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Abstract the control information at the head of a message is the address of a
user-level instruction sequence that will extract the message from
The design challenge for large-scale multiprocessors is (1) to min- the network and integrate it into the on-going computation. We call
imize communication overhead, (2) allow communication to over- this Active MessagesSurprisingly, on commercial machines this
lap computation, and (3) coordinate the two without sacrificing mechanism is an order of magnitude more efficient than the mes-
processor cost/performance. We show that existing message passsage passing primitives that drove the original hardware designs.
ing multiprocessors hawennecessarily high communication costs. There is considerable room for improvement with direct hardware
Research prototypes of message driven machines demonstrate lowupport, which can be addressed in an evolutionary manner. By
communication overhead, but poor processor cost/performance.smoothly integrating communication with computation, the over-
We introduce a simple communication mechanigxtive Mes- head of communication is greatly reduced and an overlap of the
sages show that it is intrinsic to both architectures, allows cost two is easily achieved. In this paradigm, the hardware designer can
effective use of the hardware, and offers tremendous fligxib meaningfully address what balance is required between processor
Implementations on nCUBE/2 and CM-5 are described and evalu- and network performance.
ated using a split-phase shared-memory extension$pl@;C. We

further show that active messages are sufficient to implement the dy- 1 Al ithmi . . del
namically scheduled languages for which message driven machinesl- gorithmic communication mode

were designed. With this mechanism, latency tolerance b_ecomesThe most common cost model used in algorithm design for large-
a programming/compiling concern. Hardwargoport for active scale multiprocessors assumes the program alternates between com-
messages is desirable and we outline a range of enhancements tgtation and communication phases and that communication re-
mainstream processors. quires time linear in the size of the message, plus a start-up cost[9].
Thus, the time to run a programis= T compute + T communicate
. andT ; = N.(Ts + L.Ty), whereTs is the start-u
1 Introduction cost,]c“: 7?s7riﬁ7élii(lr$16e per b§/teLc is the)message length, and. isp

) i the number of communications. To achieve 90% of the peak pro-
With the lack of consensus on programming styles and usage pat-cessor performance, the programmer must tailor the algorithm to

terns of large parallel machines, hardware designers have tended,chieve a sufficiently high ratio of computation to communication
to optimize along specific dimensions _rathe_r than towards generalthatTcompute > 9T mmunicate. A high-performance network is
balance. Commercial multiprocessors invariably focus on raw pro- requi i

cessorp_erformance,wnh network performance in a secondaryrole, ¢t ~ommunication and computation are overlapped the situ-
and the interplay of processor and network largely neglected. Re- 416 s very different. The time to run a program becomes
search projects address specific issues, such as tolerating latency. _ maXTeompute + NeTs, NeL:Th). Thus, to achieve high

in dataflow architectl_Jres _anc_i_reducmg latency in cac_he-coherentprocessor efficiency, the communication and compute times need
architectures, accepting significant hardware complexity and mod- only balance, and the compute time need only swamp the com-
est processor perform_ance in the prototype solutions. T_hls Papermunication overhead, . 6Lsompute > NoTs. By examining the
draws on recent work in both arenas to demonstrate thatilftg u average time between communication phages, .. /N.) and
ofexotlc_message-drlvgn processors can be_b0|led downto a_s_lmplethe time for message transmission, one can easily compute the
mechanismand that this mechanism can be implemented efficientlyerprocessor bandwidth through the network required to sustain a
on conventional message passing machines. The basic idea is thaien evel of processor utilization. The hardware can be designed
to reflect this balance. The essential properties of the communi-
cation mechanism are that the start-up cost must be low and that
it must facilitate the overlap and co-ordination of communication
with on-going computation.

red to minimize the communication time, and it sits 90% idle!
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1.2 Active Messages costly to implement and not required to support the inifjigar-
. allel programming languages for which these architectures were
mdesigned. Section 4 surveys the range of hardware support that

intended to expose the full hardware flaktp and performance of could be devoted to accelerating Active Messages.

modern interconnection networks. The underlying idea is simple:
each message contains at its head the address of a user-level han-

dler which is executed on message arrival with the message body: i i
as argument. The role of the handler is to get the message out of2 Message passing Architectures

the network and into the computation ongoing on the processing In this section we examine message passing machines, the one

node. The handler must execute quickly and to completion. AS zchitecture that has been constructed and used on a scale of a

discussed below, this corresponds closely to the hardware capabily,,,sand high-performance processors. We use the nCUBE/2 and
ities in most message passing multiprocessors where a privilegedme CM-5 as primary examples.

interrupt ha_nqller is executed on message arrival, and represents a The nCUBE/2 has up to a few thousand nodes interconnected
useful restrlc_tlon on message driven Processors. L in a binary hypercube network. Each node consists of a CPU-chip
Under Active Messages the network is viewed as a pipeline op- 554 prAM chips on a small double-sided printed-circuit board.
erating at a rate determined by the communication overhead andThe CPU chip contains a 64-bit integer unit, an IEEE floating-point
with a latency related to the message length and the network d?pthunit, a DRAM memory interface, a network interface with 28 DMA
The sender launches the message into the network and Cont'”“eﬁhannels, and routers to support cut-through routing across a 13-

computing; the receiver is notified or interrupted on message arrival dimensional hypercube. The processor runs at 20 Mhz and delivers
and runs the handler. To keep the pipeline full, multiple commu- roughly 5MIPS or 1.5 MFLOPS.

nication operations can be initiated fromnade, and computation The CM-5 has has up to a few thousand nodes interconnected
proceeds Wh_lle t_he messages travel_th_rough the network. To keep, a *hypertree” (an incomplete fat tree). Each node consists of
the communication overhead to a minimum, Active Messages are 5 33 Mz Sparc RISC processor chip-set (including FPU, MMU
not bu_f_fered e_xce_pt as required for network_transport. Much like and cache), local DRAM memory and a network interface to the
a traditional pipeline, the sender blocks until the message can bey, o tree and broadcast/scan/prefix control networks. In the future,
injected into the network and the handler executes immediately on each node will be augmented with four vector units
arr¥a}I. . ication | h . ; We first evaluate the machines using the traditional programming
olerating communication latency has been raised as a funda-p, a5 Then we show that Active Messages are well-suited to the

mental architectural issue[1]; this is not quite correct. The real machines and support more powerful programming models with
architectural issue is to provide the ability to overlap communica- 055 overhead

tion and computation, which, in-turn, requires low-overhead asyn-
chronous communication. Tolerating latency then becomes a pro- . .
gramming problem: a communication must be initiated sufficiently 2.1  Traditional programming models
in advance of the use of its result. In Sections 2 and 3 we show
two programming models where the programmer and compiler,
respectively, have control over communication pipelining.

Active Messages is not a new parallel programming paradigm
on par with send/receive or shared-memory: it is a more primitive
communicatiormechanismvhich can be used to implement these
paradigms (among others) simply and efficiently. Concentrating
hardware design efforts on implementing fast Active Messages is
more versatile tharngpporting a single paradigm with special hard-
ware.

In the traditional programming model for message passing archi-
tectures, processes communicate by matchserarequeston one
processor with aeceiverequest on another. In the synchronous,
or crystalline[9] form, send andkceive are blocking — the send
blocks until the corresponding receive is executed and only then is
data transferred. The main advantage of the blocking send/receive
model is its simplicity. Since data is only transferred after both
its source and destination addresses are known, no buffering is
required at the source or destination processors.

Blocking send/receive communication exacerbates the effects of
network latency on communication latefcyn order to match a
1.3 Contents send with a receive a 3-phase protocol, shown in Figure 1, is re-

. . quired: the sender first transmits a request to the receiver which re-
In this paper, we concentrate on message-based multiprocessorg, s an acknowledgementupon executing a matching receive oper-

and consider machines of similar base technology representingiio, and only then is data transferred. With blocking send/receive,
the archlte_ctural extremes of processor/network integration. Mes-;; io impossible to overlap communication with computation and
sage passing machines, including the nCUBE/2, iPSC/2, iPSC/860thus the network bandwidth cannot be fullilized.

and others,_ treat th'f:' network_ esse_ntially as a fast /O device. To avoid the three-phase protocol and to allow overlap of com-
Message drlvgn architectures, including M_onsoon[l?, 16] and the .\ nication and computation, most message passing implementa-
J-Machlne[S_], 'megrate the ”e‘WOTk deepl_ylnto the processor. 'V"?S' tions offer non-blocking operatiorsendappears instantaneous to
sagereceptionis pa_rt ofthe baS|C|r_lstruct_|on schedulln_g mec_hanlsmthe user program. The message layer buffers the message unti
and message send is supported directly in the executionunit. w0 neyork port is available, then the message is transmitted to
Section 2 examines cgrrent message passing machlngs 'n_d.eta”the recipient, where it is again buffered until a matchiageiveis

We show that send/receive programming models make inefficient g o jted. As shown in the ring communication example in Fig-
use ofthe underlying hardware caglies. The raw hardware sup- .o 2, data can be exchanged while computing by executing all

ports a simple form of Active Messages. The utility of this form o5 pefore the computation phase and all receives afterwards.
of communication is demonstrated in terms of a fast, yet power-
ful asynchronous communication paradigm. Section 3 examines  We call communication latency the time from initiating a send in the

current message driven architectures. We show that the poweruser program on one processor to receiving the message in the user program

of message driven processing, beyond that of Active Messages, ison another processor, i.e., the sum of software overhead, network interface
overhead and network latency.
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Figure 1: Three-phase protocol for synchronous send and receive.
Note that the communication latency is at best three network trips
and that both send and receive block for at least one network round-
trip each.

Table 1 shows the performance of send/receive on several curren
machines. The start-up costs are on the order of a thousand instruc
tion times. This is due primarily to buffer management. The CM-5
is blocking and uses a three-phase protocol. The iPSC long mes
sages use a three-phase protocol to ensure that enough buffer spa
is available at the receiving processor. However, the start-up costs
alone prevent overlap of communication and computation, except
for very large messages. For example, on the nCUBE/2 by the time

node N ‘ node N+1¢
SEND SEND
RIGHT RIGHT
I I
SEND SEND
LEFT LEFT
I I
COMPUTE COMPUTE
I I
RECV RECV
LEFT LEFT
I I
RECV RECV
RIGHT RIGHT

' f

1i:igure 2: Communication steps required for neighboring proces-

sors in a ring to exchange data using asynchronous send and receive.
Data can be exchanged while computing by executing all sends be-
fore the computation phase and all receives afterwards. Note that

Butrer space for the entire volume of communication must be allo-

cated for the duration of the computation phase!

a second send is executed up to 130 bytes of the first message willy¢ 56 shortcomings can be attributed to the base hardware: for

have reached the destination. Although the network bandwidth on
all these machines is limited, it is difficult to utilize it fully, since
this requires multiple simultaneous messages per processor.

Machine T, T Tsp
[us/imes@ [us/bytd [us/flop
iPSCI8] 4100 2.8 25
nCUBE/10[8] 400 2.6 8.3
iPSC/2[8] 700 0.36 34
390t 0.2
nCUBE/2 160 0.45 0.50
iPSC/860[12] 160 0.36 0.033[7]
60t 0.5
CM-5% 86 0.12 0.33[7]

t: messages up to 100 bytes
i: blocking send/receive

Table 1: Asynchronous send and receive overheads in existing
message passing machines, is the message start-up cost (as
described in Section 1.1];, is the per-byte cost ariy, is the
average cost of a floating-point operation as reference point.

2.2 Active Messages

example, initiating a transmission on the nCUBE/2 takes only two
instructions, namely to set-up the DMAThe discrepancy between
the raw hardware message initiation cost and the observed cost can
be explained by a mismatch between the programming model and
the hardware functionality. Send anetceive is not native to the
hardware: the hardware allows one processorto send a message to
anotherone and cause aninterrupt to occurat arrival. In otherwords
the hardware model is really one of launching messages into the
network and causing a handler to be executed asynchronously upon
arrival. The only similarity between the hardware operation and the
programming model is in respect to memory address spaces: the
source address is determined by the sender while the destination
address is determined by the receiver

Active Messages simply generalize the hardware functionality
by allowing the sender to specify the address of the handler to be
invoked on message arrival. Note that this relies on a uniform code
image on all nodes, as is commonly used (the SPMD programming
model). The handler is specified by a user-level address and thus
traditional protection models apply. Active Messages differ from
general remote procedure call (RPC) mechanisms in that the role
of the Active Message handler is not to perform computation on
the data, but to extract the data from the network and integrate
it into the ongoing computation with a small amount of work.
Thus, concurrent communication and computation is fundamental
to the message layer. Active Messages are not buffered, except

20n the nCUBE/2, each of the 13 hypercube channels has independent

Although the hardware costs of message passing machines are regnput and output DMAs with a base-address and a count register each.

sonable, the effectiveness of the machine is low undeitivadl
send/receive models due to poor overlap of communication and
computation, and due to high communication overhead. Neither
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as required for network transport. Only primitive scheduling is with a user buffer. Additional buffers must be used in exceptional
provided: the handlers interrupt the computation immediately upon cases to prevent deadlock: if a reply from within a handler blocks
message arrival and execute to completion. for “too long”, it must be buffered and retried later so that further
The key optimization in Active Messages compared to send/re- incoming messages can be dispatched. This reply buffering is not
ceive is the elimination of buffering. Eliminating buffering on  performed by the message layer itself, ratRepLy returns an er-
the receiving end is possible because either storage for arrivingror code and the user code must perform the buffering and retry.
data is pre-allocated in the user program or the message holds aypically the reply (or the original request) is saved onto the stack
simple requestto which the handler can immediately reply. Buffer- and the handlers for the incoming messages are nested within the
ing on the sending side is required for the large messages typicalcurrent handler.
in high-overhead communication models. The low overhead of = The breakdown of the 55 instructions in Table 2 shows the
Active Message makes small messages more attractive, which easesources of communication costs on the nCUBE/2. A large fraction
program development and reduces network congestion. For smallof instructions (22%) are used to simulate user-level interrupt han-
messages, the buffering in the network itself is typically sufficient. dling. Hardware set-up (15%) is substantial due to output channel
Deadlock avoidance is a rather tricky issue in the design of selection and channel-ready checks. Even the minimal schedul-
Active Messages. Modern network designs are typically deadlock- ing and buffer management of Active Messages is still significant
free provided that nodes continuously accept incoming messages(13%). Note however, that the instruction counts on the nCUBE/2
This translates into the requirement that message handlers are noare slightly misleading, in that the system call/return instructions
allowed to block, in particular a reply (from within a handler) must and the DMA instructions are far more expensive than average.

not busy-wait if the outgoing channel is backed-up. The instruction breakdown shows clearly that Active Messages
are very close to the absolute minimal message layer: only the
2.2.1 Active Messages on the nNCUBE/2 crawl-out is Active Message specific and could potentially be re-

o _ ) placed. Another observation is that most of the tasks performed
The simplicity of Active Messages and its closeness to hardware here in software could be done easily in hardware. Hardware sup-

fUnCtionality translate into fast execution. On the nCUBE/2 it is port for active messages could significanﬂy reduce the overhead
possible to send a message containing one word of data in 21wijth a small investmentin chip complexity.

instructions taking 1is. Receiving such a message requires 34
instructions taking 1ps, which includes taking an interrupt on
message arrival and dispatching it to user-level. This near order of
magnitude reductiorif{. = 30us, T, = 0.45us) in send overhead  The Active Messages implementation on the CM-5 differs from the
is greater than that achieved by a hardware generation. Table 2nCUBE/2 implementation for five reasdhns

breaks the instruction counts down into the various tasks performed.

2.2.2 Active Messages on the CM-5

1. The CM-5 provides user-level access to the network interface
and the node kernel time-shares the network correctly among

Instruction count multiple user processes.

Task send receive

Compose/consume message 6 9 2. The network interface only supports transfer of packets of up
Trap to kernel 2 - to 24 bytes (including 4 bytes for the destination node) and
Protection 3 - the network routing does not guarantee any packet ordering.
Buffer management 3 3 ) . .

Address translation 1 1 3. The CM-5 has two identical, disjoint networks. The dead-

Hardware set-up 6 2 lock issues described above are simply solved by using one
Scheduling _ 7 network for requests and the other for replies. One-way com-
Crawl-out to user-level _ 12 munication can use either.

Total 21 34

4. The network interface does not have DMA. Instead, it con-

Table 2: Breakdown into tasks of the instructions required to send _talns two memory-mapped_FIFOs_ per network, one for _out_go-
and receive a message with one word of data on the nCUBE/2. INg messages gnd one for incoming ones. Status bits indicate
“Message composition” and “consumption” include overhead for a whether incoming FIFOs hold messagesand whether the pre-
function call and register saves in the handler. “Protection” checks vious outgoing message has bgen succes_sfully sent by_ the
the destination node and limits message length. “Hardware set- network |nt$rft?ce. ThekneENolr(k gterfaci ﬁlscards ou_tgc_)lng
up” includes output channel dispatch and channel ready check. “ n?_esséages_l the network is backe -uplor Iht e process;;s time- d
Scheduling” accounts for ensuring handler atomicity and dispatch. sliced during message composition. In these cases the sen
“Crawling out to user-level” requires setting up a stack frame and has to be retried.

saving state to simulate a return-from-interrupt at user-level. 5. The network interface generally does not use interrupts in the

current version due to their prohibitive cost. (The hardware
and the kernel do support interrupts, but their usefulness is
limited due to the cost.) For comparison, on the nCUBE/2
the interrupt costs the same as the system call which would
have to be used instead since there is no user-level access to
the network interface.

The Active Message implementation reduces buffer manage-
ment to the minimum required for actual data transport. On the
NCUBE/2 where DMA is associated with each network channel,
one memory buffer per channelis required. Additionally, it is con-
venient to associate two buffers with the user process: one to com-
pose the next outgoing message and one for handlers to consume 4The actual network interface is somewhat more complicated than de-
the arrived message and compose eventual replies. This set-up rescribed below, we only present the aspects relevant to this discussion.
duces buffer managementto swapping pointers for a channel buffer
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Sending a packet-sized Active Message amounts to stuffing the
outgoing FIFO with a message having a function pointer at its Node 1 Node 2 PUT message GET request
head. Receiving such an Active Message requiréimgofollowed

by loading the packet data into argument registers, and calling PUT remote node | - | remote node
the handler function. Since the network interface status has to be ) put handler get handler
checked whenever a message is sent (to check the send-ok status
bit), servicing incoming messages at send time costs only two extra remote addr | | local addr
cycles. Experience indicates that the program does not need to poll +1 data length data length
explicitly unless it enters a long computation-oropp. s

Sending multi-packet messages is complicated by the potential GET flag adar flag adar
reordering of packets in the network. For large messages, set- - | data local node
up is required on the receiving end. This involves a two-phase
protocol for GET, and a three-phase protocol feuT (discussed remote addr
below). Intermediate-sized messages use a protocol where each *1

packet holds enough header information (at the expense of the

payload) that the arrival order is irrelevant. a) b)
The performance of Active Message on the CM-5 is very en-

couraging: sending a single-packet Active Message (function ad-

dress and 16 bytes of arguments) takeg:4.6= 50 cycles) and  Figure 3: Split-C PUT andGET perform split-phase copies of mem-

the receiver dispatch costs LS. The largest fraction of time  ory piocks to/from remote nodes. Also shown are the message
is spent accessing the network interface across the memory busfyrmats.

A prototype implementation of blocking send/receive on top of
Active Messages compares favorably with the (not yet fully opti-
mized) vendor’s library: the start-up cosflis = 23us (vs. 86us) performance on large nCUBE/2 configurations. In the example,
and the per byte cost i5, = 0.12us (identical). Note that dueto  the matrices are partitioned in blocks of columns across the pro-
the three-phase protocol required by send/recéives an order of cessors. For the multiplication @ = A x B each processor
magnitude larger than the single packet send cost. Using differentGeTs one column ofd after another and performs a rank-1 update
programming models such as Split-C, the cost off communication (DAXPY) with the corresponding elements of its own columns of
can be brought down to the Active Message packet cost. B into its columns ofC. To balance the communication pattern,
each processor first computes with its own column(s) ehd then
; . ; ; roceeds by géng the columns of the next processor. Note that
2.3 Sp“t'C' _an exp_e”mental programming Fhis algorith);ngis independent of the network topology and has a
model using Active Messages familiar shared-memory style. The remote memacgess and its
completion are made explicit, however.
The key to obtaining high performance is to overlap communi-
cation and computation. This is achieveddsrting the column
for the next iteration while computing with the current column.
It is now necessary to balance the latency of & with the

To demonstrate the utility of Active Messages, we have developed a
simple programming model that provides split-phase remote mem-
ory operationsin the C programming language. The tiibppase
operations provided aruT andGET: as shown in Figure 3&uT
e e L o 001tum taken by he computatonin e meraops. Quantying e
(address specified by sender) and makes a local copy. Both c)p_computatlonal costis rel_atlvey easy: for eaziT the number o
multiply-adds executed i&%m (wherem is the number of local

erations are non-blocking and do not require explicit coordination h
- . columns of B andC) and each mitiply-add takes 1.13s. To help
with the remote processor (the handleris executed asynchronously)imderstand the latency of thaeT, Figure 6 shows a diagram of all

The most common versions POTandGET increment a separately . . .
o ; . operations and delays involved in the unloaded case.
specified flag on the processor that receives the data. This allows The two top curves in Figure 5 show the performance predicted

simple synchronization through checking the flag or busifinea ;
Operating on blocks of memory canyield large messages which areby tEe model andf melasured ona128 node.nE CUB%/Zf' res;iectlvely,
critical to performance on current hardware as seen below. as the _number of columns per processorios varied from 1 to

32. N is kept constantly = 128) andR is adjusted to keep the

a r:glses';nnggﬁ:‘;ﬁg?r;?gf;TrﬁggsiETecﬁgsgiL?f tl;,;lourr):gsbesi%k\}/\:/s thtotal number of arithmetic operations constaRt£ 262144/ M).
9 g - 719 The matrix multiply in the example is computatibound if each

message formatsPUT messages contain the instruction address processor holds more than two columnsigi.e.,m > 2). The two

of the PUT handiler, the destination address, the data length, the bottom curves show the predicted and measured network utilization.

completion-flag address, and the data itself. Abehandler simply . .
! : he discrepancy between the model and the measurementis due to
reads the address and length, copies the data and increments the fla, ‘e fact that network contention is not modeled. Note that while

GETrequests contain the information necessary foctaehandler computational performance is low for small valuessafthe joint

Eg rergl\)/i(\;\gtcg:};oing%g?aatﬁzgrff;;ggé Noégtt;‘%ﬁgéisp\?vﬁi'tge processor and network utilization is relatively constant across the
P Py entire range. As the program changes from a communication to a

stride or any other form of gather/scatter ; "
To demonstrate the simplicity and performance of Split-C, Fig- computation problem the “overall performance”is stable.

ure 4 shows a matrix multiply example that achieves 95% of peak

, . . 2.4 Observations
53plit-C exposes the underlying RPC mechanism the programmer as
well, so that specialized communication structures can be constructed, e.g. Existing message passing machines have been criticized for their
enqueue record. high communication overhead and the inability tgpport global
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The matrices are partitioned in blocks of columns across the pro-
cessors. For the multiplication 6fy x v = Anxr X Brxm €ach
processoGETs one column oA after another and performs a rank-1
update (DAXPY) with its own columns @8 into its columns ot ; .
To balance the communication pattern, each processor first com- i I e
putes with its own column(s) of and then proceeds by tieg the k
columns of the next processor. This network topology independent
algorithm achieves 95% of peak performance on large nCUBE/2

configurations.

int N, R, M; /* matrix dimensions */
double A[R/P][N], B[M/P][R], C[M/P]IN];
int i, j, k; /* indices */

int jO, nj; /* initial j, next j */

int dj; [* delta j (j=j0+dj) */

int P, p; /* num of procs, my proc */
int Rp = R/IP;

double VO[N], V1[N]; /* remote col bufs */

double *v=VO0O; /* current column */

double *nV=V1; /* next column */

double *tV; /* temp column */

static int flag = O; /* sync. flag */

extern void get(int proc, void *src, int size,
void *dst, int &flag);

0 =p * Rp; * starting column */
get(p, &A[0][0], N*sizeof(double),
nV, &flag); [* get first col of A */

/* loop over all columns of A */
for(dj=0; dj<R; dj++) {
j = (0+d)%R; [* this column index */
nj = (jO+dj+1)%R; /* next column index */
/* wait for previous get to complete */
while(lcheck(1, &flag)) ;
tV=V; V=nV; nV=tV;* swap curr&next col */
/* if not done, get next column */
if(nj != jO) get(nj/Rp, &A[nj%Rp][0],
N*sizeof(double), nV, &flag);
/* accum. V into every column with scale */
for(k=0; k<M/P; k++)
for(i=0; i<N; ++) /* unroll! */
Clilk] = C[iliK] + V[T*BLIKI;

Figure 4: Matrix multiply example in Split-C.
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Figure 5: Performance of Split-C matrix multiply on 128 proces-
sors compared to predicted performance using the model shown in
Figure 6.

programming language. It generalizes shared memory read/write
by providing access to blocks of memory including simple syn-
chronization. It does not, however, address naming issues.

Using Active Messages to guide the design, it is possible to im-
prove current message passing machines in an evolutionary, rather
than revolutionary, fashion. In the next section, we examine re-
search efforts to build hardware which uses a different approach to
provide another magnitude of performance improvement.

3 Message driven architectures

Message driven architectures such as the J-Machine and Monsoon
expend a significant amount of hardware to integrate communica-
tion into the processor. Although the communication performance
achieved by both machines is impressive, the processing perfor-
mance is not. At first glance this seems to come from the fact that
the processor design is intimately affected by the network design
and that the prototypes in existence could not utilize traditional pro-
cessor design know-how. In truth, however, the problem is deeper:
in message driven processors a context lasts only for the duration
of a message handler. This lack of locality prevents the processor
from using large register sets. In this section, we argue that the
hardware support for communication is partly counter-productive.
Simpler, more traditional, processors can be built without unduly

memory access. With Active Messages we have shown that thecompromising either the communication or the processing perfor-
hardware is capable of delivering close to an order of magnitude mance.

improvement today if the right communication mechanism is used,

and that a global address space may well be implemented in soft-3_1 Intended programming model

ware. Split-C is an example of how Active Messages can be incor-

porated into a coarse-grain SPMD (single-program multiple-data) The main driving force behind message driven architectures is to

support languages with dynamic parallelism, such as 1d90[14],
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Figure 6: Performance model fazeT. Composeaccounts for the time to set-up the requéshit is the time to inject the message into the
network anchopsis the time taken for the network hoerviceincludes for copying the data into the reply buffer &vashdlefor the time
to copy the data into the destination memory block.

Multilisp[10], and CST[11]. Computation is driven by messages, data structures of the ongoing computation or, in the case of remote
which contain the name of a handler and some data. On messageervice requests, by immediately replying to the requester. Mem-
arrival, storage for the message is allocated in a scheduling queueory allocation upon message arrival occurs only as far asis required
When the message reaches the head of the queue, the handler #®r network transport (e.g. if DMA is involved) and scheduling is
executed with the data as arguments. The handler may perform ar+estricted to interruption of the ongoing computation by handlers.
bitrary computation, in particular it may synchronize and suspend. Equivalently, the handlers could run in parallel with the computa-
This ability to suspend requires general allocation and schedul-tion on separate dedicated hardware.
ing on message arrival and is the key difference with respect to
Active Messages. -
In the case of the J-Machine, the programming model is put for- 3.2 Hardware Descrlptlon
ward in object-oriented language terms[6]: the handleris a method, The Monsoon and J-Machine hardware is designed to support the
the data holds the arguments for the method and usually one of themmessage driven model directly. The J-Machine has a 3-D mesh of
names the object the method is to operate on. In a functional lan-processing nodes with a single-chip CPU and DRAM each. The
guage view, the message is a closure with a code pointer and allcCPU has a 32-bit integer unit with a closely integrated network unit,
arguments of the closure. Monsoon is usually described from the 3 small static memory and a DRAM interface (but no floating-point
dataflow perspective[17] and messages carry tokens formed of arunit). The hardware manages the scheduling queue as a fixed-size
instruction pointer, a frame pointer and one piece of data. The dataring buffer in on-chip memory. Arriving messages are transferred
value is one of the operands of the specified instruction, the otherinto the queue and serviced in FIFO order. The first word of each
is referenced relative to the frame pointer. message is interpreted as an instruction pointer and the message
The fundamental difference between the message driven modelis made available to the handler as one of the addressable data
and Active Messages is where computation-proper is performed: segments. The J-Machine supports two levels of messagéipgor
in the former, computation occurs in the message handlers whereasn hardware and two independent queues are maintained. Each
in the latter it is in the “background” and handlers only remove message handler terminates by executinguaPENDInstruction
messages from the network transport buffers and integrate them intothat causes the next message to be scheduled.
the computation. This difference significantly affects the nature of  |n Monsoon, messages arrive into the token queue. The token
allocation and scheduling performed at message arrival. queue is kept in a separate memory proportional in size to the
Because a handler in the message driven model may suspengrame store. It provides storage for roughly 16 tokens per frame on
waiting for an event, the lifetime of the storage allocated in the averagé The queuing policy allows both FIFO and LIFO schedul-
scheduling queue for messages varies considerably. In generaling. The ALU pipeline is 8-way interleaved, so eight handlers can
it cannot be released in simple FIFO or LIFO order. Moreover, e active simultaneously. As soon as a handler terminates or sus-
the size of the scheduling queue does not depend on the rate apends by blocking on a synchronization event, a token is popped
which messages arrive or handlers are executed, but on the amounfrom the queue and a new handler starts executing in the vacated
of excess parallelism in the program[4]. Given that the excess pipeline interleave.
parallelism can grow arbitrarily (as can the conventional call stack) A common characteristic of both machines is that the amount
it is impractical to set aside a fraction of memory for the message of state available to an executing handler is very small: four data
queue, rather it must be able to grow to the size of available memory. and three address registers in the J-Machine, an accumulator and
Active Message handlers, on the other hand, execute immedi- three temporary registers in Monsoon. This reflects the fact that the
ately upon message arrival, cannot suspend, and have the responsg¢omputation initiated by a single message is small, typically less

bility to terminate quickly @ough not to back-up the network. The  than ten arithmetic operations. This small amount of work cannot
role of a handler is to get the message out of the network transport

buffers. This happens either by integrating the message into the 6A token queue store of 64K tokens for 256K words of frame store and
an expected average frame size of 64 words.
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utilize many registers and since no locality is preserved from one

handler to the next, no useful values could be carried along. Activation tree
It is interesting to note that the J-Machine hardware does not

actually support the message driven programming model fully in

that the hardware message queue is managed in FIFO order and of queue ",

fixed size. If a handler does notrun to completion, its message must "

be copied to an allocated region of non-buffer memory by software.

This happens for roughly /B of all messages. The J-Machine .

hardware does support Active Messages, however, in which case [ S D

the message queue serves only as buffering. Clos¢3mflthe

messages hold a request to which the handler immediately replies

and general allocation and scheduling is not required.
In Monsoon, the fact that tokens are popped from the queue

means that the storage allocated for an arriving message is deal-

located upon message handler execution. If a handler suspends,

all relevant data is saved in pre-allocated storage in the activation

frame thus, unlike the J-Machine, Monsoon does implement the

message driven model, but at the cost of a large amount of high-

speed memory.

3.3 TAM: compiling to Active Messages

So far, we have argued that the message driven execution model Activation fram Code segment
is tricky to implement correctly in hardware due to the fact that
general memory allocation and scheduling are required upon mes-

sage arrival. Using hardware that implements Active Messages, it fEunction Fog

is easy to simulate the message driven model by performing the Local IEﬂet 1

allocation and scheduling in the message handler. Contrary to ex- variables

pectation this does not necessarily result in lower performance than {Thread 2

a direct hardware implementation because software handlers can

exploit and optimize special cases. [Thread 5
TAM[3] (Threaded AbstracF Machine), a fine-grain parallel ex- Synchronization b hread 19

ecution model based on Active Messages, goes one step further counters f

and requires the compiler to help manage memory allocation and oAy Tama ik L

scheduling. It is currently used as a compilation target for implic- [ ... —_—

itly parallel languages such as 1d90. When cdiing for TAM, the ST

compiler produces sequences of instructions, cahegads per- Continuation

vector

forming the computation proper. It also generates handlers, called
inlets, for all messages to be received by the computation. Inlets

are used to receive the arguments to a function, the results of Ca"eq:igure 7:TAM activation tree and embedded scheduling queue. For
(child) functions, and the responses O.f global memory accesses. Alleach function call, an activation frame is allocated. Each frame,
accesses to global data structures afie-phase, allowing compu- i aqition to holding all local variables, containsunters used to
tation to proceed while requests travel through the network. synchronize threads and inlets, and provides space faotftinu-

I_:or each functlon cal, amctivation frameis aIIocated._ When ation vector— the addresses of all currently enabled threads of the
an inlet receives a message it typlcal!y sftores the dat{:\ |n_the frameactivation. On each processor, all frames holding enabled threads
and schedules a thread within the activation. Schedulingis handled, .. jinked into a ready queue. Maintaining the scheduling queue
efficiently by maintaining the scheduling queue within the activa- in the activation keeps costs low: enabling a thread simply con-
tion frame: each frame, in adbn to holding all local variables,  gjgts of pushing its instruction address into the continuation vector
contains counters used for synchronizing threads and inlets, andand sometimes linking the frame into the ready queue. Scheduling

provides space for theontinuation vector— the ad(_jresses of aII_ the next thread within the same activation is simply a pop-jump.
currently enabled threads of the activation. Enabling a thread sim-

ply consists of pushing its instruction address into the continuation

vector and possibly linking the frame into the ready queue. Figure 7 apapled threads are executed until the continuation vector is empty.
shows the activation tree data structure. _ _ Whenamessageis received, two types of behavior can be observed:
Service requests, such as remote reads, can typically be replied-tQjiher the message is for the currently active frame and the inlet
immediately and need no memory allocation or scheduling beyondsimmy feeds the data into the computation, or the message is for a
what Active Messages provides. However, in exceptional cases re-qyormant frame in which case the frame may get added to the ready
quests must be delayed either for a lack of resources or becaus%ueue, but the ongoing computation is otherwise undisturbed.
servicing inside the handleris inadequate. To amortize memory al- Using the TAM scheduling hierarchy, the compiler can improve
location, these requests are of fixed size and queue space s allocategho locality of computation by synchronizing in message handlers

in chunks. _ ) and enabling computation only when a group of messages has ar-
Maintaining thread addresses in frames provides a natural two- rjyeq (one example is when all prerequisite remote fetches for an
level scheduling hierarchy. When a frame is schedetiated, inner loop body have completed). This follows the realization that
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while the arrival of one message enables only a small amount of from these improvements as well, but also requires initiation of the
computation, the arrival of several closely related messages canhandler.

enable a significant amount of computation. In cases beyond the

power of compile-time analysis, the run-time scheduling policy Large messages:The support needed for large messages is a su-

dynamically enhances lolity by servicing a frame until its contin-
uation vector is empty.

As a result of the TAM compilation model, typically no memory
allocation is required upon message arrival. Dynamic memory al-
location is only performed in large chunks for activation frames and
for global arrays and records. Locality of computation is enhanced
by the TAM scheduling hierarchy. It is possible to implement
TAM scheduling well even without any hardware support: on a

perset of that for small messages. To overlap computation
with large message communication, some form of DMA trans-
fer must be used. To set-up the DMA on the receiving side,
large messages must have a header which is received first.
Thus, if small messages are well supported, a large message
should be viewed as a small one with a DMA transfer tacked-
on.

uniprocessdrthe overall cost for dynamic scheduling amounts to Message registers:Composing small messages in memory

doubling the number of control-flow instructions relative to lan-
guages such as C. However, the overall performance depends crit-
ically on the cost of Active Messages. Table 3 summarizes the
frequency of various kinds of messages in the current implementa-
tion. On average, a message is sent and received every eight TAM
instructions (equivalent to roughly 20 RISC instructions). Note that
these statistics are sensitive to optimizations. For example, signif-
icant changes can be expected from a software cache for remote
arrays.

Message types datawords frequency
Frame-frame 0 1%

1 10%

2 1%
Store request 1 8%
Fetch request 0 40%
Fetch reply 1 40%

Table 3: Frequency of various messagetypes and sizes (represented
by the number of data values transmitted) in the current implemen-
tation of TAM. On average, a message is sent and received every
8 TAM instructions. These statistics are sensitive to compiler opti-
mizations and, in some sense, represent a worst case scenario.

4 Hardware support for Active Mes-
sages

Active messages provide a precise and simple communication

buffers is inefficient: much of the information present in a
small message is related to the current processor state. |t
comes from the instruction stream, processor registers and
sometimes from memory. At the receiving end, the mes-
sage header is typically moved into processor registers to
be used for dispatch and to address data. Direct communi-
cation between the processor and the network interface can
save instructions and bus transfers. In addition, managing the
memory buffers is expensive.

The J-Machine demonstrates an extreme alternative for mes-
sage composition: in a sing&@ENDinstruction the contents

of two processor registers can be appended to a message.
Message reception, however, is tied to memory buffers (albeit
on-chip). A less radical approach is to compose messagesin
registers of a network coprocessor.

Reception can be handled similarly: when received, a mes-
sage appears in a set of registers. A (coprocessor) receive
instruction enables reception of the next message. In case a
coprocessor design is too complex, the network interface can
also be accessed as a memory mapped device (as is the case
in the CM-5).

Reuse of message dataProviding a large register set in the

network interface, as opposed to network FIFO registers, al-
lows a message to be composed using portions of other mes-
sages. For example, the destination for a reply is extracted
from the request message. Also, multiple requests are often
sent with mostly identical return addresses. Keeping addi-
tional context information such as the current frame pointer
and a code base pointer in the network interface can further
accelerate the forntting of requests.

mechanism which is independent of any programming model. Eval- Single network port: Multiple network channelsannected to a

uating new hardware features can be restricted to evaluating their

impact on Active Messages. The parameters feeding into the de-

sign are the size and frequency of messages, which depend on the
expected workload and programming models.

Hardware support for active messages falls into two categories:
improvements to network interfaces and modifications to the pro-
cessor to facilitate execution of message handlers. The following
subsections examine parts of the design space for each of these
points of view.

node should not be visible to the message layer. On the
nCUBE/2, for example, a message mustbe sentout onthe cor-
rect hypercube link by the message layer, even though further
routing in the network is automatic. The network interface
should allow at least two messages to be composed simulta-
neously or message composition must be atomic. Otherwise,
replies within message handlers may interfere with normal
message composition.

Protection: User-level access to the network interface requires

4.1 Network interface design issues

Improvements in the network interface can significantly reduce the
overhead of composing a message. Message reception benefits

71d90 requires dynamic scheduling even on uniprocessors.
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that protection mechanisms be enforced by the hardware. This
typically includes checking the destination node, the destina-
tion process and, if applicable, the message length. For most
of these checks a simple range check is sufficient. On recep-
tion, the message head (i.e., the handler address and possibly
a process id) can be checked using the normal memory man-
agement system.



Frequent message acceleratorsA well-designed network inter-

face allows the most frequent message types to be issued
quickly. For example in the *T[15] proposal, issuing a
global memory fetch takes a single store double instruc-
tion (the network interface is memory mapped). The 64-bit
data value is interpreted as a global address and translated
in the network interface into a node/local-address pair. For
the return address the current frame pointer is cached in the
network interface and the handler address is calculated from
the low-order bits of the store address.

communication is handled between the two processors. The
communication consists of the data received from the network
and written to memory, e.g., into activation frames, and the
scheduling queue.

A dual-processor design is proposed for the MIT *T project.

It uses an MC88110 for computation and a custom message
processor. In the *T design, the two processors are on sep-
arate die and communicate over a snooping bus. If the two

processors were integrated on a single die, they could share
the data cache and communication would be simpler. The

appealing aspect of this design is that normal uniprocessors
4.2 Processor support for message handlers can be used quite successfully.
Asynchronous message handleitiation is the one design issue For coarse-grain models, such as Split-C, it is most important
that cannot be addressed purely in the network interface: proces-o overlap computation with the transmission of messages into the
sor modifications are needed as well. The only way to signal an network. An efficient network interface allows high processor uti-
asynchronous event on current microprocessors is to take an interfization on smaller data sets. On the other extreme, implicitly paral-
rupt. This not only flushes the pipeline, but enters the kernel. The |e| language models that provide word-at-a-time access to globally
overhead in executing a user-level handler includes a crawl-out to shared objects are extremely demanding of the network interface.
the handler, a trap back into the kernel, and finally the return to the With modest hardware support, the cost of handling a simple mes-
interrupted computatidn Super-scalar designs tend to increase the sage can be reduce to a handful of instructions, but not to one.
cost of interrupts. Unless remote references are infrequent, the amount of resources
consumed by message handling is significant. Whether dual pro-
Fast polling: Frequent asynchronous events can be avoided by cessors or a larger number of multiplexed processors is superior
relying on software to poll for messages. In execution mod- depends on a variety of engineering issues, but neither involves
els such as TAM where the message frequency is very high, exotic architecture. The resources invested in message handling

polling instructions can be inserted automatically by the com- gerve to maintain the efficiency of the background computation.
piler as part of thread generation. This can be supported with

little or no change to the processor. For example, on Sparc
or Mips a message-ready signal can be attached to the co-5  Related work
processor condition codaput and polled using a branch on

coprocessor condition instruction. The work presented in this paper is similar in character to the

recent developmentof optimized RPC mechanisms in the operating
system research community[18, 2]. Both attempt to reduce the
communication layer functionality to the minimum required and
carefully analyze and optimize the frequent case. However, the
time scales and the operating system involvement are radically
different in the two arenas.

The RPC mechanisms in distributed systems operate on time-
scales of 100s of microseconds tdliseconds, and operating sys-
PC injection: A minimal form of multithreading can be used to tem involvement _in_evgry communication operation is taken for

switch between the main computational thread and a han- granted. The optimizations presented reduce the OS overhead for

dler thread. The two threads share all processor resourcegT0Ving data between user and system spaces, marshaling complex

except for the program counter (PC). Normally instructions RPC parameters, context _switcht_es and enforcing se(_:urity. F_urther-
are fetched using the computation PC. On message arrival, M0re: connecting applications with system services is a major use
instruction fetch switches to use the handler PC. The handler ©f 0Perating system RPCs, so the communication partners must be
suspends with @wap instruction, which switches instruc-  Protected from one another. o .

tion fetch back to the computation PC. In the implementation _ In contrast,_the time scale of communication in parallel machines
the two PCs are in fact symmetrical. Switching between the 'S Mmeasured in tens of processor clock cycles (a feyand the

two PCs can be performed without pipeline bubbles, although elimination of all OS intervention is a central issue. Security is less
fetching theswap instruction costs one cycle. Note’ thatin Of @ concern given that the communication partners form a single

. : : program.

:glfhipnp;t?;gn( Ezfergc:g?tsicr’wfc?ﬁ rr:l?ssts thi;; ?ﬁgﬁ!%dﬂ? \rf)vg Anoth(_ar d_ifference _is that in th_e distributed systems arena the

from the message. communication paradigm (RPC) is stable, whereas we propose a

new mechanism for parallel processing and show how it is more

Dual processors: Instead of multiplexing the processor between primitive than and subsumes existing mechanisms.

computation threads and handlers, the two can execute con-

currently on two processors, one tailored for the computation :

and a very simple one for message handlers (e.g., it may 6 Conclusions

have no floating-point). The crucial design aspect is how

User-level interrupts: User-level traps have been proposed to
handle exceptions in dynamically typed programming
languages[13] and floating-point computations. For
Active Messages, user-level interrupts need only occur be-
tween instructions. However, an incoming message may
not be for the currently running user process and the
network interface should interrupt to the kernel in this case.

Integrated communication and computation at low cost is the key
81t may be possible for the user-level handler to return directly to the challenge in designing the basic building block for large-scale mul-
computation. tiprocessors. Existing message passing machines devote most of
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their hardware resources to processing, little to communicationand [2] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.
none to bringing the two together. As a result, a significant fraction Levy. Lightweight Remote Procedure CaACM Trans. on
ofthe processoris lost to the layers of operating system software re- Computer System8(1), February 1990.

quired to support message transmission. Message driven machines[3] p. culler, A. Sah, K. Schauser, T. von Eicken, and
devote most of their hardware resources to message transmission, ~ J. Wawrzynek. Fine-grain Parallelism with Minimal Hard-

reception and scheduling. The dynamic allocation required on mes- ware Support: A Compiler-Controlled Threaded Abstract
sage arrival precludes simpler network interfaces. The message-by- Machine. InProc. of 4th Int. Conf. on Architectural Sup-
message schedulinginherent in the model results in short computa- port for Programming Languages and Operating Systems
tion run-lengths, limiting the processing power that can be utilized. Santa-Clara, CA, April 1991. (Also available as Technical

The fundamental issues in designing a balanced machine are Report UCB/CSD 91/591, CS Div., University of California
providing the ability to overlap communication and computation at Berkeley).

and to reduce communication overhead. The active message model [4] D.E. Culler and Arvind. Resource Requirements of Dataflow
presentedin this paper minimizes the software overheadinmessage ~ Programs. InProc. of the 15th Ann. Int. Symp. on Comp.

passing machines and utilizes the full capability of the hardware. Arch, pages 141-150, Hawaii, May 1988.

This model captures the essential functionality of message driven [5] W. Dally and etal. Architecture of a Message-Driven Proces-

machines with s_impler hardware mechanisms. . sor. InProc. of the 14th Annual Int. Symp. on Comp. Arch.
Under the active message model each node has an ongoing com- pages 189196, June 1987.

putational task that is punctuated by asynchronous message ar- i . )

rival. A message handler is specified in each message and serves[6] W- Dally and etal. The J-Machine: A Fine-Grain Concurrent
to extract the message data and integrate it into the computation. ~ COmPuter. INFIP Congress1989.

The efficiency of this model is due to elimination of buffering be-  [7] J. J. Dongarra. Performance of Various Computers Us-

yond network transport requirements, the simple scheduling of non- ing Standard Linear Equations Software. Technical Report

suspensive message handlers, and arbitrary overlap of computation ~ CS-89-85, Computer Science Dept., Univ. of Tennessee,

and communication. By drawing the distinction between message ~ Knoxville, TN 37996, December 1991.

handlers and the primary computation, large grains of computation [8] T. H. Dunigan. Performance of a Second Generation Hyper-

can be enabled by the arrival of multiple messages. cube. Technical Report ORNL/TM-10881, Oak Ridge Natl
Active messages are sufficient to support a wide range of pro- Lab, November 1988.

gramming models and permit a variety of implementation tradeoffs. 9] G. Fox. Programming Concurrent Processorsddison Wes-

The best implementation strategy for a particular programming ley, 1989.
model depends on the usage patterns typical in the model such a
message frequency, message size and computation grain. Furth ) . . .
research is required to characterize these patterns in emerging par- fgm%ﬂ'ceigrgglgaggnr@gmgéigzggt'géggefrfgé%mm'ng
allel languages and compilation paradigms. The optimal hardware guag y ] ' ' o )

support for active messages is an open question, but it is clear[11] W. Horwat, A. A. Chien, and W. J. Dally. Experience with

that it is a matter of engeneering tradeoffs rather than architectural CST: Programming and Implementation Rroc. of the ACM
revolution. SIGPLAN 89 Conference on Programming Language Design
and Implementation989.

[12] Intel. Personal communication, 1991.
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