
A Fair Share Scheduler.

J. Kay
P. Lauder

University of Sydney

ABSTRACT

CPU schedulers are usually designed to allocate resources fairly amongprocesses. In this paper, we de-
scribe Share, a scheduler that allocates resources so thatusers get their fair machine share over a long peri-
od.

We also describe an hierarchical form of Share that supports sharing, not only between individual users, but
also between groups of users.In particular, it supports the sharing of a machine between organisational
groups who are independently funded and have contributed a proportion of the machine cost.The hierar-
chical Share ensures that each group is allocated its defined machine share in the long term.

Ke ywords: scheduling,charging, resource allocation, fair sharing

1. Introduction

One of the critical requirements of a scheduler is that isbe fair. Traditionally, this has been interpreted in
the context of processes, and it has meant that schedulers were designed to share resources fairly between
processes. Morerecently, it has become clear that schedulers need to be fair to users rather than just
processes. Thisis reflected in work such as Larmouth (1975, 1978), Newbury (1982), Henry (1984) and
Woodside (1986).

The context for developing Share was that of the main teaching machine in a computer science department.
We had a large user community, dominated by 1000 undergraduates in several classes as well as a staff of
about 100. Our load was almost exclusively interactive and had frequent, extreme peaks when a major
assignment was due. On a typical day, there were 60-85 active terminals, mainly engaged in editing,
compiling and (occasionally) running small to medium Pascal programs.All this activity was supported by
a DEC VAX 11/780 runningAUSAM, a local version of Unix that is oriented towards a student environment.

Unix provides a fairly typical scheduler (Bach, 1986).It was inadequate in our environment for a number
of reasons:

1. it gave more of the machine to users with more processes, which meant that a user could easily
increase their share of the machine simply by creating more processes;

2. it took no account of the long term history of a user’s activity so that a student who used the
machine heavily for, say, two hours, had the same machine share as a student who had not used the
machine for some time;

3. whenone class had an assignment due, and all the students in that class wanted to work very hard,
ev eryone, including other students and staff, suffered with poor response, and

4. if someone needed good response for activities like practical examinations or project
demonstrations, it was difficult to ensure that they could get that response without denying all other
users access to the machine.

The first three of these are manifestations of unfairness in the way that the process scheduler affects users.

On many systems, these problems are partially addressed by thecharging mechanism (Nielsen 1970,
McKell et al. 1979).Typically, charging systems involve allocation of a budget to each user and as users
consume resources, they are charged for them.We might call this thefixed-budget model, in that each user

- 2 -

has a fixed size budget allotted to them.Then, as they use resources, the budget is reduced and when it is
empty, they cannot use the machine at all.A process can get a better machine share if the user who owns it
is prepared to pay more for the resources used by that process.The fixed-budget model can be refined so
that each user has several budgets, each associated with different resources.

We control allocation of some resources with a fixed-budget charging mechanism.In particular, we use this
approach in these cases:

1. for resources like disc space, each user has a limit;1

2. resourceslike printer pages are allocated to each user as a budget that has a tight upper bound and is
updated each day;2

3. daily connect limits are available to prevent individuals from hogging the machine within a single
day;

4. weeklyconnect limits are sometimes used to prevent students from spending too much time on
computing (compared to other subjects) and to encourage students to work steadily on assignments
from the first week they are set, right through to the last week (but this commonly has the effect of
denying students any machine access near the assignment deadline, even though the machine is
lightly loaded and the students would like more machine access to finish and improve their
programs).

There are also other utilities to help allocate resources, including a terminal booking program that allows
students to reserve a terminal at particular times each week.

All these measures helped control consumption of resources but did not deal with the problems ofCPU
allocation we described earlier. It was for these that we developed the Share scheduler. Although Share
was motivated by our particular problems in a student environment, it equally well serves the needs of any
user community that shares a machine which is not run as a commercial bureau operating to make a
financial profit. Indeed, Share has been implemented in a research environment with many users from
different organisations that have chosen to share the capital and running costs of a machine.3

To date, Share has been used exclusively to allocateCPU time, though it takes account of the consumption
of all resources as we describe below. We consider that Share is applicable to the scheduling of resources
other thanCPU, but for simplicity, this paper is written in terms ofCPUscheduling.

We describe our work in terms of its design objectives. Firstwe state those objectives and the underlying
principles needed for a qualitative understanding of Share.Then we describe the Share scheduler, starting
with the user’s view of a single-level Share. Thisis followed by the detailed implementation.From there,
we describe the motivation for the hierarchical Share and its implementation.The remainder of the paper is
devoted to the evaluation of Share, including a description of the tools available for users and
administrators to monitor the performance of Share.

2. Objectivesof Share

Many systems link charging and scheduling only in that a user can specify processes for which they are
prepared to be charged more in return for being given preference in scheduling.Indeed, Unix offers a
mechanism rather like this in nice, an attribute of a process that a user can adjust to alter its scheduling
priority. In a non-bureau environment, this approach is adequate.However, a more natural approach is to
regard each user as having an entitlement to a fair share of the machine, relative to other users.Then the
task of the scheduling and charging systems is to ensure that

1. If a user exceeds this limit, they are warned at the time and then at each login for three logins.After that, they are not allowed
to login.

2. For example, a user might have a printer page bound of ten pages and a daily increment of two pages. Thismeans that they
start with a budget of ten pages and if they print, say, three pages in one day, their budget for the rest of the day is seven pages
and provided they do no more printing that day, their budget at the beginning of the next day will be nine pages.

3. A Cray X-MP at AT&T Bell Laboratories.

- 3 -

• no individual can get more than their fair share of the machine in the long term, and

• that the machine can be well utilised.

In addition, we extended the notion of fair shares to cover groups of individuals so that Share can allow the
sharing of a machine between independent organisations.

To achieve fair sharing and be practicable, the objectives for Share were that at the level of the individual
and independent groups which share the machine, it should

1. seemfair

2. beunderstandable

3. bepredictable

4. accommodatespecial needs: where a user needs excellent response for a short time, it should permit
that with minimum disruption to other users;

5. dealwell with peak loads;

6. encourageload spreading;

7. give interactive users reasonable response;

8. give some resources to each process so that no process is postponed indefinitely;

9. bevery cheap to run.

After we have described Share, we evaluate it in terms of these objectives.

3. User’s View of Share

Essentially Share is based on the principle that

• ev eryone should be scheduled for some resources

• according to their entitlement

• as defined by theirshares

• and their resourceusage history.

This is illustrated in Figure 1, which shows that a user can expect poorer response if they hav ehad their fair
machine share.This, in turn, gives other users a chance to get their fair share.

To tighten this definition of the user’s view of Share, we need to state what we mean by shares and usage.

A user’s shares indicate their entitlement to do work on the machine.The more shares a user has, the
greater their entitlement.This should operate in a linear fashion so that if user A has twice as many shares
as user B, then in the long term, user A should be able to do twice as much work as user B.

Every user has ausage, which is adecayedmeasure of the work that the user has done.Thedecay rate is
defined by an administrative decision which determines how long a user’s history of resource consumption
affects their response.For example, in its first implementation in a student environment, the decay rate was
set so that usage had a half-life of three days to encourage students to spread their machine use over the
week.

While it is the norm for schedulers to use decayedCPU usages, Share’s use of decayed resource usage in
charging is a departure from traditional approaches.Where a machine is solely for in-house use, the only
need for a raw (undecayed) resource consumption tally is in monitoring machine performance and
throughput and to observe patterns of user behaviour.

The decayed usage is alsonormalisedby the user’s shares. Onemight view this as making the machine
relatively cheaper to users with more shares.In essence, Share attempts to keep the actual machine share
defined by normalised usage the same as the machine entitlement defined by shares. Looked at from the

- 4 -

Figure 1. User’s View of Share

actual machine share and entitlement equal
Share adjusts user response to make

each user

has has

shares usage

define defines

user’s actual
machine share

user’s machine
share entitlement

user’s point of view, Share gives worse response to users who have had more than their fair share so that
they cannot work as hard as users who have not had their fair share.So users see that as their normalised
usage increases, their response becomes worse. (This assumes allowance is made for machine load.)
Indeed, we provide a simple command that displays a user’s profile which includes their usage and the
machine share they can expect.

This approach contrasts strikingly with conventional charging and scheduling systems that schedule
processes equally, provided the user who owns them has a non-empty budget. Inthe fixed-budget model,
the users who consume their fair share, by emptying their budgets, get no resources, even if there happen to
be plenty available. In the extreme case, there may be no users because everyone who wants to use the
machine has empty budgets. For an in-house machine, this does not make sense and, worse still, we have
observed that it can generate substantial administrative overheads as users seek extra allocations.

The number of shares allocated to a user is, essentially, an administrative decision. However, in a situation
where independent organisations share a machine, the shares that should be allocated to individual users
depend both upon the entitlement that their organisation has and to the individual’s entitlement within the
organisation. For simplicity, we describe Share first in terms of a simple situation where there are no
independent organisations involved: all users’ shares are simply defined to indicate their right to work
compared to other users.We deal with the more complex situation where the combined usage of groups of
users must be considered, in the description of hierarchical Share.

Another factor in scheduling is the individual users’ rights to alter the relative scheduling priority of their
processes. We hav epreserved the Unixnice, a number in the range zero to nineteen, which a user can
associate with a process.When users assign a non-zero nice value to a process, they indicate that poorer
response is acceptable.The larger the nice value, the poorer the response.The way that this affects
charging is another administrative decision: the name, nice, suggests that users who do not need fast
response for a process might be kind enough to use nice and get poorer response just out of generosity. In
our environment, we felt that it was worthwhile to give users some incentive to use nice.So, we reduced
the costs charged for processes with larger nice values.

Finally, thecharges that Share uses are defined by the relative costs of different resources.So, for example,

- 5 -

we associate a charge with memory occupancy, another with systems calls, another withCPUuse and so on.
Note that this is another difference between Share and conventional schedulers which define a process’s
scheduling priority only on the process’s consumption ofCPU time. In Share,CPU scheduling priority is
affected by total resource consumption.

In addition, we set charges at different levels at different times of the day. This is yet another administrative
decision. For example, during the university’s term time, we charge a peak rate during normal work hours,
somewhat less for the hour or two around these, and much less at really off-peak hours.

We note that Share represents a radical departure from the traditional approaches to charging as described
by Kleijnen (1968)

prices should not be changed too frequently, since stability is one of the accepted requirements
of a charging system.

We agree that users need to understand the charging system and see it as stable, but we argue that this does
not require constant behaviour. It can equally be achieved by behaviour that changes steadily, as in Share
where response steadily degrades as a user’s resource consumption increases relative to other users.

At several points in this section, we have referred toadministrative decisions. We emphasise that these
administrative decisions are very important.In particular, they are critical to Share’s fairness. For example,
we have just noted that we charge less at off-peak times and this does seem to help spread the machine
load. However, another important factor in setting this policy is that users consider it fair that they be
charged less for the inconvenience of working out of normal hours.We also note that some of the
administrative decisions are not easy. The fixed-budget model has the merit that one can easily top up
empty budgets. Sothe initial size of a budget may not be so critical.By contrast, in Share, the shares
allocated define the right to do work so that when we allocate each first year student half the shares given to
a second year student, we are defining the relative amount of work we expect each to extract from the
machine.

4. Overview of the Implementation

In this section, we describe Share at a conceptual level. As one might expect, there are two main
components, one at the user level and the other at the process level. First, we describe the user level
component.

User-level scheduling

update usage for each user by adding charges incurred by all their
processes since the last update and decaying by the appropriate
constant

update accumulated records of resource consumption for planning,
monitoring, policy decisions

At this point, Share computes the charges due to a user for the resources they hav econsumed during the
last cycle of the user-level scheduler. The charges are for all resources consumed and they are lower at off-
peak periods.This part of the scheduler need not run very frequently because usages generally change
fairly slowly.

Note that each user can get an estimate of their share of the machine by comparing their usage against that
of all active users. Sincethis is a convenient and intuitive indication of the response that a user can expect,
we provide an estimate of the user’s machine share, expressed as a percentage, as part of the standard user
profile information.

The remainder of Share operates at the process level. Beforewe describe it, we note that processes each
have a priority and thesmaller the priority value, the better the scheduling priority. We also introduce the
term active processto describe any process that is ready to run and, at any point, the active process that
actually has control of theCPU is called thecurrent process. There are three types of activity at the process

- 6 -

level:

• that associated with the activation of a new process;

• the regular and frequent adjustment of the priority of the current process

• and the regular, but less frequent decaying of the priorities of all processes.

We begin with the first, which occurs in a number of situations, including times when a process
relinquishes control of theCPU, times when the active process is interrupted for some reason, and at the
regular times that the scheduler usurps the currently active process to hand control to the lowest priority
process that is ready to run.

Process activation

update costs incurred by the current process

select the process with lowest priority and set it running

Next is the adjustment to the priority of the current process, which defines the resolution of the scheduler.
This ensures that theCPUuse of the current process increases (worsens) its priority.

Priority adjustment

ˆ increase the priority of current process in proportion to the user’s
usage, shares, and number of active processes

Finally, there is the regular decaying of all process priorities, which must be done frequently compared to
the user-level scheduler but can be at a larger time interval than the scheduler’s resolution.

Decay of process priorities

ˆ decay all process priorities, with slower decay for processes with non-
zeronicevalues

5. DetailedImplementation

The implementation of Share is shown in the box below. The remainder of this section explains each
component, including the setting of the various parameters (which can be altered as the system runs).

5.1 User-level Scheduling

The user-level scheduler is invoked every t1 seconds. Thevalue of t1 defines the granularity of changes in
a user’s usage as they use the machine.Since usage is generally very large compared to the resources
consumed in a second,t1 can be of the order of a few seconds without compromising the fairness of the
scheduler. The merit in makingt1 reasonably large is that we can afford relatively costly computations at
this level without prejudicing the time-efficiency of Share. OurVax implementation makest1 four seconds,
which is 240 times the scheduler’s resolution. Onthe Cray, we hav efound that four seconds (400 times
Share’s CPUcharging resolution) is also acceptable.

The first component of the user-level scheduler decays each user’s usage. Thisensures that usages remain
bounded and the value of the constantK1 in combination witht1 defines the rate of decay. We generally
consider the effect of K1 in terms of the half-life of usage.In a student environment, we have used a half-
life of three days.In other contexts, it has been much shorter but generally of the order of several hours.
At a conceptual level, this step is performed for all users.In fact, the effect of the calculation is computed
as each user logs in, and so the actual calculation need only be performed for active users.

The next part of the user level scheduling involves updating the usage of active users by the charges they
have incurred in the lastt1 seconds and resetting the charges tally.

- 7 -

Figure 2. Share implementation

Every t1 seconds:user level scheduling

for each user
Decay usage and update with costs incurred in last t1 seconds
usageuser = usageuser × K1 + chargesuser

Reset cost tally
chargesuser = 0

Every t2 seconds:decay of process priorities

for each process
priorityprocess = priorityprocess × K2 × (niceprocess + K3)

Every t3 seconds:priority adjustment

prioritycurrent_process = prioritycurrent_process +
usagecurrent_user × active_processescurrent_user

shares2
current_user

At each scheduling event: current process selection

chargescurrent_user = chargescurrent_user + costevent

run process with lowest priority

5.2 Process-level Scheduling

From this point on, we discuss the low-level scheduler that deals with processes.It operates in terms of the
priority of each process.As is common practice in process schedulers, the priority defines the order in
which processes are entitled to be allocatedCPU resources. Accordingly, it

• schedulesCPU resources to the process with the smallest priority, which corresponds to the process
being at the head of the queue;

• increases the priority of a process each time it is allocatedCPU time, which can be viewed as putting
the process further down the queue;

• decays all process priorities steadily so that one might view all processes as slowly drifting towards
the front of the queue.

We now discuss how Share combines these activities with user level scheduling.

5.2.1 Decayof Process Priorities.The decay of process priorities ages processes so that those which have
not had theCPU achieve better and better (smaller) priority values. Thevalue of t2 combined with the
value of K2 define the rate at which processes age.We need to make t2 small, compared tot1, because
priority values change very quickly. In our Vax implementation,t2 is set at 1 second, which is sixty times
the resolution of the scheduler. (On the Crayt2 is also 1 second.)

The rate at which processes age is affected by theirnicevalue. We note that Share preserves the approach
of the Unix scheduler tonice: it assumes that users normally want the best response possible (which
corresponds to anicevalue of zero) but there are also times when a user is happy to accept lesser response,
which they indicate in terms of anicevalue which is a small integer. (Its range is from zero, the default, to
nineteen which gives the worst response.)We define the value ofK2 as

K2 =
K2′

K3 + max_nice

wheremax_nice is the largestnicevalue (19). This ensures that the priority of processes withniceset to
max_nice is decayed byK2′ ev ery t2 seconds and the priority of processes withniceset to zero is decayed
somewhat faster. The values ofK2′ and K3 must be sufficiently large to ensure that priorities are well
spread and remembered long enough to prevent large numbers of processes from having zero priority.

- 8 -

5.2.2 PriorityAdjustment.At the finest resolution of the scheduler, t3, the current process has its priority
increased by the usage and active process count of the user who owns the process.(The scheduler
resolution, t3, is a sixtieth of a second on the Vax version, one hundredth of a second on the Cray.)
Typically, schedulers increase the priority by a constant.Intuitively, one might view the difference between
Share and typical schedulers as follows:

• a typical scheduler adjusts the priority of the current process by pushing it down the queue of
processes by aconstantamount;

• Share pushes the current process down the queue by an amount proportional to the usage and number
of active processes of the process’s owner, and inversely proportional to the square of that user’s
shares, so that processes belonging to higher usage (more active) users are pushed further down the
queue than processes belonging to lower usage (less active) users.

This means that a process belonging to a user with high usage takes longer to drift back up to the front of
the queue.(The priority needs longer to decay to the point that it is the lowest.)

We also want users to be able to work at a rate proportional to their shares.This means that the charges
they incur must be allowed to increase in proportion to the square of the shares (which gives a derivative, or
rateof work done, proportional to the shares).

The formula also takes account of the number of active processes (processes on the priority queue) for the
user who owns the current process.This is necessary since a priority increment that involved just usage and
shares would push a single process down the queue far enough to ensure that the user gets no more that
their fair share.If the user has more than one active process, we need to penalise each of them to ensure
that the user’s share is spread between them and we do this by multiplying the priority increment by the
active process count.This is the crux of the Share mechanism for making long term usage, over all
resources that attract charges, affect the user’s response and rate of work.

Although the model we have described may be adequate for some implementations where process priorities
have a large range of values, on the machines where we have implemented Share, process priorities are
small integers and so cannot be used directly. We need to normalise theshare priorities into a range that is
appropriate for real process priorities.In addition, where the range in priority values is quite small, we
need to ensure that the normalisation procedure does not allow a single very large Share priority value to
reduce all other normalised priorities to zero.To avoid this, we define a bound on the Share priority. This

Figure 3. Priority normalisation

Find greatest Share priority for normalisation
max_priority = 0
for each process

if
max_priority < priorityprocess ≤ priority_bound

then
max_priority = priorityprocess

for each process
Scale priority to appropriate range
if

priorityprocess ≤ max_priority
then

normalised_priorityprocess = (K4 − 1) ×
priorityprocess

max_priority
else

normalised_priorityprocess = K4

is calculated in the process-level scheduler as shown in Figure 3 below. K4 is determined by the largest
priority available to the low-level scheduler. Note that the Share priority bound does, somewhat unfairly,
favour very heavy users.However, they still suffer the effects of their slowly decaying large usage and they

- 9 -

are still treated more severely than everyone else.On the other hand, it helps prevent marooning.

5.2.3 Process Activation.At each scheduling event, Share updates the current user’s charges by the costs
associated with the event and selects the lowest priority process to run.This aspect of Share is typical of
CPUschedulers.

5.2.4 MultipleProcessors. Multiple processor machines don’t affect the implementation provided that the
kernel still uses a single priority queue for processes.The only difference is that processes are selected to
run from the front of the queue more often, and incur charges more frequently, than if only one processor
were present.

5.2.5 Efficiency The implementation shown in Figure 2 should only be seen as a model of the actual code.
For efficiency, some of the calculations that are shown at the level of the process scheduler are actually
precalculated elsewhere.

5.3 Edge Effects

In general, it is important to avoid edge effects on scheduler behaviour. In particular, if a user enters the
system with zero usage they could effectively consume 100% of the resources, at least for one cycle of the
user-level scheduler. Since this is a comparatively long time (a few seconds), this would be quite
unacceptable. We now examine why this undue favouritism could occur and how Share deals with the
problem.

First, we define the relative proportion of the machine due to a user by virtue of their allocation of shares.
This is:

machine_proportion_dueuser =
sharesuser

active_users

u=1
Σ sharesu

This defines the proportion of the machine due to a user in the short term.Now we can also predict the
short term future proportion of the machine that a user should get by virtue of their usage.

near_future_machine_proportionuser =

shares2
user

usageuser
active_users

u=1
Σ shares2

u

usageu

If everyone is getting their fair share, these two formulae will give the same value for each active user.
Indeed, Share works to push these two formulae to the same value for each user. In the case where a user
has zero usage (or near zero usage), we need to interfere to prevent that user from being unduly favoured
(while other users are ignored).We do this by altering the usage value in the user-level scheduler as shown

Figure 4. Av oiding edge effects

Every t1 seconds:user level scheduler

for each user
if

near_future_machine_proportionuser > K5 × machine_proportion_dueuser
then

usageuser = usageuser ×
near_future_machine_proportionuser

K5 × machine_proportion_dueuser

in Figure 4.We hav esetK5 to 2.

5.3.1 SystemProcesses.Processes that run in support of the operating system must be given all the
resources that they need. Ineffect, system processes are given a 100% share of the resources, and it is
assumed that they won’t use it most of the time.Share is intended to arbitrate fairly between users,after
the system has taken all the resources it needs.

- 10 -

5.3.2 Marooning. It is possible for a user to achieve a very large usage during a relatively idle period.
Then, if new users become active, the original user’s share becomes so small that they can do no effective
work. This user’s processes are effectively marrooned with insufficient CPU allocation even to exit.
Marooning is avoided by the combination of bounds on the normalised form of priority, the process priority
decay rate, and the granularity of the process-level scheduler.

6. Hierarchical Share

Although the simple version of Share that we have described served well for several years, it was
inadequate for a machine that is shared between organisations or independent groups of users.Consider the
situation where organisations need to share a machine and they want sharing not only between users, but
also at the level of the organisation. Shareas described above is fine for this situation provided that we can
make the following assumptions

1. thetotal allocation of shares for each organisation is strictly maintained in the proportions that the
machine split is made.E.g. if a machine is to be split equally between two org anisations, the total
shares for each organisation must be the same;

2. theusers in each organisation are equally active;

3. K1 is acceptable at the organisational level and is constant for all users;

4. costsfor resources are consistent for all users, and the other parameters of Share, includingK2, t1,
t2 and t3, are accepted for all users.

We now consider how the simple Share is adjusted to account for each of these factors.

6.1 Shares in an Hierarchical Share Scheduler

It would be impractical to require that the total shares for each organisation be maintained at a fixed value.
This would mean that the arrival of a new user would require adjustments to the shares of all users in that
organisation. Thisis a serious problem that could rule out organisational sharing with the simple form of
Share.

To preserve the view that each organisation should appear to be operating their own machine, we allow that
users be allocated shares as in the simple Share.However, we cannot directly compare such shares across
organisations. We need to convert them to a comparable measure.The approach we take is to calculate
each user’s machine-share, the proportion of the machine that their allocation of shares make them eligible
to receive. We start at the root of the Share hierarchy tree and convert the shares allocated to each child
node into their machine share, using the formula:

m_sharenode = m_shareparent ×
sharesnode

siblings

n=1
Σ sharesn + sharesnode

This calculation is repeated recursively down the hierarchy tree until them_share of each node has been
calculated andm_share is then used instead ofshares in the user level scheduler.

6.2 Varying Levels of Activity

One cannot reasonably assume that the users are equally active at all times. This means that as users log in
and log out, they alter them_share value of all users in their scheduling group (and if they are the first user
in their group to log in, or the last to log out, they alter them_share of all users who descend from their
grandparent node in the hierarchy tree.)

In terms of the operation of Share, this means that somem_share values will usually be recalculated at
each log in or log out.This poses a small but acceptable overhead.

Share acts fairly under full load but a light load can distort it.Consider, for example, the situation depicted
in Figure 5. This shows a case where there are two org anisations A and B with an equal share of the
resources, where organisation A has one active user A1 while organisation B has two users, B1 with a large
share and doing nothing, and B2 with a small share running aCPU-bound process.The effectiveshare of

- 11 -

Figure 5. Example of user activity that distorts group sharing

m_share description of user activity

Organisation A
User A1 0.5 active

Organisation B
User B1 0.45 loggedin but inactive
User B2 0.05 CPUbound

the two active users, A1 and B2, differ by a factor of ten and yet the scheduler should divide the resources
equally between the two groups, A and B.

First, we define the relative proportion of the machine due to a group by virtue of its allocation of shares.
This is:

machine_proportion_duegroup =
sharesgroup

active_groups

g=1
Σ sharesg

Now we can also calculate the actual share of resources consumed by a group for the most recent
scheduling period.

actual_machine_proportiongroup =
chargesgroup

active_groups

g=1
Σ chargesg

If each group is getting its fair share, these two formulae give the same value for each active group. Inthe
case described above, we need to interfere if group B (and hence user B2) is to get its fair share.We do this
in the user-level scheduler by reducing the costs of resources consumed by a group that is getting less than
a certain amount of its share.This decreases the usage for active users in the group and allows them to
increase their share and the group’s share.

Figure 6. Group adjustment

for each group (descend hierarchy)
if

actual_machine_proportiongroup < K6 × machine_proportion_duegroup
then

for each user in the group (descend hierarchy)

chargesuser = chargesuser ×
actual_machine_proportiongroup

K6 × machine_proportion_duegroup

K6 is set to allow a group’s allocated share to fall below its effective share by some small amount.We
chose 10%.

6.3 Differential Decay Rates for Usage

We saw that the simple Share used the same rate of decay for all user’s usages. Itfollows that users within
an organisation should have the same usage decay rate.However, we need not do this between
organisations. We can illustrate this is terms of the simple Share system operating in the university context
where it is deemed appropriate to set a three day half-life for usage in the case of a machine used by
undergraduates, but for the research support machine, an acceptable half-life value is twelve hours. When
different organisations share a machine, the right to define different decay rates may be important.

In practice, we have not dealt with this problem.There is a simple administrative solution if the
organisations can agree to a constant decay rate within each organisation and they negotiate the
organisation machine share allocations to take account of this.An alternate, rather messy approach, is a
dynamic correction for differential decay rates by keeping two forms of usage: one for each user as we
currently do and another for each organisation with a common decay rate applied to all organisational usage
values. Thenwe could make a further adjustment to each group’s m_share value (and hence each user’s)

- 12 -

to account for any imbalances in the group level usage value.

6.4 OtherParameters

We hav enot allowed for variability per group or per user in any of these.

7. Evaluationof Share

Some parts of the design we have described were evaluated (Brownie, 1984) before its implementation in
1985. This evaluation with synthetic loads was mainly intended to guide the development of a
computational model for the scheduler before it was put into active service on a heavily used machine.
This preliminary work smoothed the introduction of the scheduler.

Once Share had been put into service, we used two forms of evaluation. Firstly, we used several monitoring
tools to watch it in operation.These have also been useful for administration and for users.They indicate

Resource usage between groups
Shows the effective share and actual resource consumption by group.

Resource usage between users
Shows the actual resource consumption for every user.

Effective share distribution
Plots a graph of users vs. normalised usages.A non-poisson distribution probably indicates
problems, such as a class of users (not necessarily in the same group) that are consuming a
disproportionately large amount of the resources

Resource event frequency
Provides feedback on active resource consumptions.

Long term charges
Provides details on the share of the resources between groups and users over a long time
period.

In addition, we have run synthetic tests with pureCPU bound processes to check that Share preserves the
proper relationships between users with different shares, usage and number of processes.

In view of the difficulties in creating valid simulation models and synthetic loads (Heidelberger and
Lavenberg 1984), we consider that the most important evaluation of Share has been the users’ reactions to it
in real operation.We now return to the design objectives and report upon our evaluation of Share in terms
of them.

7.1 Designgoal: that it be fair

We aimed to achieve this goal in terms of a secondary goal: that users be allocated shares which defined
their relative machine-share and that users getting more than their machine-share should be penalised with
poorer response.On simple tests, with synthetic jobs, we observed that Share met this design goal
(Brownie, 1984).More important, however, users deemed the scheduler to be treating them fairly.

Even with the simple, non-hierarchical Share, we have observed a number of situations in which Share has
dealt with potentially disastrous situations to the satisfaction of most users.For example, in our student
environment, we allocate shares to students on the basis of the relative machine share they should need.If
a class is given an assignment that demands significantly more machine resources, the students in that class,
and no other students, find the machine slow. With a conventional scheduler, everyone suffered in this
situation. Sharehas proved useful for this problem in that the source of the problem is patently obvious, as
is the identity of the person responsible for creating it.

A similar example, with the hierarchical Share system, involved a user who initiated a long runningCPU
bound process — Share ensured that users in other groups were unaffected by the problem.

- 13 -

7.2 Designgoal: that it be understandable

Figure 1 indicates the user’s view of Share. Ourusers appear to be able to appreciate this view and they
interpret relatively poor response as an indication that they hav eexceeded their machine share.

They also become alert to the relative costs of various processes they create since it is directly reflected in
their relative response from the machine.

7.3 Designgoal: that it be predictable

Each user’s personal profile lists their effective machine share and they quickly learn to interpret this is a
meaningful way. Users speak of a certain machine share as being adequate to do one task but not another.

7.4 Designgoal: the scheduler should accommodate special needs

Share caters for the situation where one needs to guarantee a user (or group) excellent response for a brief
period. Onesimply allocates a relatively large number of shares to the relevant user’s (or group’s) account
for the duration of the special needs.This is a simple procedure that the system administrator can set up to
run at the required times.

Clearly, this sort of activity does disrupt other users in that they hav eto share a smaller part of the machine
than usual.In fact, we observe that the favoured users may only make major demands of the machine for
brief bursts during the period that they hav ea high machine-share account.Typically, other users suffer
only small periods of reduced response.Although this facility is only necessary on odd but critical
occasions,4 it is an attractive benefit of Share.

7.5 Designgoal: that it should deal well with peak loads

In our design environment, one of the classic causes of a peak load is the deadline for an assignment.
Because we stagger the deadlines for different classes, this means that one class of students tries to work
ev er harder as the deadline approaches.In pre-Share days, everyone suffered and the machine ground to a
halt. With Share, the individuals in the class that is working to the deadline are penalised as their usage
grows. Meanwhile,other students get good response and are often unaware of the other class’s deadline.
In effect, under heavy load, heavy users suffer most.

7.6 Designgoal: that it should encourage load spreading

The most direct observation of Share’s load spreading effect is that users do give up when their response
gets bad, and especially when it is bad relative to other users.We would like to report that our students now
start their assignments early and work on them steadily; unfortunately this is not the case.However, the
fact that one class deadline cannot disrupt another does allow students to plan their work and be able to
predict that they will be able to get reasonable response if they do work steadily.

7.7 Designgoal: that it should give interactive users reasonable response

We can ensure this goal by combining Share with a check at login time that only allows users to log in if
they can get reasonable response.In practice, we have not enabled this facility unless there is a very large
number of users (over 70 on the Vax). Thosewho have high usage do get poor response and if the machine
is heavily loaded, the poor response may well be intolerable for tasks such as using a screen editor. We
view this as an inevitable consequence of Share being fair to users whose fair share is really very small.

In general, Share does ensure good throughput for the small processes that typify interactive use.

7.8 Designgoal: no process should be postponed indefinitely

Since Share allocates some resources to every process, this goal is also achieved.

7.9 Designgoal: that it should be very cheap to run

Since most of the costly calculations are performed relatively infrequently (in the user-level scheduler),
Share creates only a small overhead relative to the conventional scheduler.

4. These include demonstrations of software to funding agencies and, in the teaching context, practical examinations.

- 14 -

8. Theessential Share

Our description mirrors Share as we have implemented it.The aspect that is essential to Share is that it
shares resources fairly between users, rather than just processes.Other aspects can be altered within the
Share framework.

In particular, sev eral parameters are defined by administrative decisions and need to be set according to the
particular requirements of each machine.For example, we set the constantK1 to make usage decay quite
slowly: its half life has ranged from a few hours to three days.It could equally well be of the same order as
the process priority decay rate.Since the function of usage is to ensure that process priorities reflect the
total activity of the user who owns them, it can do that equally well with a short half life if that is what is
required. To date, we have used Share in environments where a long usage half life has been regarded as
fair.

Other such parameters that can be altered include the various constants, the frequency with which the user
level and process schedulers run and the way that charges are calculated.On the last of these, charges
should be selected to reflect the administrators view of the costs of each resource.This may well change in
the light of monitoring information or with changes in the hardware configuration.Similarly, the time
variance of charges could be altered.In our experience, it seems best to have fixed costs at particular times
of day so that users can plan their work in terms of these.In other situations, it may be appropriate to take
some other approach: one could dynamically alter costs on the basis of load so that the machine becomes
more costly to use at peak times whenever they happen to occur, or one could have fixed costs at all times.
Such changes should be taken with care.For example, the suggestions that costs change dynamically may,
at first glance, seem attractive and sensible.However, it violates the principle of predictability, a sacrifice
that should not be taken lightly.

9. Conclusion

Users perceive the scheduler as fair in practice, and tend to blame poor response more on their past usage,
rather than on system overloading. Thestrengths of Share are that it:

• is fair to users and togroupsin that users cannot cheat the system and groups of users are protected
from each other

• gives a good prediction of the response that a user might expect

• gives meaningful feedback to users on the cost of various services

• helps spread load

Share has proved useful in practice, both in teaching and research contexts. Othercontexts are possible,
such as sharing access to a file server to prevent any one client from monopolising the service.

Acknowledgements

This work was the product of much discussion over a long period. In typical academic tradition, many
people had a lot to say about the changes that Share brought to their lives. Many of those comments were
very useful. In addition, flaws in the initial design were identified by several people to whom we are
grateful.

The first versions of Share grew from the ideas described by Larmouth (1975, 1978) and the basic work by
Andrew Hume (1980).Chris Maltby played a critical role in the implementation and monitoring of the first
version. SandyTollasepp helped to analyse the performance of the first version and John Brownie, the
second. CarrollMorgan’s suggestions were the basis for revising the whole approach of the first version of
Share and they made for the simplicity of the current version. RobPike and Allan Bromley independently
identified an error in an earlier form of the share normalisation procedure.Glenn Trewitt suggested the
current form of taking account of the user supplied nice value.

- 15 -

References

Bach, M.J. "The Design of the UNIX Operating System", Prentice Hall, 1986.

Brownie, J. ‘‘ Analysis and Simulation of Share Systems’’, Unpublished Honours Thesis, 1984.

Coffman, E.G. and Kleinrock, L.‘‘ Computer Scheduling Methods and Their Countermeasures’’, Proc. AFIPS SJCC
vol 32, 1968, pp11-21.

Heidelberger, P. and Lavenberg, S. S. ‘‘ Computer Performance Evaluation Methodology’’, IEEE Trans. on Comp. vol
C-33, no 12, December, 1984.

Henry, G. J. ‘‘The Fair Share Scheduler’’, Bell System Technical Journal, October, 1984.

Hume, A. ‘‘ A Share Scheduler for Unix’’, AUUG Newsletter, 1979.

Kay, J., Lauder P., Maltby C. and Tollasepp S.‘‘ The Share Charging and Scheduling System’’, Basser Dept. of Comp.
Sc. Tech. Rep. 174.May, 1982.

Kleijnen, ‘‘Principles of Computer Charging in a University-Type Organisation’’, Comm. ACM, vol 26, no 11, 1983.

Kleinrock, L. ‘‘ A Continuum of Time-Sharing Scheduling Algorithms’’, Proc AFIPS SJCC, vol 36, 1970, pp453-348.

Lampson, B.W. ‘‘A Scheduling Philosophy for Multiprocessor Systems’’, Comm. ACM, vol 11, no 5, 1968.

Larmouth, J.‘‘ Scheduling for a Share of the Machine’’, Software Practice and Experience, vol 5, 1975, pp29-49.

Larmouth, J.‘‘ Scheduling for Immediate Turnaround’’, Software Practice and Experience, vol 8, 1978, pp559-578.

Lauder, P. ‘‘Share Scheduling Works!’’, AUUG Newsletter, 1980.

McKell, L.J., Hansen, J.V. and Heitger, L.E. ‘‘Charging for Computing Resources’’, ACM Computing Surveys, vol 11,
no. 2, 1979.

Newbury, J.P. ‘‘Immediate Turnround - An Elusive Goal’’, Software Practice and Experience, vol 8, 1982, pp897-906.

Nielsen, N.R.‘‘ The Allocation of Computing Resources - Is Pricing the Answer?’’, Comm. ACM, vol 13, no 8, 1970,
pp467-474.

Ritchie, D.M. and Thompson, K.‘‘ The UNIX timesharing System’’, Bell System Technical Journal, July 1978.

Tollasepp, S.‘‘ The SHARE Resource Allocation System’’, Unpublished Honours Thesis, 1981.

Woodside, C. M. ‘‘ Controllability of Computer Performance Tradeoffs Obtained Using Controlled-Share Queue
Schedulers’’, IEEE Trans. on Software Engineering, vol. SE-12, no. 10, October, 1986.

