to the file. This block allocation policy does notion sleep for a small duration of time (we observed that

160 is appended to the file it wrote a 64KB block instead of a
(Observed Block Size) —— new 32KB block for the second write. We identified dy-
140 ¢ (Expected Block Size) —— namic merging of blocks in ZFS as we added a counter to
120 every data block that is written to ZFS. In the above men-
tioned experiments the previously observed counter num-
bers (i.e 0 to 64 as the we increment the counter for ever
80 512 byte block) were repeated even during the subsequent
block write and the block size for the write was 64KB.

100 ¢

Block Size in KB

60 T When the third block was written to the file the observed
40 t+ blocks sized increased from 64K to 96K. This is because
20 | it merged the previously written 64K with the new 32K
append and wrote one 96K big block to the disk. For
0 : : . . the fourth block the observed block size increased from
0 50 100 150 200

96K to 128K in size. For the subsequent block writes the
block size remains a constant as the file size is larger than
, . . 128KB.
Figure 6: Effect of Small Sequential Writes on Block Allo- L. . . .
cagtjion. This graphs shows tf?e observed block sizes writing 8kIn IS |mportant to differentiate thesg 128K block Wr!tes
blocks at regular time intervals. with the f|rst_128K block _observed in PBDD. _The first
128K was written by merging the previously written 96K
with the new 32K write to the file. Where as the next
ZFS wrote back the dirty blocks to disk ever 10 secondi28K block only contained 32K of data in it and the next
hence we made the application sleep for 12 seconds babsequent write to this 128K block resulted in a COW
fore every write). In our first experiment we wrote block® this 128K block. We can see that ZFS wastes a signif-
of 8KB sizes sequentially to newly created file. As memeant amount of space for small block writes to file that
tioned before we forcefully introduced a 12 second delaye greater than 128KB. Even though the previously writ-
between consecutive writes to the file. Figure 6 showen blocks would be reclaimed at a later time the blocks
the block sizes observed by our PBDD. It can be seen thatuld not be available until a background ZFS process
observed block sizes are significantly different from exhecks these blocks to reclaim them back.
pected blocks sizes. This is because ZFS merges the pré&dow that we have understood the block merg-
viously written small block with the newly appended datiag/reorganization policy of ZFS. We wanted to check if
and writes back one single block. The linear graph f@FS does this in a smart way. i.e., merge block only if
observed block sizes show this policy of merging small#rey were in memory as it would be inefficient to read
blocks of a file into a larger block for every subsequebtick the previously written block before appending the
writes to a file. ZFS merges blocks till the file size reacheswly written data to the existing data and writing back
128KB and after that it always allocated and blocks af larger block to the disk. We devised a new workload
128KB. We varied the block sizes written to the file frorto check how ZFS reacted in this case. In order to ob-
4K to 128K and observed that ZFS merged blocks gerve this the previous written block should not be in
all the cases whenever the total file size was lesser tlmemory. We unmounted and remounted the file system
128KB. between subsequent writes. Another was of achieving
In order to explain this more clearly we show the olihis would be have a large number of small files whose
served block sizes when 32KB blocks were written to@mbined size would exceed the size of the memory and
new file. From figure 7 we can see that when the first 32Ken subsequent writes to the files in round robin fashion
block was written, the observed block size is the samewsuld ensure that the previous blocks would no longer
the expected block size (i.e, 32KB). When the next blotle cached in memory. We chose the first approach as it
is written, the expected block size is 32KB but since ZR8as much easier to implement. Also, the file we reopened
merged the previously written data with the new data thegain in QAPPEND mode to ensure ZFS did not read

File Size in KB

180 180

(Observed Block Size) —— (Append) ——
160 (Expected Block Size) —— 160 (Data Read From Disk) ——
140 t 140 t
0
X 120 t 120 t
£ g
o 100 r i 100 L
N £
D80t & s80f
[3] n
o 60 60
[oa}
40 40
20 20
O 1 1 1 1 1 O 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 0 20 40 60 80 100 120 140 160 180
File Size in KB File Size in KB

Figure 7: Effect of Small Sequential Writes on Block Allo- Figure 8: Block re-organization in ZFS. This graphs shows
cation. This graphs shows the observed block sizes writing 3&izes of block read from the disk while appending 4K blocles to
blocks at regular time intervals. file. Before appending a block, the file system is unmountdd an
remounted again to ensure that the previously written da@ak
not cached in memory.

back the data to cache it in memory. In this experimept ; ;
we appended 4KB block to the file, slept for some tir‘i% ZIL Block Allocation PO|I0y

to ensure that blocks reaches the disk. Unmounted
remounted the ZFS file system. Finally opened the fWr
in O_ APPEND mode and repeated the above menti0n6
steps. ;

writes intent logs for blocks that are synchronous
jtten by means offsync call or opening the file
SYNCmode. In order to avoid writing block from

leaf to the root, ZFS writes the data to the log before re-

From Figure 8 we can see that during block writelllrning to the caller. The goal of the following experi-
ZFS reads back the previously written data to the file f3eNts was to find outhow ZFS allocated ZIL blocks when

append the newly written data to it and allocates and wif¢ blocks sizes varied. We also wanted to find out how
back a larger block back to the disk. large synchronous block writes were handled by ZFS.
In the first workload we opened a file in_.DSYNC

From all these experiments we observe that ZFS dyode and wrote blocks of a fixed sizes till the file size
namically resizes the block till it file size is smaller thareached 1MB. In each run of the experiment we varied the
128K after which its always allocates 128K and peblock size from 512 bytes to 512KB. Figure 9 shows the
forms copy-on-write on these blocks for writes of small&tlL block allocated for a few different block sizes writ-
block size. It was also observed that the dynamic ren by the application. It can be seen that for block sizes
organization policy would have terrible performance imesser than 4KB, ZFS allocates 4KB sized ZIL blocks. To
pact when the smaller blocks are not in memory ate@ precise we observed this pattern till block sizes were
ZFS would suffer from small appends being converted liesser than 4KB - 192 bytes. This is because ZFS also
Read-Modify-Write of blocks to the disk. This is similawrites some additional bytes that helps in replaying the
to the performance problem in RAID-4 where the paritpg information. The 192 bytes is the log record size for
block has to read back from the disk to recompute the parites and it varies with the different log record types (e.g
ity and is written back with the new parity for every smaltreate, delete, rename, access control information). We
block write to the RAID. observed that ZIL added the data after the log records

80 80

(16K) —+— 33K Writes —+—
70 t (32K) —— 70 t
(1024) ——
Q60 (64K) —=— | @ 60 |
< (3072) —=— | ¥
5 50| s 50 f
M N
D40 t D40 ¢
3 3
o o
A 30 A 30
! !
10 + 10 +
0 1 1 1 1 1 0 1 1 1 1 1 1
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Iteration Iteration

Figure 9: Effect of Block Writes on ZIL Block Sizes. This Figure 10: ZIL Block Allocation for 33KB Synchronous
graph shows the observed ZIL block sizes Vs Data block Siaéfsites. This graphs shows the observed ZIL Block sizes for
From the graph we observe that ZFS always allocates blocks3BK synchronous writes. ZIL Performs poorly because oflbloc
multiples of 4K. chaining, re-ordering of blocks and copy-on-writes.

till the block sizes were lesser than 64K after that thess than 1K of data it still writes 4K blocks to the disk.
blocks were flushed to the disk and only the pointer to thethis particular experiment ZFS writes 33K block sizes
block were written to the log record. We believe this isthe first three 33K writes does not generate ZIL blocks.
good policy when the block sizes get larger as you haVhis is because the first 33k data block does not get writ-
to rewrite (or copy) the data blocks again to its origingén in ZIL it is directly flushed to the disk. When the
position. second 33k write occurs due to dynamic re-organization
During the tests we also observed that ZFS alwapslicy in ZFS it merges this block write with the previous
flushed the first data block to the disk invariant of th&3K block to write one large 66K block. Since this block
block size being written and creates a new on disk vesize is greater than 64K ZFS flushes the data-block and
sion (by writing a new uberblock). We were puzzled whyrites the block pointer in the log record. Even though
ZFS only writes the first data block to the disk and frorthe total data in the ZIL block is less that 1K ZIL writes
then on uses the ZIL blocks to write data to it. When wae4K ZIL block as the minimum block size of ZIL is 4K.
looked at the source code we found that that it pre-dirtiBsiring the third 33K block write ZFS merges the current
the first block so that subsequent writes to blocks that ata&ta block with the previous written 66K data and writes
written synchronously to disk sync to convergence fastar99K block. Once again as the data is greater than 64K,
We found that ZIL log chaining performs inefficientlyZIL only stores the block pointer to the newly written data
under some workloads (especially when the block sizeleck.
are between 32k and 64k). Figure 10 shows the problemWhen the next 33K write occurs the amount of data
with ZIL block allocation and with log chaining. As men-crosses the 128K block boundary, hence ZFS writes back
tioned in section 2.2, ZIL blocks are chained (i.e., eathe data block of 128K size and also a log block that con-
ZIL block contains the pointer to the next block) and ZFtins the data written to first 128K block. It writes the
never overwrites any block on disk. As a result it has temaining 4K as a separate log entry in the same ZIL
pre-allocate the next block when the current log block ldock. For the fifth 33K write we observe that its still
written. The first ZIL block observed is the ZIL headewrites 128K block (i.e, it does a COW for the previous
block. Even though the data contained in the headercigated 128K block). This pattern keeps repeating. When

the pattern repeated again the ZIL does need to be created writes blocks in multiples of 4k blocks and due to

again. this it ends up writing blocks of larger sizes that neces-
We also some more strange behavior for which we dary. We only have touched upon the tip of the iceberg

not have a logical explanation. The seventh ZIL log blogkhd more analysis needs to be done to other policies of

is the copy of the second log block. Also, the twelfth ZIZFS. Some other interesting features that would be worth

log record is the duplicate of sixth ZIL block. This patterinvestigating are versioning policy, meta slab, and RAID-

keeps repeating. Also, when the new 33K is appendedZto

the file whose size is greater than 33K it ZFS flushes the

128K data block to the disk but still writes the data to th§

log when the write overlap two 128K blocks of the file. ACknOWIGdgment

We would like to thank Prof. Remazi for his guidance and

for his constant encouragementto break his machines. We
7 Related Work would like to thanks Lakshmi and Nitin for helping us fix
EIW broken machines. Finally we would like to thank Sun

Traditionally file systems have been benchmarked usi .)
specialized workloads. Some of the popular file systefHCr® Systems for donating Sun Ultra-20 workstation to

benchmarking utilities are PostMark [4], 10zone [12[;DSL group for their research projects.

Bonnie [2] , and Andrew benchmark [3]. I0zone bench-

marks perform synthetic read/write tests to determifReferences

thrOUQhPUt' Andrew_ a_nd Po;tmgrk benchmark are d?f] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Infoioraand

signed to model realistic application workloads. All the ~ Control in Gray-Box Systems. IRroceedings of the 18th ACM
i _ Symposium on Operating Systems Principles (SOSR {fH#des

above meqtloned bench_marks measure _overall through 25T Banft. Carade. Outober 2001,

put or runtime to draw high-level conclusions about the,, | Bray. The Bonnie File System Benchmark.

file system. In contrast to our approach of using SBA, www.textuality.com/bonnie/.

none of these are intended to yield low-level informatiori8] J. H. Howard. An Overview of the Andrew File System. Fino-

: L - ceedings of the Winter USENIX Technical Conferertesbruary
about the internal policies of the file system. 1088,

[4] J.Katcher. PostMark: A New File System Benchmark.
Technical Report TR-3022, Network Applicance Inc.
www.netapp.com/teckibrary/3022.html/, October 1997.

[5] D. Kleikamp and S. Best. How the Journaled File
System handles the on-disk layout, May 2000. WWW-

Semantic block analysis provides a powerful method to 106.ibm.com/developerworks/library/l-jfslayout/.
analyze and extract policies of file systems without act®] N-Nadgir. = Neelkanth Nadgirs Blog on ZFS, ZIL etc.
IV looki he fil d f d that S www.blogs.sun.com/realneel/.

ally looking at the file SyStf:"m code. We found that B 7] N.Perrin. Neil Perrin's Blog on ZFS, ZIL etc.
helped us to accurately figure out the block allocation” blogs.sun.com/perrin/.
policies of ZFS. We found that ZFS currently has a veryg] V. Prlabhaka(rjan, AI. C. ArlfJfaci-Duslseat#,I and R. H. Arpags&kau.

: : Analysis and evolution of journaling file systems. ATEC'05:
poor_bl()Ck allocation p0|lf3y. It_allocates_ b|OCk§ ba_sed_on Proceedings of the USENIX Annual Technical Conference 2005
the file offsets the block is written to, till the file size is on USENIX Annual Technical Conferenqgages 8-8, Berkeley,
less than 128k and allocates blocks of 128k for any block EAF'QU_SA’ 2;95. LIJ:SSEN'X Association. . octoper 2004
write greater than 128k offset. This was true even wh I H. CISET REISErTS. WWW.Namesys.com/, Sciober S

. . .. 10] Sun Micro Systems. ZFS - Open Solaris Community.
the smaller block is not in memory. It was surprising t www.opensolaris.org/os/community/zfs/, 2007.
see that when ZFS appends data to a smaller file, it reaq 7. y} Ts’%land S. Tweedie_d Planrf]eﬁ extensions to E(hexlinu

; ext2/ext3 filesystem. |Rroceedings of the FREENIX Track: 2002

the previous bloc.k back to the memory, then. appends the USENIX Annual Technical Conferenqeges 235-243, Berkeley,
new data and writes a larger block to the disk. We also ca USA, 2002. USENIX Association.
found that ZFS constantly merges smaller blocks intoji] W.Norcutt. The 10Zone Filesystem Benchmark.
larger block till the file sizes reaches 128KBytes. The ZIL ~ WWww-iozone.org/.

block allocation is also poor in its current form. It creates

8 Conclusions

10

