A Fair Share Scheduler.

J. Kay
P. Lauder

University of Sydng

ABSTRET

CPU schedulers are usually designed to allocate resouma®ys dmongprocesses In this paperwe de-
scribe Share, a scheduler that allocates resources ssémget their &ir machine sharever a long peri-
od.

We dso describe an hierarchical form of Share that supports sharing, not only betweiginahdisers, bt
also between groups of users particular it supports the sharing of a machine betweayagsational
groups who are independently funded andeh@ntributed a proportion of the machine co3the hierar
chical Share ensures that each group is allocated its defined machine share in the long term.

Keywords: schedulingshaging, resource allocatiorgif sharing

1. Introduction

One of the critical requirements of a scheduler is thbeifair. Traditionally, this has been interpreted in
the contgt of processesand it has meant that schedulers were designed to share resaintgdsetween
processes. Moreecently it has become clear that schedulers need toaletd uses rather than just
processes. This reflected in wrk such as Larmouth (1975, 1978),vieiry (1982), Henry (1984) and
Woodside (1986).

The contgt for developing Share s that of the main teaching machine in a computer science department.
We had a lage user communifydominated by 1000 undgraduates in seral classes as well as a $taff

about 100.Our load vas almost xclusively interactve and had frequent,x¢reme peaks when a major
assignment as due. On a typical daythere were 60-85 agg terminals, mainly ergged in editing,
compiling and (occasionally) running small to mediuasdal programsAll this actiity was supported by
aDEC VAX 11/780 runningdUSAM, a local ersion of Unix that is orientedw@rds a student éironment.

Unix provides a &irly typical scheduler (Bach, 1986It was inadequate in ourdronment for a number
of reasons:

1. it gave nore of the machine to users with more processes, which meant that a user could easily
increase their share of the machine simply by creating more processes;

2. it took no account of the long term history of a usectivity so that a student who used the
machine hedly for, say, two hours, had the same machine share as a student who had not used the
machine for some time;

3. whenone class had an assignment due, and all the students in thatasd te wrk very hard,
evayone, including other students and stafifered with poor response, and

4. if someone needed good response forvities like practical eaminations or project
demonstrations, it as dificult to ensure that tlyecould get that response without gerg all other
users access to the machine.

The first three of these are manifestations ounéss in the ay that the process scheduldeafs users.

On maly systems, these problems are partially addressed byhdrging mechanism (Nielsen 1970,
McKell et al. 1979).Typically, chaging systems wolve dlocation of a lndget to each user and as users
consume resources, thare chaged for them.We might call this thefixed-tudget model, in that each user

has a fied size bhdget allotted to themThen, as theuse resources, theutiget is reduced and when it is
empty they cannot use the machine at all.process can get a better machine share if the userwim®ib

is prepared to pay more for the resources used by that prodesdixed-tudget model can be refined so
that each user hasveeal budgets, each associated withHfeliént resources.

We oontrol allocation of some resources with a&éixudget chaging mechanismin particular we use this
approach in these cases:

1. forresources li dsc space, each user has a lifnit;

2. resourcefike printer pages are allocated to each user aglgdi that has a tight upper bound and is
updated each ddy;

3. daily connect limits are\ailable to preent individuals from hogging the machine within a single
day;

4. weeklyconnect limits are sometimes used tovpn¢ students from spending too much time on
computing (compared to other subjects) and to encourage studeriskist@adily on assignments
from the first week theare set, right through to the last weekit(this commonly has thefett of
derying students anmachine access near the assignment deadlma, though the machine is
lightly loaded and the studentsould like more machine access to finish and inveraheir
programs).

There are also other utilities to help allocate resources, including a terminal booking programvilsat allo
students to reseeva erminal at particular times each week.

All these measures helped control consumption of resourtedid not deal with the problems aPuU

allocation we described earlielt was for these that we ddoped the Share scheduleilthough Share
was motivated by our particular problems in a studentiemment, it equally well sees the needs of gn
user community that shares a machine which is not run as a commeregal operating to maka

financial profit. Indeed, Share has been implemented in a reseaviforenent with map users from
different oganisations that hae dosen to share the capital and running costs of a mathine.

To date, Share has been usedlesively to allocateCPUtime, though it taks account of the consumption
of all resources as we describe beldMe consider that Share is applicable to the scheduling of resources
other tharCPU, but for simplicity, this paper is written in terms afPU scheduling.

We cescribe our wrk in terms of its design objeess. Firstwe state those objeetis and the underlying
principles needed for a qualiteti understanding of Sharelhen we describe the Share schedudearting
with the uses view of a dngle-level Share. Thids followed by the detailed implementatioRrom there,
we describe the maeftion for the hierarchical Share and its implementatidhe remainder of the paper is
devoted to the weduation of Share, including a description of the toolsilable for users and
administrators to monitor the performance of Share.

2. Objectivenf Shae

Many systems link chaging and scheduling only in that a user can specify processes for whycarehe
prepared to be chged more in return for beingwgn preference in schedulingindeed, Unix diers a
mechanism rather l&ktis in nice, an atribute of a process that a user can adjust to alter its scheduling
priority. In a ron-bureau ewronment, this approach is adequaktowever, a nore natural approach is to
regard each user as Wiag an entitlement to air share of the machine, relaito other users.Then the

task of the scheduling and charg systems is to ensure that

1. If a user &ceeds this limit, theare warned at the time and then at each login for three lodifter that, thg are not alleved
to login.

2. For example, a user might i@ a pinter page bound of ten pages and a daily increment@pages. Thisneans that the
start with a lhdget of ten pages and if thprint, say three pages in one ddheir budget for the rest of the day isvee pages
and preided the do no more printing that daytheir tudget at the lggnning of the net day will be nine pages.

3. A Cray X-MP at A&T Bell Laboratories.

- no indvidual can get more than theairff share of the machine in the long term, and
« that the machine can be well utilised.

In addition, we gtended the notion offr shares to a@r groups of indviduals so that Share can alithe
sharing of a machine between independegdrasations.

To echieve fair sharing and be practicable, the objestifor Share were that at thevék of the individual
and independent groups which share the machine, it should

1. seenfair

2. beunderstandable

3. bepredictable

4. accommodatspecial needs: where a user need®lent response for a short time, it should permit

that with minimum disruption to other users;
dealwell with peak loads;
encourag®ad spreading;

give interactve wsers reasonable response;

© N o O

give mMe resources to each process so that no process is postponed indefinitely;
9. Dbevery cheap to run.

After we have described Share, wev@uate it in terms of these objeads.

3. Users Vew of Share
Essentially Share is based on the principle that
« evayone should be scheduled for some resources
- according to their entitlement
- as defined by theghates
« and their resourcesaye hstory.

This is illustrated in Figure 1, which shis that a user carxpect poorer response if theavehad their &ir
machine shareThis, in turn, gies aher users a chance to get thair thare.

To tighten this definition of the useriiew of Share, we need to state what we mean by shares and usage.

A users shaesindicate their entitlement to doork on the machineThe more shares a user has, the
greater their entittementThis should operate in a lineashion so that if user A has twice as snamares
as user B, then in the long term, user A should be able to do twice as onkchswiser B.

Every user has asaye, which is adecayedneasure of the ork that the user has don&he decay ateis
defined by an administraég decision which determines Wwdong a uses history of resource consumption
affects their responsd-or example, in its first implementation in a studentismnment, the decay rateas

set so that usage had a half-life of three days to encourage students to spread their macken¢hase o
week.

While it is the norm for schedulers to use decaged usages, Share'uise of decayed resource usage in
charging is a departure from traditional approach®ghere a machine is solely for in-house use, the only
need for a ra@ (undecayed) resource consumption tally is in monitoring machine performance and
throughput and to obsexmatterns of user betimur.

The decayed usage is alsormalisedby the uses shares. Onamight view this as making the machine
relatively cheaper to users with more sharés.essenceShare atempts to &ep the actual méaine shae
defined by normalised uga he same as the mgioe entitlement defined by skar Looked at from the

Figurel. Users View of Share

each user

. .

shares usage

deIine defines
users machine users ectual
share entitlement machine share

Share adjusts user response to enak
actual machine share and entitlement equal

users point of view, Share gves worse response to users whaddmd more than theirafr share so that
they cannot vork as hard as users whovhawot had their &ir share.So uses se that as their normalised
usage increases, their @sponse becomes er (This assumes alleence is made for machine load.)
Indeed, we prade a simple command that displays a userdfile which includes their usage and the
machine share tlgecan expect.

This approach contrasts strikingly with e@entional chaging and scheduling systems that schedule
processes equallprovided the user whovens them has a non-emptudget. Inthe fixed-lhudget model,
the users who consume thaiirfshare, by emptying theiutigets, get no resourcesee if there happen to
be plenty gailable. Inthe treme case, there may be no users becawessgoae who vants to use the
machine has emptyuldgets. Br an in-house machine, this does not engdnse and, wrse still, we hee
obsered that it can generate substantial adminiseaiveheads as users seedtra allocations.

The number of shares allocated to a user is, essensialgministratve decision. Havever, in a stuation
where independent genisations share a machine, the shares that should be allocatedviduaddiisers
depend both upon the entitlement that thegaoisation has and to the initiual’s entittement within the
organisation. r simplicity, we describe Share first in terms of a simple situation where there are no
independent genisations imolved: all users’ shares are simply defined to indicate their rightot& w
compared to other user8Ve ceal with the more comptesituation where the combined usage of groups of
users must be considered, in the description of hierarchical Share.

Another fctor in scheduling is the indilual users’ rights to alter the relagi £heduling priority of their
processes. Whavepresered the Unixnice, a rumber in the range zero to nineteen, which a user can
associate with a proces8Vhen users assign a non-zero niedug to a process, théndicate that poorer
response is acceptabldhe lager the nice alue, the poorer the responséhe way that this décts
chaging is another administragé decision: the name, nice, suggests that users who do not asted f
response for a process might be kind enough to use nice and get poorer response just out of. generosity
our ewironment, we felt that it as worthwhile to gve users some incent © use nice.So, we reduced

the costs chaged for processes with tar nice alues.

Finally, the charges that Share uses are defined by the redatists of diferent resourcesSo, for éample,

we associate a chgi with memory occupagcanother with systems calls, another withU use and so on.
Note that this is another &#fence between Share and wartional schedulers which define a procgss’
scheduling priority only on the processbnsumption ofCPU time. In Share,CPU scheduling priority is
affected by total resource consumption.

In addition, we set chges at diferent levels at diferent times of the dayThis is yet another administredi
decision. Br example, during the uwmérsity’s term time, we chge a peak rate during normabik hours,
somavhat less for the hour or tneround these, and much less at realfypafak hours.

We rote that Share represents a radical departure from the traditional approacheging esadescribed
by Kleijnen (1968)

prices should not be changed too frequemthce stability is one of the accepted requirements
of a chaging system.

We ayree that users need to understand thegaigsystem and see it as stabla, Wwe ague that this does
not require constant bekaur. It can equally be achied by behaviour that changes steadilgs in Share
where response steadilygtades as a ussmesource consumption increases redatb other users.

At several points in this section, we V& referred toadministiative decisions We emphasise that these
administratve cecisions areery important.In particular they are critical to Shareg'fairness. Br example,

we have just noted that we chge less at dfpeak times and this does seem to help spread the machine
load. Havever, another importantdctor in setting this policis that users consider iaif that thg be
chaged less for the incemnience of verking out of normal hoursWe dso note that some of the
administratve cecisions are not easyfhe fixed-hudget model has the merit that one can easily top up
empty ludgets. Sdhe initial size of a bdget may not be so criticaBy contrast, in Share, the shares
allocated define the right to daovk so that when we allocate each first year student half the shasesogi

a cond year student, we are defining the radatimount of work we &pect each toxract from the
machine.

4. Overviev of the Implementation

In this section, we describe Share at a conceptwal. [éAs one might &pect, there are tw main
components, one at the usevdeand the other at the proceswvde First, we describe the uservig
component.

Userlevel scheduling

update usage for each user by adding gdwmitincurred by all their
processes since the last update and decaying by the appropriate
constant

update accumulated records of resource consumption for planning,
monitoring, poliy decisions

At this point, Share computes the ajes due to a user for the resourcey theve consumed during the
last g/cle of the uselevel scheduler The chages are for all resources consumed ang #e lover at of-

peak periods.This part of the scheduler need not rierywfrequently because usages generally change
fairly slowly.

Note that each user can get an estimate of their share of the machine by comparing theiainsigbadg

of all actve wsers. Sincehis is a comenient and intuitre indication of the response that a user ogreet,

we provide an estimate of the userhachine share xpressed as a percentage, as part of the standard user
profile information.

The remainder of Share operates at the process IBeforewe describe it, we note that processes each
have a piority and thesmallerthe priority \alue, the better the scheduling priaritjve dso introduce the
term active pocessto describe anprocess that is ready to run and, ay gnint, the actie process that
actually has control of thePUis called thecurrent pocess There are three types of adty at the process

level:
- that associated with the adiion of a nev process;
- the rgular and frequent adjustment of the priority of the current process
- and the rgular, but less frequent decaying of the priorities of all processes.

We kegn with the first, which occurs in a number of situations, including times when a process
relinquishes control of thePu, times when the aste pocess is interrupted for some reason, and at the
regular times that the scheduler usurps the currentlyeagtbcess to hand control to themest priority
process that is ready to run.

Process aotétion
update costs incurred by the current process

select the process withviest priority and set it running

Next is the adjustment to the priority of the current process, which defines the resolution of the scheduler
This ensures that th@PU use of the current process increasesr$ens) its priority

Priority adjustment

increase the priority of current process in proportion to the suser
usage, shares, and number ofvactrocesses

Finally, there is the mular decaying of all process priorities, which must be done frequently compared to
the useilevel scheduler bt can be at a Iger time interal than the schedulsrtesolution.

Decay of process priorities

decay all process priorities, with gler decay for processes with ngn-
zeronicevaues

5. Detailedimplementation

The implementation of Share is sho in the box bel. The remainder of this sectiorxm@ains each
component, including the setting of therious parameters (which can be altered as the system runs).

5.1 Userlevel Stieduling

The usetlevel scheduler is imoked every t1 seconds. Thealue oftl defines the granularity of changes in
a wsers wsage as theuse the machineSince usage is generalleny lage compared to the resources
consumed in a secontd, can be of the order of avieseconds without compromising thairfness of the
scheduler The merit in makindl reasonably laye is that we can faird relatively costly computations at
this level without prejudicing the time-&tiency of Share. OuNax implementation madstl four seconds,
which is 240 times the schedukeresolution. Orthe Cray we havefound that four seconds (400 times
Share$ CPU chaging resolution) is also acceptable.

The first component of the uslexwel scheduler decays each usetsage. Thignsures that usages remain
bounded and thealue of the constari{1 in combination withtl defines the rate of decayVe generally
consider the ééct of K1 in terms of the half-life of usagdn a student enronment, we hae wsed a half-
life of three days.In other contets, it has been much shortartlgenerally of the order of wal hours.
At a conceptual legl, this step is performed for all users fact, the dect of the calculation is computed
as each user logs in, and so the actual calculation need only be performeddasacsi

The net part of the user &l scheduling ivolves updating the usage of aetisers by the chges thg
have incurred in the lagtl seconds and resetting the ohes tally

Figure 2. Share implementation
Every t1 secondaiser level sheduling

for each user
Decay usge and update with costs incwad in last t1 seconds
usage ser = Usageser X K1 + charges ger

Reset cost tally
charges g =0
Every t2 secondgiecay of pocess priorities
for each process
priorityprocess = prioritYprocess x K2 x (niceprocess + K3)
Every t3 secondgriority adjustment
usagecurrent_user x aCtiveJ)rocessescurrent_user

2
SI‘]":lrescurrent_user

+

prioritycurrent}rocess = prioritycurrenu)rocess

At each schedulingvent: current pocess selection

Chargescurrent_user = Chargescurrent_user + COStevent

run process with leest priority

5.2 Piocess-lgel Stieduling

From this point on, we discuss thevitevel scheduler that deals with processétsoperates in terms of the
priority of each processAs is common practice in process schedulers, the priority defines the order in
which processes are entitled to be alloc&edresources. Accordinglyt

- scheduleCPU resources to the process with the smallest prjositych corresponds to the process
being at the head of the queue;

- increases the priority of a process each time it is allocz®etime, which can be vieed as putting
the process further dam the queue;

- decays all process priorities steadily so that one might slieprocesses as shdy drifting towards
the front of the queue.

We row dscuss har Share combines these aftiies with user leel scheduling.

5.2.1 Decayf Process Priorities.The decay of process priorities ages processes so that those wiich ha
not had theCPU achieve better and better (smaller) priorityalies. Thevalue of t2 combined with the
vaue of K2 define the rate at which processes a@ée reed to ma& t2 small, compared tdl, because
priority values changeery quickly In our Vax implementationt2 is st at 1 second, which is sixty times
the resolution of the scheduldiOn the Cray2 is dso 1 second.)

The rate at which processes age feaéd by theinicevalue. We mote that Share prese&w the approach
of the Unix scheduler tmice it assumes that users normallyam the best response possible (which
corresponds to mice value of zero) bt there are also times when a user is hdp@ccept lesser response,
which the indicate in terms of amice value which is a small inger. (Its range is from zero, the @efit, to
nineteen which gies the worst response.WWe cefine the alue ofK2 as

K2'

K2= —n———
K3 + max_nice

wheremax_nice is the lagestnice value (19). This ensures that the priority of processes wite set to
max_nice is decayed bK2' evay t2 sasconds and the priority of processes wiite set to zero is decayed
someavhat faster The \alues ofK2' and K3 must be sufciently lage to ensure that priorities are well
spread and remembered long enough tegmtdarge numbers of processes fronving zero priority

5.2.2 Priority Adjustment.At the finest resolution of the schedul&;, the current process has its priority
increased by the usage and a&tjirocess count of the user whavits the process(The scheduler
resolution,t3, is a sixtieth of a second on th@xXVversion, one hundredth of a second on the .Cray
Typically, schedulers increase the priority by a constantuitively, one might viev the diference between
Share and typical schedulers as fato

 a typical scheduler adjusts the priority of the current process by pushingvit the queue of
processes by eonstaniamount;

» Share pushes the current processrdthe queue by an amount proportional to the usage and number
of actve processes of the procesgwner, and inversely proportional to the square of that user’
shares, so that processes belonging to higher usage (mee® esdirs are pushed furthervdo the
gueue than processes belonging wdousage (less ae§) users.

This means that a process belonging to a user with high usageldaker to drift back up to the front of
the queue.(The priority needs longer to decay to the point that it is teda)

We dso want users to be able toovk at a rate proportional to their shard%his means that the chyas
they incur must be alleed to increase in proportion to the square of the shares (whigshegekrivative, or
rate of work done, proportional to the shares).

The formula also tads account of the number of aetirocesses (processes on the priority queue) for the
user who wns the current proces3his is necessary since a priority increment thatlired just usage and
shares wuld push a single processwothe queuedr enough to ensure that the user gets no more that
their fair share.If the user has more than one eetprocess, we need to penalise each of them to ensure
that the uses hare is spread between them and we do this by multiplying the priority increment by the
active process count.This is the crux of the Share mechanism for making long term usagealb
resources that attract clgas, affect the uses response and rate obwk.

Although the model we wa described may be adequate for some implementations where process priorities
have a hrge range of &lues, on the machines where weehamplemented Share, process priorities are
small intggers and so cannot be used directye reed to normalise thehate priorities into a range that is
appropriate for real process prioritiek addition, where the range in prioritalues is quite small, we
need to ensure that the normalisation procedure does netaalogle very lage Share priority alue to
reduce all other normalised priorities to zefim avoid this, we define a bound on the Share prioritiis

Figure 3. Priority normalisation

Find greatest Shar priority for normalisation
max_priority =0
for each process

if

max_priority < priority,cess < priority_bound
then
max_priority = priority,ocess

for each process

Scale priority to apppriate range

if

Priorityprocess < Max_priority

then
: . Priorityprocess
normalised_priorit =(K4-1) x ————

Y yprocess () maXJZJI’IOI’Ity

else

normalised_priorityp ocess = K4

is calculated in the processA scheduler as shn in Figure 3 bele. K4 is determined by the lgest
priority available to the lav-level scheduler Note that the Share priority bound does, seha unéirly,
favour very heay users.However, they still suffer the efects of their slaly decaying lage usage and tiie

are still treated more gerely than geryone else.On the other hand, it helps peat marooning.

5.2.3 Ppocess Activation At each schedulingvent, Share updates the current usehaiges by the costs
associated with thevent and selects thewest priority process to runThis aspect of Share is typical of
CPUschedulers.

5.2.4 MultipleProcessos. Multiple processor machines dowifect the implementation primed that the
kernel still uses a single priority queue for processese only diference is that processes are selected to
run from the front of the queue more often, and incurgdsmore frequentlyhan if only one processor
were present.

5.2.5 Eficiency The implementation sk in Figure 2 should only be seen as a model of the actual code.
For efficieng, some of the calculations that are shat the lgel of the process scheduler are actually
precalculated elsehere.

5.3 Edg Hfects

In general, it is important toveid edge dects on scheduler beliaur. In particular if a user enters the
system with zero usage theould efectively consume 100% of the resources, at least for goke of the

userlevel scheduler Since this is a comparatly long time (a fev seconds), this wuld be quite

unacceptable. ¥ row examine wly this undue dvauritism could occur and ko Share deals with the
problem.

First, we define the relag proportion of the machine due to a user by virtue of their allocation of shares.
This is:
shares ger

active_users
shares,

machine_proportion_due g, =

u=1
This defines the proportion of the machine due to a user in the shortNexmnwe can also predict the
short term future proportion of the machine that a user should get by virtue of their usage.
shares?,,
usageuser
active_users sharesﬁ
=1 Uusage,

near_future_machine_proportionge, =

If everyone is getting theirdir share, these twformulae will give the same alue for each acté wser
Indeed, Share orks to push these omformulae to the samelue for each usern the case where a user
has zero usage (or near zero usage), we need to interfereéiot hat user from being undulgviaured
(while other users are ignoredjVe b this by altering the usagabue in the uselevel scheduler as shan

Figure4. Avoiding edge dects
Every t1 secondsiser level shieduler

for each user
if
near_future_machine_proportion,se, > K5 x machine_proportion_duege,
then
near_future_machine_proportion g,

USage ser = USAQ€ ser X ;)
9Cuser 9Cuser * “1E x machine ~_proportion_due eer

in Figure 4. We havesetK5 to 2

5.3.1 SystenProcesses.Processes that run in support of the operating system mustédre dii the
resources that tigeneed. Ineffect, system processes areegi a 100% share of the resources, and it is
assumed that tgewon't use it most of the timeShare is intended to arbitrat@ify between usersfter
the system has tah all the resources it needs.

-10 -

5.3.2 Maponing It is possible for a user to acheea vey large usage during a refadly idle period.
Then, if nev users become aw#, the original uses share becomes so small thatytfean do no déctive
work. This users processes are fettively marrooned with insuficient CPU allocation &en to exit.
Marooning is soided by the combination of bounds on the normalised form of prithigyprocess priority
decay rate, and the granularity of the proceegd-eheduler

6. Hierarchical Shae

Although the simple ersion of Share that we Ve described seed well for sgeral years, it vas
inadequate for a machine that is shared betwegamisations or independent groups of us&snsider the
situation where @enisations need to share a machine ang went sharing not only between userst b
also at the beel of the oganisation. Sharas described alve is fine for this situation praded that we can
male the followving assumptions

1. thetotal allocation of shares for eachyarmisation is strictly maintained in the proportions that the
machine split is madeE.g. if a machine is to be split equally between twganisations, the total
shares for each genisation must be the same;

2. theusers in each genisation are equally aot;
K1 is aceptable at the ganisational l@el and is constant for all users;

4. costdor resources are consistent for all users, and the other parameters of Share, iK&uding
t2 andt3, are accepted for all users.

We row oonsider hav the simple Share is adjusted to account for each of theged.
6.1 Shaes in an Hiearchical Shae Sheduler

It would be impractical to require that the total shares for eaymieation be maintained at adok \alue.

This would mean that the avel of a new wser would require adjustments to the shares of all users in that
organisation. Thiss a serious problem that could rule oujamisational sharing with the simple form of
Share.

To presene the viev that each @anisation should appear to be operating thein smachine, we alle that
users be allocated shares as in the simple Shéowever, we cannot directly compare such shares across
organisations. W& reed to cowert them to a comparable measufEhe approach we takis to calculate
each uses madine-shae, the proportion of the machine that their allocation of share® rhakn eligible

to receve. We dart at the root of the Share hierardhee and covert the shares allocated to each child
node into their machine share, using the formula:

shares;oge
m_sharen,ge = M_shareparent % siblings
> shares, + shares,qqge
n=1

This calculation is repeated recwety down the hierarch tree until them_share of each node has been
calculated andh_share is then used instead shares in the user leel scheduler

6.2 \arying Levels of Activity

One cannot reasonably assume that the users are equaklyaadli times. This means that as users log in
and log out, thealter them_share value of all users in their scheduling group (and ifythes the first user
in their group to log in, or the last to log out, \thatter them_share of all users who descend from their
grandparent node in the hieraydhee.)

In terms of the operation of Share, this means that sonshare values will usually be recalculated at
each log in or log outThis poses a smalubacceptableverhead.

Share actsdfirly under full load ht a light load can distort itConsidey for example, the situation depicted
in Figure 5. This shavs a case where there areoterganisations A and B with an equal share of the
resources, where ganisation A has one ag# wser Al while oganisation B has te users, B1 with a lare
share and doing nothing, and B2 with a small share runn@rRuebound processThe effectiveshare of

-11 -

Figure5. Example of user aefity that distorts group sharing
m_share description of user aefity

Organisation A

User Al 0.5 actve
Organisation B
User B1 0.45 loggedn but inactve

User B2 0.05 CPUbound

the two active wsers, Al and B2, dir by a fctor of ten and yet the scheduler shoulddéi the resources
equally between the wgroups, A and B.

First, we define the relag poportion of the machine due to a group by virtue of its allocation of shares.
This is:
sharesgoyp

active_groups

machine_proportion_duegyoyp =
shares
g=1
Now we can also calculate the actual share of resources consumed by a group for the most recent
scheduling period.

chargesgyoyp

active_groups
chargesy

actual_machine_proportiongq,, =

o1

If each group is getting itsir share, these sformulae gie the same alue for each aaté goup. Inthe

case described abg we need to interfere if group B (and hence user B2) is to geiitstiare.We b this

in the usetlevel scheduler by reducing the costs of resources consumed by a group that is getting less than
a certain amount of its share€lhis decreases the usage for\actisers in the group and alls them to
increase their share and the greupare.

Figure 6. Group adjustment

for each group (descend hierayth
if

actual_machine_proportiong,,,, < K6 x machine_proportion_duegyqp
then

for each user in the group (descend hiemgrch
actual_machine_proportiongq,,

K6 x machine_proportion_duegy,q,p

charges ce; = Charges ger X

K6 is set to allv a goup’s dlocated share toafl below its efective sare by some small amouniVe
chose 10%.

6.3 Differential Decay Rates for Uga

We saw that the simple Share used the same rate of decay for ai usages. Ifollows that users within

an oganisation should ha the same usage decay ratelowever, we need not do this between
organisations. W& aan illustrate this is terms of the simple Share system operating in theesitgiicontext

where it is deemed appropriate to set a three day half-life for usage in the case of a machine used by
undegraduates, dt for the research support machine, an acceptable halflifie Vs twele hours. When

different oganisations share a machine, the right to defifferdint decay rates may be important.

In practice, we ha ot dealt with this problem.There is a simple administregi lution if the
organisations can agree to a constant decay rate within eadmigation and the negotiate the
organisation machine share allocations toetakcount of this. An alternate, rather messy approach, is a
dynamic correction for diérential decay rates byekping tvo forms of usage: one for each user as we
currently do and another for eaclyarisation with a common decay rate applied to ghoisational usage
vaues. Therwe could mak a further adjustment to each grospi_share value (and hence each usyr’

-12 -

to account for animbalances in the groupvig usage alue.
6.4 OtherParametes

We havenot alloved for variability per group or per user inyaof these.

7. Evaluationof Shae

Some parts of the design wevkadescribed werewv@luated (Bravnie, 1984) before its implementation in
1985. This evduation with synthetic loads & mainly intended to guide the vélpment of a
computational model for the scheduler before dswput into actie rvice on a hadly used machine.
This preliminary vark smoothed the introduction of the scheduler

Once Share had been put into service, we usedamns of @aluation. Firstly we used seeral monitoring
tools to vatch it in operation.These hae dso been useful for administration and for usérey indicate

Resource usage between groups
Shaws the dfiective share and actual resource consumption by group.

Resource usage between users
Shaws the actual resource consumption faarg user

Effective dhare distrilotion
Plots a graph of users vs. normalised usagerson-poisson distribtion probably indicates
problems, such as a class of users (not necessarily in the same group) that are consuming a
disproportionately laye amount of the resources

Resource eent frequeng
Provides feedback on agé resource consumptions.

Long term chages
Provides details on the share of the resources between groups andvwasexdomg time
period.

In addition, we hee un synthetic tests with pu@PU bound processes to check that Share presdhe
proper relationships between users witliedlént shares, usage and number of processes.

In view of the dificulties in creating alid simulation models and synthetic loads (Heidgberand
Lavenbeig 1984), we consider that the most importardgation of Share has been the users’ reactions to it
in real operation.We row return to the design objeets and report upon ourveluation of Share in terms

of them.

7.1 Desigrgoal: that it be fair

We a@med to achiee this goal in terms of a secondary goal: that users be allocated shares which defined
their relatve machine-share and that users getting more than their machine-share should be penalised with
poorer responseOn simple tests, with synthetic jobs, we obsednthat Share met this design goal
(Brownie, 1984).More important, havever, users deemed the scheduler to be treating thaty. f

Even with the simple, non-hierarchical Share, weehdsened a number of situations in which Share has
dealt with potentially disastrous situations to the satigfn of most usersFor example, in our student
ervironment, we allocate shares to students on the basis of theer@athine share tlyeshould need.If

a dass is gien an assignment that demands significantly more machine resources, the students in that class,
and no other students, find the machinavslaVith a cowentional schedulereveryone sufered in this
situation. Sharéas preoed useful for this problem in that the source of the problem is patentipud) as

is the identity of the person responsible for creating it.

A similar example, with the hierarchical Share systempived a user who initiated a long runnicgu
bound process — Share ensured that users in other groups wéeeteddfy the problem.

-13-

7.2 Desigrgoal: that it be undestandable

Figure 1 indicates the useniew of Share. Ourusers appear to be able to appreciate this aied the
interpret relatrely poor response as an indication thaiythaveexceeded their machine share.

They aso become alert to the relai osts of \arious processes thereate since it is directly reflected in
their relatve response from the machine.

7.3 Desigrgoal: that it be pedictable

Each uses personal profile lists their &fctive machine share and theuickly learn to interpret this is a
meaningful vay. Users speak of a certain machine share as being adequate to do onenasktother

7.4 Desigrgoal: the sheduler should accommodate special needs

Share caters for the situation where one needs to guarantee a user (ongmeligteesponse for a brief
period. Onesimply allocates a relatly large number of shares to the relet users (or groups) account

for the duration of the special needghis is a simple procedure that the system administrator can set up to
run at the required times.

Clearly, this sort of actiity does disrupt other users in thatythaveto share a smaller part of the machine
than usual.In fact, we obsew that the &vaured users may only makmajor demands of the machine for
brief bursts during the period that thbavea high machine-share accountypically, other users séér
only small periods of reduced responsg<hough this &cility is only necessary on oddutbcritical
occasion$,it is an attractie kenefit of Share.

7.5 Desigmgoal: that it should deal well with peak loads

In our design erironment, one of the classic causes of a peak load is the deadline for an assignment.
Because we stagger the deadlines fdieddht classes, this means that one class of students triesko w

eve harder as the deadline approachkspre-Share daysyeryone sufered and the machine ground to a

halt. Wth Share, the indiduals in the class that isorking to the deadline are penalised as their usage
grons. Meanwhileother students get good response and are oftemacmaf the other class’deadline.

In effect, under hegy load, heay users sudér most.

7.6 Desigrgoal: that it should encoage bad speading

The most direct obseation of Shares load spreading #ct is that users dovg Y when their response
gets bad, and especially when it is bad redath other users.We would like to report that our studentswo
start their assignments early andriv on them steadily; unfortunately this is not the cadewever, the
fact that one class deadline cannot disrupt another does silidents to plan their ovrk and be able to
predict that thg will be able to get reasonable response i theework steadily

7.7 Desigrgoal: that it should give intactive uses reasonableesponse

We @an ensure this goal by combining Share with a check at login time that omlg akers to log in if
they can get reasonable responge.practice, we ha rot enabled thisacility unless there is aevy lage
number of users {@r 70 on the \ax). Thosewvho have high usage do get poor response and if the machine
is heaily loaded, the poor response may well be intolerable for tasks such as using a screefVeditor
view this as an indtable consequence of Share beian fo users whosair share is reallyary small.

In general, Share does ensure good throughput for the small processes that typifywatseacti
7.8 Desigrgoal: no pocess should be postponed indefinitely

Since Share allocates some resourcesexy @rocess, this goal is also acled.

7.9 Desigrgoal: that it should be veryheap to run

Since most of the costly calculations are performed velgtinfrequently (in the uselevel scheduler),
Share creates only a smallethead relatie o the cowentional scheduler

4. These include demonstrations of saftey to funding agencies and, in the teaching ebrpeactical @aminations.

-14 -

8. Theessential Shar

Our description mirrors Share as wevdnamplemented it. The aspect that is essential to Share is that it
shares resourcesifly between users, rather than just proces§iber aspects can be altered within the
Share frameork.

In particular sevaal parameters are defined by administmtiecisions and need to be set according to the
particular requirements of each machif&r example, we set the constafl to make usage decay quite
slowly: its half life has ranged from aviehours to three daydt could equally well be of the same order as
the process priority decay rat&ince the function of usage is to ensure that process priorities reflect the
total actvity of the user whowns them, it can do that equally well with a short half life if that is what is
required. © date, we hae wsed Share in @ronments where a long usage half life has begerded as

fair.

Other such parameters that can be altered includeatims constants, the frequgneith which the user
level and process schedulers run and theywhat chages are calculatedOn the last of these, cluyas
should be selected to reflect the administratons efethe costs of each resourcéhis may well change in

the light of monitoring information or with changes in the hamdwconfiguration.Similarly, the time
variance of chages could be alteredn our experience, it seems best tovhdixed costs at particular times

of day so that users can plan theorlvin terms of theseln other situations, it may be appropriate tcetak
some other approach: one could dynamically alter costs on the basis of load so that the machine becomes
more costly to use at peak times whemehey happen to occuor one could hee fixed costs at all times.
Such changes should be e¢akwith care.For example, the suggestions that costs change dynamically may
at first glance, seem attraaiand sensible.However, it violates the principle of predictabilita sacrifice

that should not be tak lightly.

9. Conclusion

Users percek the scheduler asifr in practice, and tend to blame poor response more on their past usage,
rather than on systenvaloading. Thestrengths of Share are that it:

- is fair to uses and togroupsin that users cannot cheat the system and groups of users are protected
from each other

+ gives a gpod prediction of the response that a user migheet
. gives meaningful feedback to users on the costasfous services
« helps spread load

Share has pred useful in practice, both in teaching and research gtsiteOthercontets are possible,
such as sharing access to a file setw preent ary one client from monopolising the service.

Adknowledgments

This work was the product of much discussioverna long period. In typical academic tradition, mgn
people had a lot to say about the changes that Share brought toséseiMiary of those comments were
very useful. In addition, flavs in the initial design were identified byvesal people to whom we are
grateful.

The first \ersions of Share grefrom the ideas described by Larmouth (1975, 1978) and the badidow
Andrew Hume (1980).Chris Maltby played a critical role in the implementation and monitoring of the first
version. SandyTollasepp helped to analyse the performance of the fnsion and John Bwmie, the
second. CarrolMorgan’s auggestions were the basis foviging the whole approach of the firgrsion of
Share and themade for the simplicity of the currenéssion. RolPike and Allan Bromleg independently
identified an error in an earlier form of the share normalisation proce@lemn Tewitt suggested the
current form of taking account of the user supplied natee:

-15-

Refeences
Bach, M.J."The Design of the UNIX Operating System", Prentice Hall, 1986.
Brownie, J. “ Analysis and Simulation of Share Systemshpublished Honours Thesis, 1984.

Coffman, E.G. and Kleinrock, L* Computer Scheduling Methods and Their Countermeauirest. AFIPS SJCC
vol 32, 1968, pp11-21.

Heidelbeger, P and Lavenbely, S. S.“ Computer Performance Blation Methodology, IEEE Trans. on Comp.of
C-33, no 12, Decemhgel984.

Henry, G. J. “The Fair Share SchedulérBell System Echnical Journal, Octoheto84.
Hume, A. “A Share Scheduler for UnixAUUG Newsletter 1979.

Kay, J, Lauder B Maltby C. and dllasepp S.“ The Share Chging and Scheduling SystemBasser Dept. of Comp.
Sc. Tech. Rep. 174May, 1982.

Kleijnen, “Principles of Computer Chging in a Unversity-Type Oganisation’, Comm. ACM, vol 26, no 11, 1983.
Kleinrock, L. “A Continuum of Tme-Sharing Scheduling AlgorithmsProc AFIPS SJCC,at 36, 1970, pp453-348.
Lampson, B.W “A Scheduling Philosophfor Multiprocessor SystemisComm. ACM, vol 11, no 5, 1968.
Larmouth, J.“ Scheduling for a Share of the Machin&oftware Practice and Experience] %, 1975, pp29-49.
Larmouth, J.“ Scheduling for Immediateufnaround;, Software Practice and Experience) 8, 1978, pp559-578.
Lauder P “Share Scheduling Wrks!”, AUUG Newsletter 1980.

McKell, L.J., Hansen, J.\&nd HeitgerL.E. “Charging for Computing Resourc&sACM Computing Surgys, \ol 11,
no. 2, 1979.

Newbury, JP. “Immediate Tirnround - An Elusie Goal”, Software Practice and Experience| 8, 1982, pp897-906.

Nielsen, N.R.“ The Allocation of Computing Resources - Is Pricing the AnsiyeZ®@mm. ACM, vol 13, no 8, 1970,
pp467-474.

Ritchie, D.M. and Thompson, K. The UNIX timesharing SystemBell System Echnical Journal, July 1978.
Tollasepp, S." The SHARE Resource Allocation Systénunpublished Honours Thesis, 1981.

Woodside, C. M. “ Controllability of Computer Performancerableofs Obtained Using Controlled-Share Queue
Schedulers’ IEEE Trans. on Softare Engineering,ol. SE-12, no. 10, Octohel986.

