
Explicit Control in a Batch-Aware Distributed File System

Abstract
We present the design, implementation, and evaluation
of the Batch-Aware Distributed File System (BAD-FS),
a system designed to orchestrate large, I/O-intensive
batch workloads on remote computing clusters distributed
across the wide area. BAD-FS consists of two novel com-
ponents: a storage layer which exposes control of tradi-
tionally fixed policies such as caching, consistency, and
replication; and a scheduler that exploits this control as
needed for different users and workloads. By extracting
these controls from the storage layer and placing them
in an external scheduler, BAD-FS manages both stor-
age and computation in a coordinated way while grace-
fully dealing with cache consistency, fault-tolerance, and
space management issues in an application-specific man-
ner. Using both microbenchmarks and real applications,
we demonstrate the performance benefits of explicit con-
trol, delivering excellent end-to-end performance across
the wide-area.

1 Introduction
Traditional distributed file systems, such as NFS [45] and
AFS [26], are built on the solid foundation of empiri-
cal measurement. By studying expected workload pat-
terns [8, 36, 41, 46, 52], researchers and developers have
long been able to make appropriate trade-offs in system
design, thereby building systems that work well for the
workloads of interest.

Most previous distributed file systems have been tar-
geted at a particular computing environment, namely a
collection of interactively-used client machines. How-
ever, as past work has demonstrated, different workloads
lead to different designs (e.g., FileNet [16] and the Google
File System [23]); if assumptions about usage patterns,
sharing characteristics, or other aspects of the workload
changes, one must reexamine the design decisions embed-
ded within distributed file systems.

One area of increasing interest is that of “batch” work-
loads. While batch workloads have long been popular
among scientists, they now are common across a broad
range of important and often commercially viable appli-
cation domains, including genomics [4], video produc-
tion [47], simulation [10], document processing [16], data
mining [2], electronic design automation [15], financial
services [38], and graphics rendering [31].

Batch workloads minimally present the system with the

set of jobs that need to be run and perhaps some order-
ing among them; in many environments, the approximate
run times and information about I/O requirements are also
known in advance of run-time. Such knowledge is encap-
sulated within a workflow manager (also called a sched-
uler), which schedules jobs across the nodes of the system
so as to maximize throughput, and handles failures in job
execution through retry or other techniques [22].

Batch workloads are typically run in controlled local-
area cluster environments [33, 53]. However, organiza-
tions that have large workload demands increasingly need
ways to share resources across the wide area, to lower
costs and increase productivity. A simple approach to ac-
cessing resources across the wide-area is to run a local-
area batch system across multiple clusters that are spread
out across the wide-area, and to use a distributed file sys-
tem as a backplane for data access.

Unfortunately, this approach is fraught with difficulty,
largely due to the way in which I/O is handled. The pri-
mary problem with using a traditional distributed file sys-
tem for I/O in this domain is in its approach to control:
many decisions are made implicitly within the file sys-
tem with regards to the caching, consistency, and fault
tolerance of data. While these decisions are reasonable
for the workloads that these file systems were designed
for, they are ill-suited for a wide-area batch computing
system. For example, to minimize bandwidth utilization
across the wide-area, the system must carefully utilize the
cache resources (e.g., the disks) of remote clusters; how-
ever, such caching decisions are buried deep within dis-
tributed file systems, thus preventing such control.

To mitigate these problems, and thus enable the utiliza-
tion of remote clusters for I/O-intensive batch workloads,
we introduce the Batch-Aware Distributed File System
(BAD-FS). BAD-FS differs from traditional distributed
file systems in its approach to control: BAD-FS exposes
decisions commonly hidden inside of a distributed file
system to an external workload-savvy scheduler. BAD-
FS leaves all consistency, caching, and replication deci-
sions to an external scheduler, thus enabling explicit and
application-specific control of file system behavior.

The main reason to migrate control from the file sys-
tem to the scheduler is information – the scheduler has
intimate knowledge of the workload that is running and
can exploit said knowledge to improve performance and
streamline failure handling. The combination of workload

1

information and explicit control of the file system leads to
three distinct benefits over traditional approaches.

First, explicit control of the file system by the batch
scheduler improves performance. By carefully managing
remote cluster disk caches in a cooperative fashion, and
by scoping I/O such that only needed data is transported
across the wide-area, BAD-FS minimizes wide-area file
system traffic and hence improves job throughput.

Second, explicit control combined with workload
knowledge improves failure handling. The scheduler can
determine whether to make replicas of output data based
on the cost of generating the data, and not in a blind fash-
ion as is typical in file systems. Data loss is treated uni-
formly as a performance problem – the scheduler has the
ability to regenerate lost files by rerunning the application
that generated it – and hence replication is employed only
when the cost of regeneration is high.

Third, explicit control simplifies implementation. For
example, because the scheduler has exact knowledge of
data dependencies between jobs, BAD-FS provides a co-
operative cache but does not implement a cache consis-
tency protocol; the scheduler ensures proper access order-
ing among processes. Previous work in distributed file
systems has demonstrated the difficulties of building a
more general cooperative caching scheme [6, 11].

BAD-FS achieves these ends while maintaining site au-
tonomy and support for unmodified legacy applications.
Both of these practical constraints are important for ac-
ceptance in wide-area batch computing environments.

We demonstrate the benefits of explicit control via ex-
perimentation on our prototype implementation of BAD-
FS. Through controlled microbenchmarks, we demon-
strate that BAD-FS can reduce wide-area I/O traffic by an
order of magnitude, and can proactively replicate data to
obtain high performance in spite of remote failure. With
real applications, we demonstrate the practical benefits of
our system: I/O-intensive batch jobs can be run upon re-
mote resources both easily and with high performance.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe our assumptions about the expected
environment and workload, and in Section 3, we discuss
the architecture of our system. In Section 4, we present
our experimental evaluation. In Section 5, we examine
related work, and finally in Section 6, we conclude.

2 Background
In this section, we describe the setting for BAD-FS. We
present the expected batch workloads and the computing
environment available to users with such needs. We then
discuss the problem of executing such workloads with
conventional tools from the perspective of an end user.

job

job

job

job

job

job

tob

job

job

job

job

job

endpoint batch

batchendpoint

input b1

input b2

pi
pe

lin
e

da
ta

 p
1

pi
pe

lin
e

da
ta

 p
2

pi
pe

lin
e

da
ta

 p
3

input i1

output o1

width = 3

de
pt

h
=

4

Figure 1: Workload Structure. A typical batch-pipelined
workload is depicted. A single pipeline represents the
logical work that a user wishes to complete, and is com-
prised of a series of jobs. Users often assemble many such
pipelines into a batch to explore variations on input pa-
rameters or other input data.

2.1 Workloads
We now define the expected data-intensive, high-
throughput workload in more detail, basing assumptions
on our recent work in batch workload characterization [7].
As illustrated in Figure 1, these workloads are composed
of multiple independent pipelines. Each pipeline contains
a group of sequential processes that communicate with the
preceding and succeeding processes via private data files.
A workload is generally submitted in large batches with
all of the pipelines incidentally synchronized at the begin-
ning, but each pipeline is logically distinct and may cor-
rectly execute at a different rate than its siblings. We call
these batches of pipelines a batch-pipelined workload. 1

One of the key differences between a single applica-
tion and a batch-pipelined workload is file sharing be-
havior. For example, when many instances of the same
application are run, the same executable and potentially
many of the same input files are used. We character-
ize the sharing that occurs in these batch-pipelined work-
loads by breaking I/O activity into three categories: end-
point, which represents the non-shared input and final out-
put, pipeline-shared, which is shared in a write-then-read
fashion within a single pipeline, and batch-shared, which
is comprised of input I/O that is shared across multiple
pipelines.

When considered in isolation, a single pipeline does not
present an excessive load for a computing system. How-
ever, when considered in aggregate, such workloads pro-
duce I/O traffic that is handled poorly by traditional sys-
tems. We will explore this issue fully below, but a brief
example is suitable here.

1The term “pipeline” is used generically. Each job in a pipeline com-
municates via files. The jobs are not connected by Unix-style pipes.

2

One of the applications we studied is known as BLAST,
a commonly used genomic search program. BLAST con-
sists of only a single stage pipeline, but each process
streams through a shared large database (e.g., 1 GB) look-
ing for string matches. Consider running the BLAST
workload on a computing cluster of 100 nodes equipped
with a conventional distributed file system such as AFS
or NFS. With cold caches, all 100 nodes will individu-
ally (and likely simultaneously) hit the file server with
this large request, resulting in a long blocking read as 100
GB of data are transferred over the wide area network.
Once the caches are loaded, each node will run at local
disk speeds, if the database can fit in cache. Each node
assumes a process may perform arbitrary read/write oper-
ations, so it must keep contact with the home file server to
ensure file system consistency; if this connection is lost,
the node must pause or abort to avoid data inconsistency.

In contrast, a distributed system such as BAD-FS has a
global view of the hardware configuration and workflow
structure; it can execute such workloads much more ef-
ficiently by copying the database a single time over the
wide area and sharing or duplicating the data at the re-
mote cluster. Further, explicit knowledge of sharing char-
acteristics permits such a system to dispense with the
expense and complexity of consistency checks while al-
lowing nodes to continue executing, even if disconnected
from the home server.

2.2 Environment
Although wide-area sharing of untrusted and arbitrary
personal computers is a possible platform for batch work-
loads [48], we believe that a better platform for these types
of throughput-intensive workloads is one or more clusters
of managed machines, spread across the wide area. We
assume that each machine within a cluster has processing,
memory, and local disk space available for remote users,
and that each cluster exports their resources through some
type of CPU sharing system. The obvious bottleneck of
such a system is the wide-area connection, which must be
managed carefully to ensure high performance. Note that
for simplicity, we focus our efforts within this paper on
the case of a single remote cluster; we plan to address the
issues that arise in multiple cluster settings in future work.

We sometimes refer to this more organized, less hostile,
and well managed collection of clusters as c2c (cluster-
to-cluster) computing, in contrast to widely popular peer-
to-peer (p2p) systems. Although the p2p environment is
appropriate for many uses, there is likely to be a more or-
ganized effort to share computing resources within corpo-
rations or other organizations. Basic assumptions about
machine behavior, including stability, performance, and
trust, are different. That said, we believe that much of
the p2p systems technology that develops is likely to be
directly applicable to the c2c domain.

We also make the practical and important assumption
that each site that participates has local autonomy over
its resources. Autonomy has two primary implications
on the design of BAD-FS. First, although an application
may be able to use remote resources at a given time, these
resources may be taken away at a moment’s notice, per-
haps to be given to a “more important” local user. Thus,
a system that is built to exploit remote resources must be
able to tolerate unexpected resource “failure”, i.e., actual
hardware or software failure, or even a prioritized preemp-
tion by the owning site. Second, autonomy prohibits the
deployment of arbitrary software within the remote clus-
ter; in designing BAD-FS, we must assume only the bare
minimum of software is available (namely, a remote batch
system which enables BAD-FS to run jobs on the cluster).
Mandating that a single distributed file system be used for
all participating remote clusters is not a viable solution.

Finally, we assume that the jobs run on these systems
cannot be modified. There are two reasons to make this
assumption. First, in our experience, many scientific ap-
plications are the product of years of fine-tuning, and
when complete, are viewed as “untouchable”. Second,
ease of use is important; the less work the user has to do
to run their jobs, the better.

2.3 Example Usage
We now consider a user who wishes to run a batch-
pipelined workload in this environment. After the user
has developed and debugged the application on their home
system, they are ready to run hundreds or thousands of
instances of their application on all available computing
resources, using a remote batch execution system such as
Condor [33], LSF [53], PBS [50], or Grid Engine [49].

Each instance of their application is expected to use
much of the same input data, while varying parameters
and other small inputs. The necessary input data begins
on the user’s home storage server (e.g., an FTP server),
and the output data, when generated, should eventually be
committed to this home server.

The state of the art solution presents a user with two op-
tions for running a workload. The first option is to simply
submit the workload to the remote batch system. With this
option, all input and output occur on demand back to the
home storage device as the jobs run. While this approach
is simple for the user, the performance of a data-intensive
application will not be acceptable for two reasons. First
and most importantly, wide-area network bandwidth and
latency limitations are not sufficient to handle simultane-
ous requests from many data-intensive applications run-
ning in parallel. Second, all application I/O is directed
back to the home site, including temporary data that is not
needed after the computation is complete.

The second option is for the user to manually config-
ure their system to replicate their data sets in the remote

3

queries

catalogscheduler home storage

SSSSSSSS

CCCCCCCC

job and data
placement

movement
data

status
updates

remote cluster #1 remote cluster #2

Figure 2: System Architecture. Circles are compute
servers, which execute batch jobs. Squares are storage
servers, which hold cached inputs and temporary outputs.
Both types of servers report to a catalog server, which
records the state of the system. The scheduler directs the
entire system by configuring storage devices and submit-
ting batch jobs. The grayed shapes are novel elements in
our system design, while the white shapes are standard
components found in a batch system.

environment. This requires the user to identify the neces-
sary input data, transfer the data to the remote site using a
tool such as FTP, log into the remote system, unpack the
data in an appropriate location, configure the application
to recognize the correct directories, submit the jobs, and
deal with any failures that occur. The entire process must
be repeated whenever more data needs to be processed,
new batch systems become available, or existing systems
no longer have capacity to offer to the user. As is ob-
vious from the description, the process is labor-intensive
and error-prone (and yet today, many users of such sys-
tems go to these lengths simply to run their jobs).

BAD-FS solves these problems by creating a personal
data-intensive computing environment on the basic sub-
strate of one or more batch systems. BAD-FS is responsi-
ble for dynamically deploying a set of services that iden-
tify the combined compute and storage resources in a clus-
ter and export them in manner that manages resources effi-
ciently and hides faulty behavior, all while remaining easy
to use.

3 System Architecture
In this section, we present the architecture and implemen-
tation of BAD-FS. Recall that the main goal of the de-
sign of BAD-FS is to export sufficient control to a re-
mote scheduler to deliver improved performance and bet-
ter fault-handling for I/O-intensive batch workloads run
on remote clusters. Figure 2 summarizes the architecture
of BAD-FS, with the novel elements shaded gray.

BAD-FS is structured as follows. Two types of server
processes manage local resources. A compute server ex-

ports the ability to transfer and execute an ordinary user
program on a remote CPU. A storage server exports ac-
cess to disk and memory resources via remote procedure
calls that resemble standard file system operations such as
open, close, read, and write. It also permits remote users
to allocate space for various purposes via an abstraction
called a container. Both types of servers periodically re-
port themselves to a catalog server, which summarizes
the current state of the system. A scheduler periodically
examines the state of the catalog, considers the work to
be done, and assigns jobs to compute servers and data to
storage servers. The scheduler may obtain data, executa-
bles, and inputs from any number of external storage sites.
For simplicity of exposition, we assume the user has all
the necessary data stored at a single home storage server
such as a standard FTP server.

From the perspective of the scheduler, compute and
storage servers are logically independent. A specialized
device might run only one type of server process: for ex-
ample, a diskless workstation runs only a compute server,
while a storage appliance runs only a storage server. How-
ever, a typical workstation or cluster node has both com-
puting and disk resources and thus runs one instance of
each server. The BAD-FS scheduler considers these two
servers to be independent resources, only noting that they
have the same network address and thus are “close” to
each other.

As we noted above, BAD-FS may be run in an envi-
ronment with multiple owners and a high rate of failure.
To reflect this environment, we assume the following pes-
simistic properties about the components of the system.
Both storage and compute servers may be owned by var-
ious individuals or institutions, not necessarily the same
as the owner of the scheduler(s). Thus, such servers are
free to evict jobs or data with no warning. Because the
system state may change rapidly, the summary and mem-
bership information present in the catalog may be stale.
The scheduler must be prepared to discover that servers it
attempts to harness may not be in the state that it expects.
Finally, we expect to encounter network disconnections
and crashes, perhaps followed by reboots, of any server.
The scheduler must operate in such a way that all resource
allocations are recorded persistently so that appropriate
cleanup may be performed when possible. For this, we
rely extensively on transaction protocols and logging, as
described below.

BAD-FS makes use of several standard components
found in most batch systems. Namely, our compute
servers are Condor startd processes, while our catalog
is the Condor matchmaker [33, 39]. All servers adver-
tise themselves to the catalog via the ClassAd resource
description language. This semi-structured language per-
mits servers to describe arbitrary properties about them-
selves with name-value pairs and simple data structures

4

such as lists and sets. Servers typically advertise their
name, address, current users, available capacity, and so
forth. The scheduler (or the user) may query the catalog
for a complete dump of the system, or may perform com-
plex queries based on properties of the respondents.

We now discuss the main components of BAD-FS.
First, we describe the storage servers and related software,
and then describe the BAD-FS scheduler. Finally, we dis-
cuss other practical issues.

3.1 Storage Servers
The storage layer has the core responsibility of exporting
storage resources of the remote sites in a manner that al-
lows efficient remote management by the scheduler. The
storage layer is composed of a set of storage servers, each
of which can be configured to perform various I/O tasks
through an abstraction called a container; the container is
the key abstraction through which the scheduler controls
remote storage resources. To simplify the use of the stor-
age layer by unmodified applications, BAD-FS also in-
cludes an interposition agent (described in Section 3.1.2)
which converts the I/O operations of user’s jobs into op-
erations on the storage layer at runtime.

3.1.1 Containers
A storage server does not have a fixed policy for manag-
ing its storage. Rather, it makes several policies available
to external users (or more likely, to the BAD-FS sched-
uler), who may carve up the available space for caching,
buffering, or other tasks as they see fit. Control is ex-
posed through an allocation unit called a container. A
container is an allocation of storage space with a name, a
lifetime, and a policy that controls how the space is inter-
nally managed. The lifetime is a lease, which upon expi-
ration, causes the entire container to be deleted atomically.

When a container is created, the caller may select what
algorithm is used to manage its contents. Currently, the
BAD-FS storage server implements three distinct con-
tainer policies: the scratch, standalone cache, and coop-
erative cache containers.

A scratch container is a self-contained read-write file
system for storing temporary data such as a pipeline file
between two processes. Typically, a scratch container is
used as a waypoint for data in transit. For example, a
job may write output data into a scratch container, where
it sits passively until retrieved by a scheduler. When so
directed by a scheduler, a storage server can duplicate a
scratch container elsewhere by contacting a peer server to
allocate space and transfer data.

A standalone cache container is a read-only view of
another storage server. When created by the scheduler, a
container is given the name of the target server and path,
a caching policy (i.e., LRU or MRU), and a maximum
storage size.

A cooperative cache container is a read-only view of
another storage server that also works in concert with peer
storage servers. When created by the scheduler, it takes
the same arguments as a standalone cache container, but
also accepts the name of a catalog server to consult for the
names of its peer servers. There exist a number of algo-
rithms [14, 37] for managing a cooperative cache, but it
is not our intent here to explore the range of these algo-
rithms. Rather, we will describe a suitable algorithm for
this system and explain how the scheduler can manage
workloads in concert with the cooperative cache.

The cooperative cache is essentially a distributed hash
table [24, 32]. The keys in the table are filenames and
block numbers, and the values are the corresponding data
blocks. Each peer in the cache has the same hash function.
To divide the key space, each peer periodically probes
the catalog server of the list of its peers. Each then sorts
the list by network address and assigns ranges of the key
space as leaves in a binary tree. If the number of peers is
a power of two, each will store the same amount of cache
space. If not, some will have up to twice as much as the
others. Although this scheme is asymmetric with respect
to space, it minimizes the reassignment of cache space as
peers enter and leave the cache. Data within each par-
ticipating node of the cooperative cache is managed in a
global LRU-like fashion.

This approach to cooperative caching has two impor-
tant differences from previous work [14, 17]. First, be-
cause application data dependencies are completely speci-
fied by the scheduler, we do not need to implement a cache
consistency scheme. This design decision greatly simpli-
fies our implementation; previous work has demonstrated
the many difficulties of building a more general coopera-
tive caching scheme [11]. Second, unlike previous coop-
erating caching schemes that manage cluster memory in a
global fashion, our cooperative cache stores data in the lo-
cal disks of each remote node. Although managing mem-
ory caches cooperatively could also be advantageous, the
most important performance optimization to make in our
environment is to avoid data movement across the wide-
area link; managing remote disk caches effectively is the
simplest and most effective way to meet this goal.

Note that containers export only a certain level of con-
trol to the external scheduler. Namely, by creating and
deleting containers, the scheduler can control which data
sets reside in the disk space of the remote cluster. How-
ever, the caches retain control over per-block decisions,
i.e., if more blocks are accessed than fit in a container, the
cache will make a local replacement decision. Of course,
if the scheduler is careful in space allocation, such re-
placements will occur rarely. In general, we have found
this separation of coarse-grained and fine-grained deci-
sion making to be suitable for our expected workloads.

5

3.1.2 Interposition Agents
In order to permit unmodified applications to make use
of BAD-FS storage servers, an interposition agent [27]
transforms standard POSIX I/O operations into requests
to storage servers. The agent is programmed by the sched-
uler with a mapping (a mount list) from logical file names
to physical containers.

Together, the interposition agent and the container ab-
straction provide a high degree of failure detection that
can be hidden from the application and the end user. If a
container no longer exists, either due to accidental failure
or deliberate preemption, a storage server returns a unique
“container lost” error to the agent. This error is deliber-
ately distinct from “file not found,” which indicates that
a named file does not exist in a valid container; such a
value could occur in a valid program searching for a file in
multiple places, or it could indicate that the user miscon-
figured the input data. Thus, a “file not found” is passed
directly to the application for consideration. However, a
“container lost” is of interest to BAD-FS itself. Upon dis-
covering this error, the agent forcibly terminates the ap-
plication, indicating that the job could not run correctly in
the given environment. This gives the scheduler early and
clear indication of failures, and allows it to take recovery
actions transparent to the application and user.

Our current interpositioning technique relies on the de-
bugging interface, although many other techniques are
suitable [3]. At the execution site, the interpositioning
tool runs the target application as a child, halting it at the
entry to and exit from all system calls. While the child
process is stopped, the interposition agent emulates the
desired system calls by copying data in and out of the
child. All of the application’s I/O state, including the ta-
ble of open files, current seek pointers, and so forth, is
kept in the interpositioning tool. Unlike other tools such
as UFO [3], this agent does not perform whole-file fetch
at first open. Instead, the agent only services the minimal
read or write necessary to satisfy the application. This per-
mits applications to perform random, partial file access to
large datasets without transferring unneeded data.

3.2 The Scheduler
The BAD-FS scheduler is designed to take advantage of
the explicit control provided by the BAD-FS servers, and
thus orchestrates the execution of a batch workload across
remote clusters. The scheduler combines dynamic knowl-
edge of the system with static knowledge of the user work-
load to improve performance and recover cleanly from
failures. Specifically, the scheduler reduces traffic across
the wide-area by differentiating I/O types and treating
them accordingly, carefully manages the contents of re-
mote server caches to avoid thrashing, and replicates re-
mote output data proactively if said data is expensive to
regenerate.

job a a.condor
job b b.condor
job c c.condor
job d d.condor
parent a child b
parent c child d
volume b1

ftp://home/data 1 GB
volume p1 scratch 50 MB
volume p2 scratch 50 MB
mount b1 a /mydata
mount b1 c /mydata
mount p1 a /tmp
mount p1 b /tmp
mount p2 c /tmp
mount p2 d /tmp
extract p1 x

ftp://home/out.1
extract p2 x

ftp://home/out.2

xx

a

b d

c

out.2out.1 mydata

p1 p2

b1

ftp server "home"

Figure 3: Workflow Language and Schematic. An ex-
ample workflow is depicted. A directed graph of jobs is
constructed via the job and parent keywords, and the
file system namespace presented to jobs is configured via
volume and mount directives. The extract keyword
indicates which files must be committed to stable storage
at the home storage server upon job completion.

3.2.1 Workflow Description
We now present how users describe their workloads to the
system. Figure 3 shows an example and a schematic ren-
dering of our workflow language. The keyword job de-
clares an abstract job name and binds it to a job descrip-
tion file suitable for the virtual batch system. In this exam-
ple, job a is bound to the job description file a.condor,
which names the executable, input and output files, archi-
tecture constraints, and environment variables. The par-
ent keyword indicates an ordering between two jobs. In
this example, a must execute before b and c before d.

More interesting is the manner in which the local
namespace of a job is constructed. The volume and
mount directives establish the binding between data
sources to the private name space in each job. For ex-
ample, the declaration of volume v1 is used to establish
the binding from /mydata to the nearby storage server;
the mount commands specify that jobs a and b share the
same /tmp directory.

Finally, the workflow provides a way for jobs to differ-
entiate between scratch data space (which is used either
privately by a single process or as a method of commu-
nication between jobs in a pipeline) and output that must
be committed reliably to the home storage server. The
extract command specifies which files in which vol-
umes should be written home when the job is complete.
Optionally, the size of a volume may be given to aid the
scheduler in allocating storage space.

We note that users running a large number of inter-
dependent jobs must always express these types of de-
pendencies. To successfully execute thousands of jobs,

6

job
agent

scheduler catalog home storage

4. execute

6. cleanup

3. submit compute server

1. query

5. extract

2. configure

storage server
cnt 1

cnt 2

Figure 4: Running a Job with BAD-FS. 1. The sched-
uler queries the catalog for the current system state and
decides where to place a job and its data. 2. The sched-
uler configures a storage server for the job. 3. The job is
submitted to the compute server. 4. The job executes, ac-
cessing its data via the agent. 5. After the job completes,
the scheduler extracts selected output files. 6. The storage
server is cleaned up.

one must create an organized directory structure and de-
termine which jobs use data created by others. Many
users currently specify these dependencies by writing
shell scripts and makefiles that explicitly control execu-
tion order. A workflow language has the advantage that it
effectively abstracts what operations need to be done from
how those operations are performed, much in the way that
relational queries separate what the user wants from how
it gets computed [12]. This abstraction allows users to be
blissfully unaware of low-level system details (e.g., how
failures are handled), while giving the system powerful
information about jobs and data.

3.2.2 Basic Operation
The scheduler operates as follows. First, the manager
scans the workflow for ready but unassigned jobs and vol-
umes and assigns them to resources. When there is no
work left to be assigned, the manager waits to be notified
of changes in job state by the batch queue. As jobs com-
plete, children may be dispatched and any unneeded re-
sources cleaned up. Periodically, the scheduler refreshes
its model of the system by querying the catalog for a list
of resources. An illustration of how a single job is run is
depicted in Figure 4.

3.2.3 I/O Scoping
Unlike data in most file systems, all of which is assumed
to be equally important, the BAD-FS scheduler has a good
understanding of how each file is used and where it is
needed. The scheduler can take advantage of this infor-
mation to reduce data movement across the wide-area.

Specifically, the scheduler is aware of which input files are
shared (“batch” data), which output files are ephemeral
(“pipe” data), and which output files are needed by the
user after job completion (“endpoint” data).

Specifically, the scheduler directs all read-write traffic
between jobs in a pipeline to a scratch volume, thus keep-
ing said traffic within the remote cluster. The only final
output data that must be moved to the home storage server
is specified in the extract statements in the workflow.
We refer to this process as I/O scoping, as data only moves
to the scope where it is needed. Scoping could instead be
approximated manually by rewriting jobs to use /tmp for
pipeline data; however, this approach increases the bur-
den on users by requiring application change and does not
mesh cleanly with our failure handling machinery.

3.2.4 Cache Consistency
With the information expressed in the workflow, the
scheduler neatly addresses the issue of cache consistency
management. All of the required dependencies between
jobs are specified directly in the workflow; by running
jobs so as to meet these constraints, we avoid the need to
implement a cache consistency protocol among the BAD-
FS servers. However, this does leave the burden on users
to ensure their workflows do not contain data sharing that
is not described to the scheduler; in the future, we plan
to add a mechanism to the servers to detect this condition
and warn users of any unexpected behavior.

3.2.5 Capacity-Aware Scheduling
As the scheduler is also aware of how much cache space is
available at the remote site, it can ensure that the jobs that
are running utilize that space effectively. Specifically, the
scheduler takes pains to avoid overflowing remote cache
resources and thrashing the remote cache, an approach we
call capacity-aware scheduling.

The algorithm works as follows. The scheduler re-
trieves the current state of the system from the catalog,
and examines the available storage. The scheduler then
examines all of the unexecuted jobs whose parents have
completed, and selects the one with the least unfulfilled
storage needs, whether pipe or batch. If the scheduler is
able to satisfy all of the volumes needed by the job simul-
taneously, then the scheduler allocates the necessary con-
tainers from one or more storage servers, configures them
for the given job, and submits the job to the batch sys-
tem. If there is still free storage remaining, the scheduler
selects the next job with the smallest unfulfilled require-
ments, and continues on. If there are no jobs to execute or
not enough available space, then the scheduler waits for a
job to complete, more resources to be added to the system,
or a failure to occur, and reacts appropriately.

The scheduler does not attempt any high degree of op-
timization in the ordering of resources allocated, although
such a scheduler could be built. Its primary job is to avoid

7

disasters of resource allocation, such as overcommitment
of a cache by jobs competing for the same physical re-
sources. As Lampson said, “There probably isn’t a ’best’
way to build the system ... ; much more important is to
avoid choosing a terrible way” [30]. By selecting the job
with the smallest storage requirements, the scheduler se-
lects an allocation sequence that avoids deadlock, if one
exists. If no allocation can be made to move the work-
flow forward, the scheduler may be configured to either
wait for further resources to be added to the system, or to
stop the workflow. Likewise, the scheduler is capable of
aborting a workflow in progress, hence removing jobs and
freeing storage.

3.2.6 Handling Failures
Finally, a key component of the scheduler is found in how
it makes BAD-FS robust to failures. The scheduler can
handle failures of batch jobs, storage servers, the catalog,
and the scheduler itself. To accomplish this, it keeps a
log in persistent storage and uses a transactional interface
to the job queue and storage containers. If the scheduler
fails, it recovers from the log and resumes operation with-
out losing jobs or storage containers.

BAD-FS handles failures of computation and storage
by waiting for passive indications, and then conducting
active probes as necessary. For example, if a job returns
to the scheduler with an abnormal exit code indicating an
I/O failure (generated by the interposition agent), it sus-
pects that the storage servers housing one or more of the
containers assigned to the job are faulty. The scheduler
then probes the servers to check for the containers. If all
containers are healthy, then it is assumed the job encoun-
tered transient communication problems and is simply re-
submitted. However, if the containers have failed or are
unreachable for some period of time, the containers are
assumed lost.

When a container is lost, the scheduler deletes it and
checks all processes that have or will interact with vol-
umes in that container. Clearly, currently running pro-
cesses that rely on that volume for input data must be
stopped; these processes will be restarted later when their
input data is restored. However, the processes that wrote
to this volume may also need to be restarted; that is,
BAD-FS needs to restart the jobs that created the lost files
needed by the stopped jobs.

In order to avoid these expensive restarts of a workflow,
the scheduler may direct replication of scratch volumes as
stages of a pipeline complete. Given that the importance
of replicating a volume depends upon both the probabil-
ity of failure and the execution time of the jobs creating
this data, the scheduler performs a cost-benefit analysis
at run-time to determine when a volume should be repli-
cated. The result of our cost-benefit approach is a repli-
cation strategy that is tuned to the needs of the workload

and expected failure characteristics of the run-time envi-
ronment, instead of a naive scheme that replicates all data
in a uniform manner.

Our initial cost-benefit algorithm works as follows. To
determine the cost of replicating a volume, the scheduler
tracks the average time necessary to replicate a scratch
volume from one server to another. This cost is initially
assumed to be zero in order to trigger the scheduler to
perform at least one replication and subsequent measure-
ment. To determine the benefit of replicating a volume,
the scheduler tracks the number of job and storage fail-
ures and computes the mean-time-to-failure across all de-
vices in the system; this value is initially assumed to be
one day, as suggested by Longet al. [34]. The benefit of
replicating a volume is then the sum of the run times of
those jobs completed so far in the applicable pipeline mul-
tiplied by the probability of failure. If the benefit exceeds
the cost, then the scheduler replicates the container on an-
other storage server as insurance against failure. If the
original container fails, the scheduler restarts the pipeline
using the saved copy.

3.3 Practical Issues
One of the primary obstacles to deploying a new dis-
tributed system is the need for a friendly administrator.
Whether deploying an operating system, a file system, or
a batch system, the vast majority of such software requires
a privileged user to install and oversee the software. Such
requirements make many forms of distributed computing
a practical impossibility; the larger and more powerful
the facility, the more difficult it is for an ordinary user
to obtain administrative privileges. One of the strengths
of BAD-FS is its ability to export existing resources to the
users in a more coordinated and palatable form than the
underlying resource. To this end, BAD-FS is packaged as
a virtual batch system that can be deployed over an ex-
isting batch system. This technique is patterned after the
“glide-in job” described by Frey et al. [21], and is similar
in spirit to research in recursive virtual machines [19] and
overlay networks [5].

Suppose an ordinary user has access to an existing
batch system. BAD-FS bootstraps itself on these sys-
tems, relying only on the ability to queue and run a self-
extracting executable package. BAD-FS includes the stor-
age server, a compute server, and the interposition agent
inside of this package. Once deployed to an execution
site, the package is expanded, and the servers are started
and make themselves known to the catalog server. The
BAD-FS scheduler can then harness the resources of the
host batch system, regardless of the interface used to sub-
mit the virtual jobs.

Note that the scheduling of the virtual batch jobs is at
the discretion of the host scheduling policy; these jobs
may be interleaved in time and space with jobs submit-

8

ted by other users. Regardless of whether the host system
manages a cycle-scavenging pool or a highly available
cluster, the virtual batch jobs may be terminated without
notice (e.g., the jobs may be preempted by a higher pri-
ority user, the user’s allocation may be exhausted, or the
execution machine itself may simply fail).

Another practical issue is security. BAD-FS currently
uses the Grid Security Infrastructure (GSI) [20], a public
key system that delegates authority to remote processes
through the use of time-limited proxy certificates. To
bootstrap the system, the submitting user must enter a
password to unlock the private key at his/her home node
and generate a proxy certificate with a user-settable time-
out. The proxy certificate is delegated to the remote sys-
tem and used by the storage servers to authenticate back
to the home storage server. This arrangement requires that
the user trust the host batch system not to steal the user’s
secrets, which is a common assumption in such profes-
sionally managed “c2c” environments.

4 Experimental Evaluation
In this section, we present an experimental evaluation of
BAD-FS under a number of different workloads. We first
present our methodology, and then focus on I/O scop-
ing, cooperative caching, explicit cache management, and
failure handling, using synthetic workloads to understand
system behavior. Finally, we present our initial experience
with running real applications on our system.

4.1 Methodology
In the experiments in this section, we build an environ-
ment similar to that described in Section 2. We assume
the user’s input data is stored on a home server; once all
jobs have run and all output data is safely stored back at
the home server, the workload is considered complete.

We assume that the jobs are run on a distant cluster of
machines, accessible from the user’s home via a wide-area
link. To emulate this scenario, we limit the bandwidth to
the home server to 1 MB/s via a simple network delay
engine similar to DummyNet [40]. Thus, all I/O between
the remotely run jobs and the home server must traverse
this slow link. The cluster itself is comprised of a number
of Pentium-3 processors with 1 GB of physical memory;
each machine in the remote cluster is connected to one
another via a 100 Mbit/s Ethernet switch.

To explore the performance of BAD-FS under a range
of workload scenarios, we utilize a parameterized syn-
thetic batch-pipelined application. The synthetic work-
load can be configured to perform varying amounts of
endpoint, batch, and pipeline I/O, compute for different
lengths of time, and can exhibit different amounts of both
batch and pipeline parallelism. As each experiment re-
quires different parameters, we leave those descriptions
for figure captions below. However, given previous re-

sults in workload analysis, we focus on two particular
flavors of workload: “batch intensive”, which consists of
jobs that exhibit a high degree of batch sharing but little
pipeline I/O, and “pipe intensive”, which consists of jobs
that perform large amounts of pipeline I/O but generate
little batch traffic.

Note that in some experiments, the actual parameters
we use are artificially small (e.g., a disk cache that is
megabytes in size instead of gigabytes). We use such
artificial sizes to reduce run times to reasonable values
(i.e., such that the jobs complete in hours and not days or
weeks). Through further experimentation, we have veri-
fied that the results scale to more realistic settings.

4.2 I/O Scoping and Cooperative Caching
In our first experiment, we demonstrate the ability of
BAD-FS and the scheduler to use I/O scoping to mini-
mize I/O traffic across the wide area, and the basic effec-
tiveness of cooperative caching. These are both straight-
forward optimizations, and yet are important. By keeping
all pipeline I/O within the remote cluster and aggressively
sharing batch data cooperatively across the disks of the
cluster, the amount of wide-area I/O traffic is greatly re-
duced via these simple mechanisms.

The results of our experiments are presented in Fig-
ure 5. We use three workloads: “pipe”, which is pipe-
intensive, “batch”, which is batch-intensive, and “mixed”,
which is in-between. Each workload is run in a number
of different system configurations. For example, the lines
labeled “Standalone” and “Cooperative” vary whether re-
mote disk caches are managed in a stand-alone or coop-
erative manner. The lines labeled “Diffused” and “Collo-
cated” vary whether application pipeline data is placed on
the same machine where the jobs that produce and con-
sume the pipeline runs. The “Remote” experiment shows
values for the situation when a workload is run with all
I/O redirected to the home node, as a baseline for compar-
ison. Finally, the “BAD-FS” values represent the work-
loads running on BAD-FS, which employs both kinds of
optimization. Note that in these experiments, we assume
copious cache space, and hence capacity-aware schedul-
ing is not employed.

In the leftmost graph of Figure 5, we present the to-
tal amount of I/O that is performed across the network.
From the graph, we can draw a number of conclusions.
Not surprisingly, the caching of batch data in the stan-
dalone and cooperative caches greatly reduces batch traf-
fic to the home node; cooperative caching goes a step
further by ensuring all but the first reference to a batch
data set is retrieved locally. We can also see that the
pipeline-oriented optimizations work as expected, trans-
forming pipeline I/O into either LAN traffic (“Diffused”)
or machine-local traffic (“Collocated”). Finally, the com-
bined effect of keeping all pipeline I/O within the cluster

9

 0

0.2

0.4

0.6

0.8

1.0

B
at

ch
M

ix
ed

P
ip

e

B
at

ch
M

ix
ed

P
ip

e

B
at

ch
M

ix
ed

P
ip

e

B
at

ch
M

ix
ed

P
ip

e

B
at

ch
M

ix
ed

P
ip

e

R
em

ot
e

N
or

m
al

iz
ed

 N
et

w
or

k
Tr

af
fic

Total Network Traffic

WAN
LAN

Standalone Cooperative Diffused Collocated BAD-FS

Batch reducing Pipeline reducing

Combined

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

B
at

ch
M

ix
ed

P
ip

e

B
at

ch
M

ix
ed

P
ip

e

B
at

ch
M

ix
ed

P
ip

e

B
at

ch
M

ix
ed

P
ip

e

B
at

ch
M

ix
ed

P
ip

e

R
em

ot
e

R
un

 T
im

e
(S

ec
on

ds
)

Workload Run Times

Standalone Cooperative Diffused Collocated BAD-FS

Batch reducing Pipeline reducing

Combined

Figure 5: I/O Scoping and Cooperative Caching: Traffic Reduction and Run Times. These graphs shows the total
amount of network traffic generated by and run times of a number of different workloads with different optimizations
enabled. For this experiment, we run 128 synthetic job pipelines, each with a depth of two for a total of 256 jobs.
Across workloads, we vary the relative amounts of batch I/O and pipeline I/O, while holding the amount of endpoint
I/O constant. The “pipe” workload generates 10 MB of pipeline I/O and no batch I/O, whereas the “batch” workload
generates 10 MB of batch I/O and no pipeline I/O. The remaining component is endpoint I/O, which is comprised of
non-shared input data and all final output data. As is common in these types of workloads, amount of endpoint I/O
is small (1 KB). The leftmost graph is normalized to the maximum traffic amount transferred, in this case, roughly
2.5 GB of data.

and aggressively caching batch data cooperatively greatly
reduces the amount of wide-area I/O traffic, as seen in the
BAD-FS data points.

The rightmost graph in Figure 5 presents the run time
of the workloads on our emulated remote cluster. From
this graph, we can see that reducing wide-area traffic has
a direct impact on run-time; the less traffic that crosses
the wide-area, the better the performance. We can also
see that the performance difference between collocating
pipelines on the machine where processes run (“Collo-
cated”) versus placing them anywhere within the cluster
(“Diffused”) has little effect on final run-time. The rea-
son for this behavior is that local-area network bandwidth
is comparable to local disk bandwidth, a configuration
which is not uncommon in modern clusters [24]. Thus,
given current technology, the BAD-FS scheduler need not
be overly concerned with collocated job and pipe place-
ment; simply confining pipe I/O to the cluster is the im-
portant optimization.

4.3 Capacity-Aware Scheduling
We next present experiments that show the benefits of ex-
plicit cache management in BAD-FS. The previous ex-
periments were run in an environment where remote disk
caches were not used to near capacity; with the increasing
sizes of data sets in batch workloads and sharing by jobs
and users of remote storage, such under-utilization is un-
likely to be common in practice. Therefore, the capacity-
aware scheduler must carefully manage remote space re-
sources so as to avoid thrashing across the wide-area.

In our first set of experiments, presented in Figure 6, a

set of batch-intensive workloads are run. The batch files
in this case are large, each taking up some sizable fraction
of the available disk cache space in the remote cluster (as
varied along the x-axis).

In the leftmost graph, we present the amount of wide-
area traffic generated by a number of scheduling policies.
Specifically, we compare our capacity-aware scheduler to
two simple variants: a depth-first scheduler and a breadth-
first scheduler.

These algorithms are not aware of the data needs of the
workflow and base decisions solely on the job structure of
the workflow. Depth-first simply assigns a single pipeline
to each available CPU, and runs all jobs in the pipeline to
completion before starting another. Conversely, breadth-
first attempts to execute all jobs in a batch (a horizontal
slice of a workflow) to completion before starting the next
batch. Each is potentially correct for certain workflows,
but each can lead to poor storage allocations.

In this experiment, because the workload is batch-
intensive, we expect the capacity-aware scheduling policy
to follow the breadth-first approach. As we can see from
the figure, this is what happens: the BAD-FS scheduler
runs as many jobs as possible that utilize the batch file
that currently occupies the cache.

We can make a number of observations from the graph.
First, we can see the difference in wide-area traffic when
the batch file fits into the cache (i.e., it is less than 100%
of the cache size along the x-axis) versus when it does not
fit. Once the batch file exceeds the size of the cache, the
amount of traffic increases, in this case by a factor of four
because there are four sets of eight jobs that access each

10

 0

 2

 4

 6

 8

 10

200%175%150%125%100%75%50%25%0%

N
or

m
al

iz
ed

 W
id

e-
ar

ea
 I/

O
 T

ra
ffi

c

Batch File Size as Percent of Total Cooperative Cache

Wide-area Traffic

Depth-first
Breadth-first

BAD-FS

 0

 100

 200

 300

 400

 500

 600

 700

 800

200%175%150%125%100%75%50%25%0%

R
un

 T
im

e
(S

ec
on

ds
)

Batch File Size as Percent of Total Cooperative Cache

Run Time

Depth first
Breadth first

BAD-FS

Figure 6: Batch-intensive Explicit Cache Management: Traffic Reduction and Run Times. These graphs the ben-
efits of explicit cache management under a batch-intensive workload. The workload consists of 32 4-stage pipelines;
within each stage, each process streams through a shared batch file (i.e., there are 4 batch files total). Batch file size is
varied, as a percentage of the total amount of cooperative cache space available across the 8 nodes in the experiment.
All other I/O amounts are negligible. Each of 8 nodes has local storage which is used as a portion of the cache. The
total cache size available is set to an artificially small value of 16 MB to reduce run time.

 0

 50

 100

 150

 200

 250

 300

 350

 400

100%80%60%40%20%0%

Fa
ilu

re
s

Pipe Size (Percent of Total Storage)

Failures Induced

Depth-first
Breadth-first

BAD-FS

 0

 1000

 2000

 3000

 4000

 5000

100%80%60%40%20%0%

R
un

 T
im

e
(S

ec
on

ds
)

Pipe Size (Percent of Total Storage)

Run Time

Depth-first
Breadth-first

BAD-FS

Figure 7: Pipe-intensive Explicit Cache Management: Failures Induced and Run Times. These graphs depict the
benefits of explicit cache management under a pipe-intensive workload. The workload consists of 32 3-stage pipelines,
and pipe file size is varied as a percent of total storage available. All other I/O amounts are negligible. There are 16
compute servers and 1 storage server in this experiment (representing a set of diskless clients and a single server).
The storage space at the server is constrained to an artificially small value of 16 MB to reduce run time.

batch file. Not surprisingly, we also can see that the depth-
first strategy performs quite poorly for batch-intensive
workloads, as it does must repeatedly fetch batch files
across the wide-area.

We also observe that our cooperative cache manage-
ment scheme is imperfect; the traffic increase for breadth-
first and BAD-FS scheduling arises when the batch file
is roughly 80% of the full size of the cache, and not at
100%. The reason for this inefficiency is that the cooper-
ative cache hashing function is not perfectly distributing
data across the nodes of the cluster; when the cache nears
full utilization, this imperfection overloads some nodes
and results in extra traffic to the home server. The im-
plication is that the scheduler must be aware not only of
overall utilization of the cooperative cache, but also the

utilization of each cache; if any one cache fills, the entire
cache should be considered full to avoid overflow.

The rightmost graph of Figure 6 shows the run times
for the same set of experiments. As expected, these fol-
low the wide-area traffic numbers closely. One interest-
ing exception occurs at for workloads with smaller batch
file sizes, in that the BAD-FS scheduler outperforms the
pure breadth-first scheduler. The reason for this improve-
ment is that the pure breadth-first scheduler waits for all
processes in one batch to complete before scheduling the
next; the BAD-FS scheduler instead will begin the execu-
tion of the processes in the next stage of the pipeline if
there is room for their data in the cache, thus improving
machine utilization and increasing throughput.

In our next set of cache management experiments, we

11

Induced Replication Pipeline size
MTBF strategy 1 KB 100 MB

always 9.58 8.21
∞ cost-benefit 9.64 9.01

never 9.93 9.33
always 4.25 3.56

180 sec cost-benefit 5.82 4.85
never 3.36 2.79

Figure 8: Failure Handling in BAD-FS. The table shows
the behavior of the cost-benefit strategy under different
failure scenarios, as described in the text. The numbers
presented in the rightmost two columns are in jobs per
minute.

focus on a pipeline-intensive workload instead of a batch-
intensive one. In this case, we expect the capacity-aware
approach to follow the depth-first strategy more closely.
Results of this experiment are presented in Figure 7.

In the leftmost graph, we plot the number of failed jobs
that each strategy induces. Job failure arises in this work-
load when there is a shortage of space for pipeline output;
in such a scenario, an application that runs out of space for
pipeline data aborts and must be rerun at some later time.
Hence, the number of job failures due to lack of space is
a good indicator of the scheduler’s success in scheduling
pipeline-intensive jobs under space constraints.

From the graph, we can observe that both of the space-
oblivious policies are not able to prevent the system from
thrashing. In contrast, the capacity-aware scheduler does
not run more pipelines than there is space for, and thus
never observes an aborted job. The fruits of this labor are
born out in the rightmost graph of Figure 7, where the
total run time for the workload is presented. Fewer job
failures directly translates to improved throughput.

4.4 Failure Handling
We now show the behavior of BAD-FS under varying fail-
ure conditions. Recall that unlike traditional distributed
systems, the BAD-FS scheduler has exact knowledge as
to how to re-create a lost output file; therefore, whether to
make a replica of a file on the remote cluster should de-
pend on the cost of generating the data versus the cost of
replication. This need varies with the workload and the
system conditions.

Figure 8 shows how the cost-benefit analysis performed
by the scheduler suitably adapts to a wide variety of work-
loads. Shown are four different workloads with extreme
ratios of computation to I/O. Each measurement shows
peak throughput in jobs per minute, generated from a
workload of width 64, depth 3, and jobs of one minute
CPU time running on a cluster of 16 nodes. For the lower
two cases, an artificial failure generator deleted disks at
random with a mean time between failures of 180 sec-

onds, corresponding to the total run time of a single pipe.
In the upper left quadrant, small I/O rates and no fail-

ures cause no difference between replication schemes. In
the upper right hand corner, replication is not necessary
when no failures occur, and approximately a 10 percent
throughput penalty is paid to replicate. The cost-benefit
strategy, after measuring a single replication, chooses not
to do so. In the lower left hand corner, the failure rate
makes it highly likely that a single pipeline of three jobs
will experience a failure, so replicating intermediate re-
sults improves throughput. The cost-benefit case even im-
proves upon always replicating because it only replicates
after the second stage; the cost of replicating after the first
is an unnecessary expense. A similar story is found in the
lower right quadrant.

4.5 Application Experience
We conclude with a demonstration of the system running
real applications. Although we have run a number of dif-
ferent scientific batch workloads on our system, due to
space considerations, we present results only for one ap-
plication here, BLAST [4].

In this experiment, we compare BLAST running in four
different configurations: remote, which redirects all I/O
back to the home node across an emulated wide-area link
(again, set to 1 MB/s); standalone, which emulates AFS-
like caching to the home server; BAD-FS (remote), which
runs BLAST with BAD-FS on the remote cluster; and
BAD-FS (local), whichs runs BLAST on BAD-FS but
with the home server accessible across a local-area net-
work link (100 Mbit/s Ethernet). We use 16 machines,
and run 64 BLAST jobs in total (recall that each BLAST
job is just a single stage pipeline). Each BLAST job takes
a small unique input and accesses (in this experiment) a
576 MB shared database.

Not surprisingly, remote throughput is terrible, at 4.67
jobs completed per hour. Standalone caching does bet-
ter, delivering 18.90 jobs per hour. BAD-FS (remote)
with cooperative caching avoids refetching the shared
database across the wide area, and achieves 86.36 jobs per
hour. Finally, BAD-FS (local) completes 112.93 jobs per
hour. Thus, BLAST greatly benefits from the cooperative
caching behavior of our system, achieving roughly 76%
of “local” performance across a wide-area link.

In our other initial experiences (not shown here), we
have found that different workloads benefit from different
aspects of our system (e.g., I/O scoping for some pipe-
intensive workloads, and capacity-aware scheduling for
workloads run upon space-constrained systems). BAD-
FS mechanisms thus seem to be flexible enough to sup-
port a variety of batch-pipelined workloads, although of
course more experience with other application classes is
required. In the final version of the paper, we plan to in-
clude more of this experience.

12

5 Related Work
In designing BAD-FS, we drew on related work from a
number of distinct areas. Workflow management has his-
torically been the concern of high-level business manage-
ment problems involving multiple authorities and com-
puter systems in large organizations, such as approval of
loans by a bank or customer service actions by a phone
company [22]. Our scheduler works at a lower seman-
tic level than such systems; however, it borrows several
lessons from such systems, such as the integration of pro-
cedural and data elements [43]. The automatic manage-
ment of dependencies for both performance and fault tol-
erance is found in a variety of tools [9].

Many other systems have also managed dependencies
among jobs. A most basic example is found with the
UNIX tool make. More sophisticated dependency track-
ing has been explored in Vahdat and Anderson’s work on
transparent result caching [51]; in that work, the authors
build a tool that tracks process lineage and file depen-
dency automatically. Our workflow description is a static
encoding of such knowledge.

The manner in which the scheduler constructs private
namespaces for running applications is reminiscent of
database views [25]. However, a private namespace is
simpler to construct and maintain; views, in contrast,
present systems with many implementation challenges,
particularly when handling updates to base tables and
their propagation into extant materialized views.

There has been much recent work in peer-to-peer stor-
age systems [1, 13, 29, 35, 42, 44]. Although each of these
systems provides interesting solutions to the problem do-
main for which they are intended, each falls short when
applied to the context of batch workloads, for the same
reasons that distributed file systems are not a good match.
However, many of the overlays developed for these en-
vironments, such as Chord and Pastry, may be useful for
communication between clusters, something we plan to
investigate in future work.

Finally, some research in mobile computing bears sim-
ilarity to our work on BAD-FS. For example, Flinn et al.
discuss the process of data staging on untrusted surro-
gates for PDAs and other mobile devices [18]. In many
ways, such a surrogate is similar to the BAD-FS storage
server; the major difference is that the surrogate is pri-
marily concerned about trust, whereas our servers are pri-
marily concerned with exposing control. Earlier work on
Coda also is applicable [28]. Coda uses caching for avail-
ability, keeping important files on the local disk of a mo-
bile device so as to avoid unavailability during periods of
disconnection. In BAD-FS, servers enact a similar role,
caching data so as to avoid downtime when the wide-area
link to the home node fails.

6 Conclusions
“He’s a big bad wolf in your neighborhood;
not bad meaning bad but bad meaning good.”
Run DMC, from ’Peter Piper’

In this paper, we have described BAD-FS, a distributed
file system that exposes internal control decisions to an
external scheduler. This control, combined with detailed
knowledge of workload characteristics, enables the sched-
uler to carefully manage remote resources and thereby fa-
cilitates the execution of I/O intensive batch jobs on clus-
ters across the wide-area.

References
[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.

Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Watten-
hofer. FARSITE: Federated, Available, and Reliable Storage for
an Incompletely Trusted Environment. In OSDI ’02.

[2] R. Agrawal, T. Imielinski, and A. Swami. Database Mining: A
Performance Perspective. IEEE Transactions on Knowledge and
Data Engineering, 5(6):914–925, December 1993.

[3] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman. UFO: A
personal global file system based on user-level extensions to the
operating system. ACM Transactions on Computer Systems, pages
207–233, August 1998.

[4] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang,
W. Miller, , and D. J. Lipman. Gapped BLAST and PSI-BLAST:
a new generation of protein database search programs. In Nucleic
Acids Research, pages 3389–3402, 1997.

[5] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Mor-
ris. Resilient Overlay Networks. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP ’01), Banff,
Canada, October 2001.

[6] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, and R. Wang.
Serverless Network File Systems. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP ’95), pages
109–26, Copper Mountain Resort, Colorado, December 1995.

[7] Author list withheld for anonymity. Title withheld for anonymity.
In Conference name withheld for anonymity, 2003.

[8] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and J. Ousterhout.
Measurements of a Distributed File System. In Proceedings of
the 13th ACM Symposium on Operating Systems Principles (SOSP
’91), pages 198–212, Pacific Grove, California, October 1991.

[9] Y. Breitbart, A. Deacon, H.-J. Schek, A. P. Sheth, and G. Weikum.
Merging application-centric and data-centric approaches to sup-
port transaction-oriented multi-system workflows. SIGMOD
Record, 22(3):23–30, 1993.

[10] J. F. Cantin and M. D. Hill. Cache Performance for Selected SPEC
CPU2000 Benchmarks. Computer Architecture News (CAN),
September 2001.

[11] S. Chandra, M. Dahlin, B. Richards, R. Y. Wang, T. E. Ander-
son, and J. R. Larus. Experience with a Language for Writing
Coherence Protocols. In Proceedings of the USENIX Conference
on Domain-Specific Languages, Santa Barbara, California, Octo-
ber 1997.

[12] E. F. Codd. A Relational Model of Data for Large Shared Data
Banks. Communications of the ACM, 13(6):377–387, June 1970.

[13] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-Area Cooperative Storage with CFS. In Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP
’01), Banff, Canada, October 2001.

[14] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson.
Cooperative Caching: Using Remote Client Memory to Improve
File System Performance. In Proceedings of the 1st Symposium on
Operating Systems Design and Implementation (OSDI ’94), Mon-
terey, California, November 1994.

[15] EDA Industry Working Group. The EDA Resource.
http://www.eda.org/, 2003.

13

[16] D. A. Edwards and M. S. McKendry. Exploiting Read-Mostly
Workloads in The FileNet File System. In Proceedings of the 12th
ACM Symposium on Operating Systems Principles (SOSP ’89),
pages 58–70, Litchfield Park, Arizona, December 1989.

[17] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, and H. M.
Levy. Implementing Global Memory Management in a Worksta-
tion Cluster. In Proceedings of the 15th ACM Symposium on Op-
erating Systems Principles (SOSP ’95), pages 201–212, Copper
Mountain Resort, Colorado, December 1995.

[18] J. Flinn, S. Sinnamohideen, N. Tolia, and M. Satyanarayanan.
Data Staging on Untrusted Surrogates. In Proceedings of the 2nd
USENIX Symposium on File and Storage Technologies (FAST ’03),
San Francisco, California, April 2003.

[19] B. Ford, M. Hibler, J. Lepreau, P. Tullman, G. Back, and S. Claw-
son. Microkernels Meet Recursive Virtual Machines. In Proceed-
ings of the 2nd Symposium on Operating Systems Design and Im-
plementation (OSDI ’96), Seattle, Washington, October 1996.

[20] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Ar-
chitecture for Computational Grids. In Proceedings of the 5th ACM
Conference on Computer and Communications Security Confer-
ence, pages 83–92, 1998.

[21] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: A Computation Management Agent for Multi- Institu-
tional Grids. In Proceedings of the 10th IEEE International Sym-
posium on High Performance Distributed Computing (HPDC 10),
San Francisco, California, August 2001.

[22] D. Georgakopoulos, M. F. Hornick, and A. P. Sheth. An overview
of workflow management: From process modeling to workflow
automation infrastructure. Distributed and Parallel Databases,
3(2):119–153, 1995.

[23] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File Sys-
tem. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP ’03), Bolton Landing (Lake George),
New York, October 2003.

[24] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler. Scal-
able, Distributed Data Structures for Internet Service Construction.
In Proceedings of the 4th Symposium on Operating Systems Design
and Implementation (OSDI ’00), San Diego, California, October
2000.

[25] A. Gupta and I. S. Mumick. Maintenance of materialized views:
Problems, techniques and applications. IEEE Quarterly Bulletin
on Data Engineering; Special Issue on Materialized Views and
Data Warehousing, 18(2):3–18, 1995.

[26] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,
R. Sidebotham, and M. West. Scale and Performance in a Dis-
tributed File System. ACM Transactions on Computer Systems,
6(1), February 1988.

[27] M. B. Jones. Interposition agents: Transparently interposing user
code at the system interface. In Proceedings of the 14th ACM Sym-
posium on Operating Systems Principles (SOSP ’93), pages 80–93,
Asheville, North Carolina, December 1993.

[28] J. Kistler and M. Satyanarayanan. Disconnected Operation in
the Coda File System. ACM Transactions on Computer Systems,
10(1), February 1992.

[29] J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen, D. Geels, R. Gum-
madi, S. Rhea, W. Weimer, C. Wells, H. Weatherspoon, and
B. Zhao. OceanStore: An Architecture for Global-Scale Persistent
Storage. In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS IX), pages 190–201, Cambridge, Massachusetts,
November 2000.

[30] B. W. Lampson. Hints for Computer System Design. In Proceed-
ings of the 9th ACM Symposium on Operating System Principles
(SOSP ’83), pages 33–48, Bretton Woods, New Hampshire, Octo-
ber 1983.

[31] T. L. Lancaster. The Renderman Web Site.
http://www.renderman.org/, 2002.

[32] W. Litwin, M.-A. Neimat, and D. Schneider. RP*: A Family of Or-
der Preserving Scalable Distributed Data Structures. In Proceed-
ings of the 20th International Conference on Very Large Databases
(VLDB 20), pages 342–353, Santiago, Chile, September 1994.

[33] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor – A Hunter
of Idle Workstations. In Proceedings of ACM Computer Network
Performance Symposium, pages 104–111, June 1988.

[34] D. Long, A. Muir, and R. Golding. A Longitudinal Survey of
Internet Host Reliability. In Symposium on Reliable Distributed
Systems, pages 2–9, 1995.

[35] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy:
A Read/Write Peer-to-Peer File System. In Proceedings of the
5th Symposium on Operating Systems Design and Implementation
(OSDI ’02), Boston, Massachusetts, December 2002.

[36] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze,
M. Kupfer, and J. G. Thompson. A Trace-Driven Analysis of the
UNIX 4.2 BSD File System. In Proceedings of the 10th ACM Sym-
posium on Operating System Principles (SOSP ’85), pages 15–24,
Orcas Island, Washington, December 1985.

[37] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. M. Nahum. Locality-Aware Request
Distribution in Cluster-based Network Servers. In Proceedings
of the 8th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS VIII),
pages 205–216, San Jose, California, October 1998.

[38] Platform Computing. Improving Business Capacity with Dis-
tributed Computing. http://www.platform.com/industry/financial/,
2003.

[39] R. Raman. Matchmaking Frameworks for Distributed Resource
Management. PhD thesis, University of Wisconsin-Madison, Oc-
tober 2000.

[40] L. Rizzo. Dummynet: A Simple Approach to the Evaluation
of Network Protocols. ACM Computer Communication Review,
27(1):31–41, 1997.

[41] D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparison of File
System Workloads. In Proceedings of the USENIX Annual Tech-
nical Conference (USENIX ’00), pages 41–54, San Diego, Califor-
nia, June 2000.

[42] A. Rowstron and P. Druschel. Storage Management and Caching
in PAST, A Large-scale, Persistent Peer-to-peer Storage Utility. In
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), Banff, Canada, October 2001.

[43] M. Rusinkiewicz and A. P. Sheth. Specification and execution of
transactional workflows. In Modern Database Systems: The Ob-
ject Model, Interoperability, and Beyond., pages 592–620. 1995.

[44] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Tam-
ing aggressive replication in the Pangaea wide-area file system. In
Proceedings of the 5th Symposium on Operating Systems Design
and Implementation (OSDI ’02), Boston, Massachusetts, Decem-
ber 2002.

[45] R. Sandberg. The Design and Implementation of the Sun Network
File System. In Proceedings of the 1985 USENIX Summer Techni-
cal Conference, pages 119–130, Berkeley, CA, June 1985.

[46] M. Satyanarayanan. A Study of File Sizes and Functional Life-
times. In Proceedings of the 8th ACM Symposium on Operating
Systems Principles (SOSP ’81), pages 96–108, Pacific Grove, Cal-
ifornia, December 1981.

[47] S. Soderbergh. Mac, Lies, and Videotape.
www.apple.com/hotnews/articles/2002/04/fullfrontal/, 2002.

[48] W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, ,
and D. Anderson. A New Major SETI Project based on Project
Serendip Data and 100,000 Personal Computers. In Proceedings
of the 5th International Conference on Bioastronomy, 1997.

[49] Sun. Sun ONE Grid Engine Software.
http://wwws.sun.com/software/gridware/, 2003.

[50] The PBS Implementation Team. The Portable Batch System.
http://www.openpbs.org/, 2002.

[51] A. Vahdat and T. E. Anderson. Transparent Result Caching.
In Proceedings of the USENIX Annual Technical Conference
(USENIX ’98), New Orleans, Louisiana, June 1998.

[52] W. Vogels. File system usage in Windows NT 4.0. In Proceed-
ings of the 17th ACM Symposium on Operating Systems Principles
(SOSP ’99), pages 93–109, Kiawah Island Resort, South Carolina,
December 1999.

[53] S. Zhou. LSF: Load Sharing in Large-scale Heterogeneous Dis-
tributed Systems. In Proceedings of the Workshop on Cluster Com-
puting, Tallahassee, FL, December 1992.

14

