
736 Midterm Exam

(Old School Style)

The Times are a Changin’

Name: ________________________

This exam contains 9 old-school pages.

1



What difference does it make? Sometimes, a small difference makes no

difference, as in "I just won a million dollars!" as compared to "I just won a

million and one dollars!"; sometimes a small difference makes all the

difference, as in "I just DIDN’T win a million dollars!"

In this exam, we’ll examine some small differences in systems, and determine

whether a small difference makes a small or large difference overall.

Either way, you won’t be winning a million dollars, but you might get a good

grade on this exam, which of course is priceless.

2



1. The designers of VMS decide that two user segments (P0 and P1) are too many,

and reduce it to just one. What is the main problem that arises due to this

change?

ANSWER: Recall that VMS has paging as well as segmentation. Thus, when there

are unused pages between the stack and the heap, that is OK, in that no space

is allocated for the address space directly. However, space is allocated in

the now large, contiguous page table, for a bunch of slots that say that the

pages between the heap and stack are not valid. Thus, the biggest problem that

arises: space wastage due to the size of the huge (now single) page table.

2. FFS no longer spreads large files across cylinder groups, but rather places

all of such a file within one cylinder group. On a modern 1TB disk, does this

make much difference? (explain)

ANSWER: I accepted arguments either way, as long as the argument was

reasonable. Those who said "yes, this makes a big difference" assumed that

cylinder group (CG) size didn’t change, while perhaps files have gotten

larger, and thus a single file still could fill up a CG and cause other

(related) files to be spread across the disk, thus lowering performance.

Those who said "no, it doesn’t, this is fine" argued that with larger disks,

you should have bigger CGs, and thus very few files would fill up a

CG. Further, caching of small files would make it such that read performance

didn’t matter as much, which is the primary target of FFS optimizations.

3. Nooks removes all parameter/result checking for data coming in and out of

drivers. Does this small change make much of a difference? (describe)

ANSWER: The answer here is yes, it does. The address space boundary between

drivers and the main OS is one that must be carefully maintained in Nooks. If

the system doesn’t check results (for example) on the reply from a driver, the

(buggy) driver may return bad data, which in turn may crash the main

kernel. While some problems will still be handled in an acceptable manner

(such as an immediate driver crash upon hitting a bug), some class of problems

will manifest in this manner and thus weakening the boundary is a bad idea.

4. Disco is changed to turn off page migration. When is page migration useful?

What will the overall cost be of such a change?

3



ANSWER: Page migration is useful when a thread is accessing a page that is

"remote" and thus paying a higher cost of access in a NUMA machine such as

Flash. Migration moves such pages nearer to their accessing thread (assuming

there is only one, in this example) and thus reduces main memory access time

(in Flash, by a factor of 3). However, such a change would simplify the

system, as no longer would any page location and access information need to be

tracked.

5. On a system with a software-managed TLB, Exokernel usually provides some kind

of interface to modify the contents of the TLB. What harm would come from

removing this ability? How would the resulting system work?

ANSWER: The whole point of exokernel is making hardware exposed to clients

(to applications, libOSes, etc.). By removing this interface, exokernel is

essentially saying that it will now manage the TLB, and thus all the problems

of doing so arise: what policy to implement? what if the policy is not what

the application wants? etc.

6. The IRON file system paper presents an analysis of file-system failure

handling that shows the failure handling is often implemented quite poorly. To

remedy this, a small change in the lower layers of the I/O code is made to

panic (crash) any time a disk failure occurs. When is this good? When is it

bad? What do you think of this change?

ANSWER: This is good if passing the failure up to the file system results in

something "worse" than a crash, such as corruption of the entire file system

volume. This is bad if the file system would have handled it gracefully by say

retrying or some other nice recovery approach. Overall, given what we saw in

the IRON study, maybe this is a good thing, as it approximates the reiserfs

policy of "do no harm", but perhaps it is an overreaction on reads which could

at least be retried first.

7. ZFS keeps a checksum with every pointer, to detect data corruption. As a

simplification, ZFS moves this checksum to reside next to the data itself,

instead of with the pointer that points to the data. What is the impact of

this change?

ANSWER: The key to this change is that it makes it difficult to detect certain

types of problems that occur in disks. For example, think of lost/phantom

writes. If you write out a checksum right next to the data, a single lost

write will leave the old (but seemingly valid) contents on disk. By separating

the checksum from the data, a single such lost write will be detected (and

presumably recovered) by ZFS. Misdirected writes have the same problem.

4



8. LFS is changed to write the entire inode map to the checkpoint region,

immediately after each segment is written. How is this different from what LFS

usually does? What performance impact does it have?

ANSWER: This is different in that LFS usually only writes pointers to chunks

of the inode map to the checkpoint region, and does so quite lazily, only

every 30 seconds or so.

Writing out the entire inode map to the checkpoint region after each segment

write introduces a seek and large write into the equation, and thus greatly

reduces performance.

9. Journaling file systems are careful to order updates to ensure correct

recovery in the case of a system crash. Describe how ext3, in ordered

(metadata) journaling mode, carefully orders updates to disk. Can any of these

ordering points be removed, thus changing the system to make it simpler?

ANSWER: Ordered journaling only writes metadata to the journal. The ordering

of this protocol is:

1. write the data in place (and wait for completion)

2. write the tx begin and metadata to the journal (and wait)

3. write the tx end (and wait)

4. write the metadata in place (and wait)

5. update the journal super block to mark the space as free in the journal (wait)

You could certainly remove the wait after 1, because in that case

the transaction is not yet committed. This would allow some parallelism if the

journal is located on a separate device.

You could also remove the wait after 2 if you add a checksum over the entire

transaction, as we did in the IRON paper.

10. Assume that you have an AutoRAID, and that you configure the system to use

only two disks. How could you simplify AutoRAID in order to take advantage

of the fact that it is running on a two-disk system?

ANSWER: RAID-5 and RAID-1 become virtually identical on a 2-disk system. Thus,

AutoRAID has no point when running in this configuration, and thus you should

just use mirroring.

5



11. As we all know, Multics solves every problem with indirection. Each code or

data segment is referred to by a name, similar to a pathname in a Unix

directory tree, basically something like "/a/b/foo" or whatever. To simplify

this, Multics changes to a flat namespace with numbers for each

segment. Discuss what this improves; discuss what it makes worse.

ANSWER: This is better in that it will improve lookup time, when segments are

first made known to a process; instead of a long path traversal, a simple

lookup would take place.

This is worse in that numbers are not a very good way to identify segments,

especially given that humans must try to use these numbers in a meaningful

way.

12. The designers of the VMware ESX memory manager decide it will be simpler to

avoid all the trouble of maintaining a balloon driver, and thus remove

it. What will the result of this removal be? Will the system still work?

ANSWER: The short answer is that the system would still work, but perhaps not

as well, because the balloon driver was better at getting a good set of pages

from a VM to give to another. Without such a mechanism, the VMM has to guess

which page to reclaim, and thus has the potential of introducing the "double

paging" problem.

13. THE and Nucleus are old systems. Remzi thus tries to change

the 736 class by skipping all old papers like these. What is the most

important lesson that would be lost by skipping these papers?

ANSWER: Almost anything that made sense was accepted here. A good answer

probably said something about how it is important to understand the lessons of

history to give some perspective on why we build systems the way we do. Some

fun answers focused on Dijkstra and how awesome he was. More specific lessons

focused on the importance of OS architecture and the beginnings of the debate

between microkernels or monolothic kernels. Some pointed to Nucleus and the

importance it placed on memory protection as an early understanding of the

imperfect nature of software. And the list goes on...

6


