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1. Introduction 

In early 1977 we began to design the concurrent 
programming facilities of  Pilot, a new operating system 
for a personal computer [18]. Pilot is a fairly large 
program itself (24,000 lines of  Mesa code). In addition, 
it must support a variety of  quite large application 
programs, ranging from database management to inter- 
network message transmission, which are heavy users of  
concurrency; our experience with some of  these appli- 
cations is discussed later in the paper. We intended the 
new facilities to be used at least for the following pur- 
poses: 

Local concurrent programming. An individual appli- 
cation can be implemented as a tightly coupled group of  
synchronized processes to express the concurrency in- 
herent in the application. 

Global resource sharing. Independent applications 
can run together on the same machine, cooperatively 
sharing the resources; in particular, their processes can 
share the processor. 

Replacing interrupts. A request for software attention 
to a device can be handled directly by waking up an 
appropriate process, without going through a separate 
interrupt mechanism (e.g., a forced branch). 

Pilot is closely coupled to the Mesa language [17], 
which is used to write both Pilot itself and the applica- 
tions programs it supports. Hence it was natural to design 
these facilities as part of  Mesa; this makes them easier to 
use, and also allows the compiler to detect many kinds 
of errors in their use. The idea of  integrating such 
facilities into a language is certainly not new; it goes 
back at least as far as PL/ I  [1]. Furthermore the invention 
of  monitors by Dijkstra, Hoare, and Brinch Hansen [3, 
5, 8] provided a very attractive framework for reliable 
concurrent programming. There followed a number of  
papers on the integration of  concurrency into program- 
ming languages, and at least one implementation [4]. 

We therefore thought that our task would be an easy 
one: read the literature, compare the alternatives offered 
there, and pick the one most suitable for our needs. This 
expectation proved to be naive. Because of  the large size 
and wide variety of  our applications, we had to address 
a number of  issues which were not clearly resolved in 
the published work on monitors. The most notable 
among these are listed below, with the sections in which 
they are discussed. 
(a) Program structure. Mesa has facilities for organizing 

programs into modules which communicate 
through well-defined interfaces. Processes must fit 
into this scheme (see Section 3.1). 

(b) Creating processes. A set of  processes fixed at com- 
pile-time is unacceptable in such a general-purpose 
system (see Section 2). Existing proposals for vary- 
ing the amount of  concurrency were limited to 
concurrent elaboration of  the statements in a block, 
in the style of  Algol 68 (except for the rather 
complex mechanism in PL/I) .  
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(c) Creating monitors. A fixed number of  monitors is 
also unacceptable, since the number of synchroniz- 
ers should be a function of the amount of data, but 
many of  the details of  existing proposals depended 
on a fixed association of  a monitor with a block of  
the program text (see Section 3.2). 

(d) WAIT in a nested monitor call. This issue had been 
(and has continued to be) the source of  a consid- 
erable amount of  confusion, which we had to re- 
solve in an acceptable manner before we could 
proceed (see Section 3.1). 

(e) Exceptions. A realistic system must have timeouts, 
and it must have a way to abort a process (see 
Section 4.1). Mesa has an UNWIND mechanism for 
abandoning part of  a sequential computation in an 
orderly way, and this must interact properly with 
monitors (see Section 3.3). 

(f) Scheduling. The precise semantics of  waiting on a 
condition variable had been discussed [10] but not 
agreed upon, and the reasons for making any par- 
ticular choice had not been articulated (see Section 
4). No attention had been paid to the interaction 
between monitors and priority scheduling of pro- 
cesses (see Section 4.3). 

(g) Input-output. The details of  fitting I /O  devices into 
the framework of  monitors and condition variables 
had not been fully worked out (see Section 4.2). 

Some of  these points have also been made by Keedy 
[12], who discusses the usefulness of  monitors in a mod- 
em general-purpose mainframe operating system. The 
Modula language [21] addresses (b) and (g), but in a 
more limited context than ours. 

Before settling on the monitor scheme described be- 
low, we considered other possibilities. We felt that our 
first task was to choose either shared memory (i.e., 
monitors) or message passing as our basic interprocess 
communication paradigm. 

Message passing has been used (without language 
support) in a number of  operating systems; for a recent 
proposal to embed messages in a language, see [9]. An 
analysis of  the differences between such schemes and 
those based on monitors was made by Lauer and Need- 
ham [14]. They conclude that, given certain mild restric- 
tions on programming style, the two schemes are duals 
under the transformation 

message ~ process 
process o monitor 
send/reply o call/return 

Since our work is based on a language whose main tool 
of program structuring is the procedure, it was consid- 
erably easier to use a monitor scheme than to devise a 
message-passing scheme properly integrated with the 
type system and control structures of  the language. 

Within the shared memory paradigm, we considered 
the possibility of  adopting a simpler primitive synchro- 
nization facility than monitors. Assuming the absence of  
multiple processors, the simplest form of  mutual exclu- 
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sion appears to be a nonpreemptive scheduler; if pro- 
cesses only yield the processor voluntarily, then mutual 
exclusion is insured between yield-points. In its simplest 
form, this approach tends to produce very delicate pro- 
grams, since the insertion of a yield in a random place 
can introduce a subtle bug in a previously correct pro- 
gram. This danger can be alleviated by the addition of 
a modest amount of"syntactic sugar" to delineate critical 
sections within which the processor must not be yielded 
(e.g., pseudo monitors). This sugared form of non- 
preemptive scheduling can provide extremely efficient 
solutions to simple problems, but was nonetheless re- 
jected for four reasons: 

(1) While we were willing to accept an implementation 
which would not work on multiple processors, we 
did not want to embed this restriction in our basic 
semantics. 

(2) A separate preemptive mechanism is needed any- 
way, since the processor must respond to time- 
critical events (e.g., I /O interrupts) for which vol- 
untary process switching is clearly too sluggish. 
With preemptive process scheduling, interrupts can 
be treated as ordinary process wakeups, which re- 
duces the total amount of machinery needed and 
eliminates the awkward situations which tend to 
occur at the boundary between two scheduling re- 
gimes. 

(3) The use of nonpreemption as mutual exclusion 
restricts programming generality within critical sec- 
tions; in particular, a procedure that happens to 
yield the processor cannot be called. In large sys- 
tems where modularity is essential, such restrictions 
are intolerable. 

(4) The Mesa concurrency facilities function in a vir- 
tual memory environment. The use of nonpreemp- 
tion as mutual exclusion forbids multiprogramming 
across page faults, since that would effectively insert 
preemptions at arbitrary points in the program. 

For mutual exclusion with a preemptive scheduler, it 
is necessary to introduce explicit locks, and machinery 
which makes requesting processes wait when a lock is 
unavailable. We considered casting our locks as sema- 
phores, but decided that, compared with monitors, they 
exert too little structuring discipline on concurrent pro- 
grams. Semaphores do solve several different problems 
with a single mechanism (e.g, mutual exclusion, pro- 
ducer/consumer) but we found similar economies in our 
implementation of monitors and condition variables (see 
Section 5. l). 

We have not associated any protection mechanism 
with processes in Mesa, except what is implicit in the 
type system of the language. Since the system supports 
only one user, we feel that the considerable protection 
offered by the strong typing of the language is sufficient. 
This fact contributes substantially to the low cost of 
process operations. 
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2. Processes 

Mesa casts the creation of a new process as a special 
procedure activation which executes concurrently with 
its caller. Mesa allows any procedure (except an internal 
procedure of a monitor; see Section 3.1) to be invoked in 
this way, at the caller's discretion. It is possible to later 
retrieve the results returned by the procedure. For ex- 
ample, a keyboard input routine might be invoked as a 
normal procedure by writing: 

buffer ~- ReadLine[ terminal ] 

but since ReadLine is likely to wait for input, its caller 
might wish instead to compute concurrently: 

p ~ FORK Readline[ terminal ]; 
. . .  (concurrent computation) . . .  
buffer ~-- JOIN p; 

Here the types are 

Readline: PROCEDURE [Device] RETURNS [Line]; 
p:  PROCESS RETURNS [Line]. 

The rendezvous between the return from ReadLine 
which terminates the new process and the JOIN in the old 
process is provided automatically. ReadLine is the root 
procedure of the new process. 

This scheme has a number of important properties. 
(a) It treats a process as a first-class value in the lan- 

guage, which can be assigned to a variable or an 
array element, passed as a parameter, and in general 
treated exactly like any other value. A process value 
is like a pointer value or a procedure value which 
refers to a nested procedure, in that it can become 
a dangling reference if the process to which it refers 
goes away. 

(b) The method for passing parameters to a new pro- 
cess and retrieving its results is exactly the same as 
the corresponding method for procedures, and is 
subject to the same strict type checking. Just as 
PROCEDURE is a generator for a family of types 
(depending on the argument and result types), so 
PROCESS is a similar generator, slightly simpler since 
it depends only on result types. 

(c) No special declaration is needed for a procedure 
which is invoked as a process. Because of the im- 
plementation of procedure calls and other global 
control transfers in Mesa [13], there is no extra 
execution cost for this generality. 

(d) The cost of creating and destroying a process is 
moderate, and the cost in storage is only twice the 
minimum cost of a procedure instance. It is there- 
fore feasible to program with a large number of 
processes, and to vary the number quite rapidly. As 
Lauer and Needham [14] point out, there are many 
synchronization problems which have straightfor- 
ward solutions using monitors only when obtaining 
a new process is cheap. 
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Many patterns of process creation are possible. A 
common one is to create a detached process, which never 
returns a result to its creator, but instead functions quite 
independently. When the root procedurep of a detached 
process returns, the process is destroyed without any 
fuss. The fact that no one intends to wait for a result 
from p can be expressed by executing: 

Detach[p] 

From the point of  view of  the caller, this is similar to 
freeing a dynamic variable--it  is generally an error to 
make any further use of  the current value of  p, since 
the process, running asynchronously, may complete 
its work and be destroyed at any time. Of course the 
design of  the program may be such that this cannot 
happen, and in this case the value of  p can still be 
useful as a parameter to the Abort operation (see 
Section 4.1). 

This remark illustrates a general point: Processes 
offer some new opportunities to create dangling refer- 
ences. A process variable itself is a kind of pointer, and 
must not be used after the process is destroyed. Further- 
more, parameters passed by reference to a process are 
pointers, and if they happen to be local variables of  a 
procedure, that procedure must not return until the 
process is destroyed. Like most implementation lan- 
guages, Mesa does not provide any protection against 
dangling references, whether connnected with processes 
or not. 

The ordinary Mesa facility for exception handling 
uses the ordering established by procedure calls to con- 
trol the processing of exceptions. Any block may have 
an attached exception handler. The block containing the 
statement which causes the exception is given the first 
chance to handle it, then its enclosing block, and so forth 
until a procedure body is reached. Then the caller of  the 
procedure is given a chance in the same way. Since the 
root procedure of a process has no caller, it must be 
prepared to handle any exceptions which can be gener- 
ated in the process, including exceptions generated by 
the procedure itself. If  it fails to do so, the resulting error 
sends control to the debugger, where the identity of  the 
procedure and the exception can easily be determined 
by a programmer. This is not much comfort, however, 
when a system is in operational use. The practical con- 
sequence is that while any procedure suitable for forking 
can also be called sequentially, the converse is not gen- 
erally true. 

3. Monitors 

When several processes interact by sharing data, care 
must be taken to properly synchronize access to the data. 
The idea behind monitors is that a proper vehicle for this 
interaction is one which unifies 
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- - the  synchronization, 
- - the  shared data, 
- - t he  body of code which performs the accesses. 

The data is protected by a monitor, and can only be 
accessed within the body of  a monitor procedure. There 
are two kinds of  monitor procedures: entry procedures, 
which can be called from outside the monitor, and 
internalprocedures, which can only be called from mon- 
itor procedures. Processes can only perform operations 
on the data by calling entry procedures. The monitor 
ensures that at most one process is executing a monitor 
procedure at a time; this process is said to be in the 
monitor. If  a process is in the monitor, any other process 
which calls an entry procedure will be delayed. The 
monitor procedures are written textually next to each 
other, and next to the declaration of  the protected data, 
so that a reader can conveniently survey all the references 
to the data. 

As long as any order of  calling the entry procedures 
produces meaningful results, no additional synchroni- 
zation is needed among the processes sharing the moni- 
tor. If  a random order is not acceptable, other provisions 
must be made in the program outside the monitor. For 
example, an unbounded buffer with Put and Get proce- 
dures imposes no constraints (of course a Get may have 
to wait, but this is taken care of  within the monitor, as 
described in the next section). On the other hand, a tape 
unit with Reserve, Read, Write, and Release operations 
requires that each process execute a Reserve first and a 
Release last. A second process executing a Reserve will 
be delayed by the monitor, but another process doing a 
Read without a prior Reserve will produce chaos. Thus 
monitors do not solve all the problems of  concurrent 
programming; they are intended, in part, as primitive 
building blocks for more complex scheduling policies. A 
discussion of  such policies and how to implement them 
using monitors is beyond the scope of this paper. 

3.1 Monitor Modules 

In Mesa the simplest monitor is an instance of  a 
module, which is the basic unit of  global program struc- 
turing. A Mesa module consists of  a collection of  pro- 
cedures and their global data, and in sequential program- 
ming is used to implement a data abstraction. Such a 
module has PUBLIC procedures which constitute the ex- 
ternal interface to the abstraction, and PRIVATE proce- 
dures which are internal to the implementation and 
cannot be called from outside the module; its data is 
normally entirely private. A MONITOR module differs 
only slightly. It has three kinds of  procedures: entry, 
internal (private), and external (nonmonitor procedures). 
The first two are the monitor procedures, and execute 
with the monitor lock held. For example, consider a 
simple storage allocator with two entry procedures, Al- 
locate and Free, and an external procedure Expand which 
increases the size of  a block. 
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StorageAllocator. MONITOR = BEGIN 

availableStorage: INTEGER; 
moreAvailable: CONDITION; 

Allocate: ENTRY PROCEDURE [size: INTEGER] 

RETURNS [p:  POINTER] = BEGIN 

UNTIL availableStorage _> size 
DO WAIT morea vailable ENDLOOP; 

p ~-  (remove chunk of  size words & update availableStorage) 
END; 

Free: ENTRY PROCEDURE [p:  POINTER, size: INTEGER] 

= BEGIN 

(put back chunk of  size words & update availableStorage); 
NOTIFY morea vailable END; 

Expand: PUBLIC PROCEDURE [pOId: POINTER, 

size: INTEGER] 

RETURNS [pNew: POINTER ] = BEGIN 

pNew ~ A llocate[size]; 
(copy contents from old block to new block); 
Free[pOM] END; 

END. 

A Mesa module is normally used to package a col- 
lection of  related procedures and protect their private 
data from external access. In order to avoid introducing 
a new lexical structuring mechanism, we chose to make 
the scope of  a monitor identical to a module. Sometimes, 
however, procedures which belong in an abstraction do 
not need access to any shared data, and hence need not 
be entry procedures of  the monitor; these must be distin- 
guished somehow. 

For example, two asynchronous processes clearly 
must not execute in the Allocate or Free procedures at 
the same time; hence, these must be entry procedures. 
On the other hand, it is unnecessary to hold the monitor 
lock during the copy in Expand, even though this pro- 
cedure logically belongs in the storage allocator module; 
it is thus written as an external procedure. A more 
complex monitor might also have internal procedures, 
which are used to structure its computations, but which 
are inaccessible from outside the monitor. These do not 
acquire and release the lock on call and return, since 
they can only be called when the lock is already held. 

I f  no suitable block is available, Allocate makes its 
caller wait on the condition variable morea vailable. Free 
does a NOTIFY to this variable whenever a new block 
becomes available; this causes some process waiting on 
the variable to resume execution (see Section 4 for 
details). The WAIT releases the monitor lock, which is 
reacquired when the waiting process reenters the moni- 
tor. I f  a WAIT is done in an internal procedure, it still 
releases the lock. If, however, the monitor calls some 
other procedure which is outside the monitor module, 
the lock is not released, even if the other procedure is 
in (or calls) another monitor and ends up doing a 
WAIT. The same rule is adopted in Concurrent 
Pascal [4]. 

To understand the reasons for this, consider the form 
of a correctness argument for a program using a monitor. 
The basic idea is that the monitor maintains an invariant 
which is always true of  its data, except when some 
process is executing in the monitor. Whenever control 
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leaves the monitor, this invariant must be established. In 
return, whenever control enters the monitor  the invariant 
can be assumed. Thus an entry procedure must establish 
the invariant before returning, and monitor procedures 
must establish it before doing a WAIT. The invariant can 
be assumed at the start of  an entry procedure, and after 
each WAIT. Under  these conditions, the monitor lock 
ensures that no one can enter the monitor when the 
invariant is false. Now, if the lock were to be released on 
a WAIT done in another monitor which happens to be 
called from this one, the invariant would have to be 
established before making the call which leads to the 
WAIT. Since in general there is no way to know whether 
a call outside the monitor will lead to a WAIT, the 
invariant would have to be established before every such 
call. The result would be to make calling such procedures 
hopelessly cumbersome. 

An alternative solution is to allow an outside block to 
be written inside a monitor, with the following meaning: 
on entry to the block the lock is released (and hence the 
invariant must be established); within the block the 
protected data is inaccessible; on leaving the block the 
lock is reacquired. This scheme allows the state repre- 
sented by the execution environment of  the monitor to 
be maintained during the outside call, and imposes a 
minimal burden on the programmer: to establish the 
invariant before making the call. This mechanism would 
be easy to add to Mesa; we have left it out because we 
have not seen convincing examples in which it signifi- 
cantly simplifies the program. 

I f  an entry procedure generates an exception in the 
usual way, the result will be a call on the exception 
handler from within the monitor, so that the lock will 
not be released. In particular, this means that the excep- 
tion handler must carefully avoid invoking that same 
monitor, or a deadlock will result. To avoid this restric- 
tion, the entry procedure can restore the invariant and 
then execute 

RETURN WITH E R R O R [ ( a r g u m e n t s ) ]  

which returns from the entry procedure, thus releasing 
the lock, and then generates the exception. 

3.2 Monitors and Deadlock 
There are three patterns of  pairwise deadlock that 

can occur using monitors. In practice, of  course, dead- 
locks often involve more than two processes, in which 
case the actual patterns observed tend to be more com- 
plicated; conversely, it is also possible for a single process 
to deadlock with itself (e.g., if an entry procedure is 
recursive). 

The simplest form of deadlock takes place inside a 
single monitor when two processes do a WAIT, each 
expecting to be awakened by the other. This represents 
a localized bug in the monitor code and is usually easy 
to locate and correct. 

A more subtle form of deadlock can occur if  there is 
a cyclic calling pattern between two monitors. Thus if 
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monitor M calls an entry procedure in N, and N calls 
one in M, each will wait for the other to release the 
monitor lock. This kind of deadlock is made neither 
more nor less serious by the monitor mechanism. It arises 
whenever such cyclic dependencies are allowed to occur 
in a program, and can be avoided in a number of  ways. 
The simplest is to impose a partial ordering on resources 
such that all the resources simultaneously possessed by 
any process are totally ordered, and insist that if resource 
r precedes s in the ordering, then r cannot be acquired 
later than s. When the resources are monitors, this re- 
duces to the simple rule that mutually recursive monitors 
must be avoided. Concurrent Pascal [4] makes this check 
at compile time; Mesa cannot do so because it has 
procedure variables. 

A more serious problem arises if M calls N, and N 
then waits for a condition which can only occur when 
another process enters N through M and makes the 
condition true. In this situation, N will be unlocked, 
since the WAIT occurred there, but M will remain locked 
during the WAIT in N. This kind of  two-level data 
abstraction must be handled with some care. A straight- 
forward solution using standard monitors is to break M 
into two parts: a monitor M' and an ordinary module O 
which implements the abstraction defined by M, and 
calls M'  for access to the shared data. The call on N must 
be done from O rather than from within M'. 

Monitors, like any other interprocess communication 
mechanism, are a tool for implementing synchroniza- 
tion constraints chosen by the programmer. It is unrea- 
sonable to blame the tool when poorly chosen constraints 
lead to deadlock. What is crucial, however, is that the 
tool make the program structure as understandable as 
possible, while not restricting the programmer too much 
in his choice of  constraints (e.g., by forcing a monitor 
lock to be held much longer than necessary). To some 
extent, these two goals tend to conflict; the Mesa con- 
currency facilities attempt to strike a reasonable balance 
and provide an environment in which the conscientious 
programmer can avoid deadlock reasonably easily. Our 
experience in this area is reported in Section 6. 

3.3  Monitored Objects 
Often we wish to have a collection of  shared data 

objects, each one representing an instance of  some ab- 
stract object such as a file, a storage volume, a virtual 
circuit, or a database view, and we wish to add objects 
to the collection and delete them dynamically. In a 
sequential program this is done with standard techniques 
for allocating and freeing storage. In a concurrent pro- 
gram, however, provision must also be made for serial- 
izing access to each object. The straightforward way is to 
use a single monitor for accessing all instances of  the 
object, and we recommend this approach whenever pos- 
sible. If  the objects function independently of  each other 
for the most part, however, the single monitor drastically 
reduces the maximum concurrency which can be ob- 
tained. In this case, what we want is to give each object 
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its own monitor; all these monitors will share the same 
code, since all the instances of the abstract object share 
the same code, but each object will have its own lock. 

One way to achieve this result is to make multiple 
instances of the monitor module. Mesa makes this quite 
easy, and it is the next recommended approach. How- 
ever, the data associated with a module instance includes 
information which the Mesa system uses to support 
program linking and code swapping, and there is some 
cost in duplicating this information. Furthermore, mod- 
ule instances are allocated by the system; hence the 
program cannot exercise the free control over allocation 
strategies which is possible for ordinary Mesa data ob- 
jects. We have therefore introduced a new type construc- 
tor called a monitored record, which is exactly like an 
ordinary record, except that it includes a monitor lock 
and is intended to be used as the protected data of  a 
monitor. 

In writing the code for such a monitor, the program- 
mer must specify how to access the monitored record, 
which might be embedded in some larger data structure 
passed as a parameter to the entry procedures. This is 
done with a LOCKS clause which is written at the begin- 
ning of the module: 

MONITOR LOCKS file t 
USING.file: POINTER TO FileData; 

if  the FileData is the protected data. An arbitrary expres- 
sion can appear in the LOCKS clause; for instance, LOCKS 
file.buffers[currentPage] might be appropriate if the pro- 
tected data is one of  the buffers in an array which is part 
of  the .file. Every entry procedure of  this monitor, and 
every internal procedure that does a WAIT, must have 
access to a file, so that it can acquire and release the lock 
upon entry or around a WAIT. This can be accomplished 
in two ways: the .file may be a global variable of  the 
module, or it may be a parameter to every such proce- 
dure. In the latter case, we have effectively created a 
separate monitor for each object, without limiting the 
program's freedom to arrange access paths and storage 
allocation as it likes. 

Unfortunately, the type system of  Mesa is not strong 
enough to make this construction completely safe. If  the 
value of file is changed within an entry procedure, for 
example, chaos will result, since the return from this 
procedure will release not the lock which was acquired 
during the call, but some other lock instead. In this 
example we can insist that file be read-only, but with 
another level of  indirection aliasing can occur and such 
a restriction cannot be enforced. In practice this lack of  
safety has not been a problem. 

3.4 Abandoning a Computation 
Suppose that a procedure P1 has called another pro- 

cedure P2, which in turn has called Pa and so forth until 
the current procedure is Pn. If  Pn generates an exception 
which is eventually handled by P1 (because P2 . . .  Pn do 
not provide handlers), Mesa allows the exception handler 
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in P1 to abandon the portion of  the computation being 
done in P2 . . .  Pn and continue execution in P1. When 
this happens, a distinguished exception called UNWIND 
is first generated, and each of  P 2 . . .  Pn is given a chance 
to handle it and do any necessary cleanup before its 
activation is destroyed. 

This feature of  Mesa is not part of  the concurrency 
facilities, but it does interact with those facilities in the 
following way. If one of  the procedures being aban- 
doned, say Pi, is an entry procedure, then the invariant 
must be restored and the monitor lock released before Pi 
is destroyed. Thus if the logic of  the program allows an 
UNWIND, the programmer must supply a suitable handler 
in P~ to restore the invariant; Mesa will automatically 
supply the code to release the lock. If  the programmer 
fails to supply an UNWIND handler for an entry proce- 
dure, the lock is not automatically released, but remains 
set; the cause of the resulting deadlock is not hard to 
f'md. 

4. Condition Variables 

In this section we discuss the precise semantics of  
WAIT, and other details associated with condition varia- 
bles. Hoare's definition of monitors [8] requires that a 
process waiting on a condition variable must run im- 
mediately when another process signals that variable, 
and that the signaling process in turn runs as soon as the 
waiter leaves the monitor. This definition allows the 
waiter to assume the truth of  some predicate stronger 
than the monitor invariant (which the signaler must of  
course establish), but it requires several additional pro- 
cess switches whenever a process continues after a WAIT. 
It also requires that the signaling mechanism be perfectly 
reliable. 

Mesa takes a different view: When one process estab- 
lishes a condition for which some other process may be 
waiting, it notifies the corresponding condition variable. 
A NOTIFY is regarded as a hint to a waiting process; it 
causes execution of  some process waiting on the condi- 
tion to resume at some convenient future time. When the 
waiting process resumes, it will reacquire the monitor 
lock. There is no guarantee that some other process will 
not enter the monitor before the waiting process. Hence 
nothing more than the monitor invariant may be as- 
sumed after a WAIT, and the waiter must reevaluate the 
situation each time it resumes. The proper pattern of  
code for waiting is therefore: 

WHILE NOT (OK to proceed) DO WAIT C 
ENDLOOP. 

This arrangement results in an extra evaluation of  the 
(OK tO proceed) predicate after a wait, compared to 
Hoare's monitors, in which the code is: 

IF NOT (OK to proceed) THEN WAIT C. 

In return, however, there are no extra process switches, 

I l l  

and indeed no constraints at all on when the waiting 
process must run after a NOTIFY. In fact, it is perfectly all 
right to run the waiting process even if there is not any 
NOTIFY, although this is presumably pointless if a NOTIFY 
is done whenever an interesting change is made to the 
protected data. 

It is possible that such a laissez-faire attitude to 
scheduling monitor accesses will lead to unfairness and 
even starvation. We do not think this is a legitimate 
cause for concern, since in a properly designed system 
there should typically be no processes waiting for a 
monitor lock. As Hoare, Brinch Hansen, Keedy, and 
others have pointed out, the low level scheduling mech- 
anism provided by monitor locks should not be used to 
implement high level scheduling decisions within a sys- 
tem (e.g., about which process should get a printer next). 
High level scheduling should be done by taking account 
of  the specific characteristics of  the resource being sched- 
uled (e.g., whether the fight kind of  paper is in the 
printer). Such a scheduler will delay its client processes 
on condition variables after recording information about 
their requirements, make its decisions based on this 
information, and notify the proper conditions. In such a 
design the data protected by a monitor is never a bottle- 
neck. 

The verification rules for Mesa monitors are thus 
extremely simple: The monitor invariant must be estab- 
lished just before a return from an entry procedure or a 
WAIT, and it may be assumed at the start of  an entry 
procedure and just after a WAIT. Since awakened waiters 
do not run immediately, the predicate established before 
a NOTIFY cannot be assumed after the corresponding 
WAIT, but since the waiter tests explicitly for (OK tO 
proceed), verification is actually made simpler and more 
localized. 

Another consequence of  Mesa's treatment of  NO- 
TIFY as a hint is that many applications do not trouble to 
determine whether the exact condition needed by a 
waiter has been established. Instead, they choose a very 
cheap predicate which implies the exact condition (e.g., 
some change has occurred), and NOTIFY a covering con- 
dition variable. Any waiting process is then responsible 
for determining whether the exact condition holds; if not, 
it simply waits again. For example, a process may need 
to wait until a particular object in a set changes state. A 
single condition covers the entire set, and a process 
changing any of the objects broadcasts to this condition 
(see Section 4.1). The information about exactly which 
objects are currently of  interest is implicit in the states of  
the waiting processes, rather than having to be repre- 
sented explicitly in a shared data structure. This is an 
attractive way to decouple the detailed design of two 
processes; it is feasible because the cost of  waking up a 
process is small. 

4.1 Alternatives to NOTIFY 
With this rule it is easy to add three additional ways 

to resume a waiting process: 
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Timeout. Associated with a condition variable is a 
timeout interval t. A process which has been waiting for 
time t will resume regardless of whether the condition 
has been notified. Presumably in most cases it will check 
the time and take some recovery action before waiting 
again. The original design for timeouts raised an excep- 
tion if the timeout occurred; it was changed because 
many users simply 
objected to the cost 
the exception. This 
way.  

wanted to retry on a timeout, and 
and coding complexity of  handling 
decision could certainly go either 

Abort. A process may be aborted at any time by 
executing Abort[p]. The effect is that the next time the 
process waits, or if it is waiting now, it will resume 
immediately and the Aborted exception will occur. This 
mechanism allows one process to gently prod another, 
generally to suggest that it should clean up and terminate. 
The aborted process is, however, free to do arbitrary 
computations, or indeed to ignore the abort entirely. 

Broadcast. Instead of  doing a NOTIFY to a condition, 
a process may do a BROADCAST, which causes all the 
processes waiting on the condition to resume, instead of  
simply one of  them. Since a NOTIFY is just a hint, it is 
always correct to use BROADCAST. It is better to use 
NOTIFY if there will typically be several processes waiting 
on the condition, and it is known that any waiting 
process can respond properly. On the other hand, there 
are times when a BROADCAST is correct and a NOTIFY is 

not; the alert reader may have noticed a problem with 
the example program in Section 3. l, which can be solved 
by replacing the NOTIFY with a BROADCAST. 

None of  these mechanisms affects the proof  rule for 
monitors at all. Each provides a way to attract the 
attention of  a waiting process at an appropriate time. 

Note that there is no way to stop a runaway process. 
This reflects the fact that Mesa processes are cooperative. 
Many aspects of  the design would not be appropriate in 
a competitive environment such as a general-purpose 
time-sharing system. 

4.2 Naked NOTIFY 

Communication with input/output  devices is han- 
dled by monitors and condition variables much like 
communication among processes. There is typically a 
shared data structure, whose details are determined by 
the hardware, for passing commands to the device and 
returning status information. Since it is not possible for 
the device to wait on a monitor lock, the updating 
operations on this structure must be designed so that the 
single-word atomic read and write operations provided 
by the memory are sufficient to make them atomic. 
When the device needs attention, it can NOTIFY a con- 
dition variable to wake up a waiting process (i.e., the 
interrupt handler); since the device does not actually 
acquire the monitor lock, its NOTIFY is called a naked 
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NOTIFY. The device finds the address of  the condition 
variable in a fixed memory location. 

There is one complication associated with a naked 
NOTIFY: Since the notification is not protected by a 
monitor lock, there can be a race. It is possible for a 
process to be in the monitor, find the (OK tO proceed) 
predicate to be FALSE (i.e., the device does not need 
attention), and be about to do a WAIT, when the device 
updates the shared data and does its NOTIFY. The WAIT 
will then be done and the NOTIFY from the device will be 
lost. With ordinary processes, this cannot happen, since 
the monitor lock ensures that one process cannot be 
testing the predicate and preparing to WAIT, while an- 
other is changing the value of  (OK to proceed) and doing 
the NOTIFY. The problem is avoided by providing the 
familiar wakeup-waiting switch [19] in a condition vari- 
able, thus turning it into a binary semaphore [8]. This 
switch is needed only for condition variables that are 
notified by devices. 

We briefly considered a design in which devices 
would wait on and acquire the monitor lock, exactly like 
ordinary Mesa processes; this design is attractive because 
it avoids both the anomalies just discussed. However, 
there is a serous  problem with any kind of  mutual 
exclusion between two processes which run on processors 
of  substantially different speeds: The faster process may 
have to wait for the slower one. The worst-case response 
time of the faster process therefore cannot be less than 
the time the slower one needs to finish its critical section. 
Although one can get higher throughput from the faster 
processor than from the slower one, one cannot get better 
worst-case real-time performance. We consider this a 
fundamental deficiency. 

It therefore seemed best to avoid any mutual exclu- 
sion (except for that provided by the atomic memory 
read and write operations) between Mesa code and 
device hardware and microcode. Their  relationship is 
easily cast into a producer-consumer form, and this can 
be implemented, using linked lists or arrays, with only 
the memory's mutual exclusion. Only a small amount of  
Mesa code must handle device data structures without 
the protection of  a monitor. Clearly a change of  models 
must occur at some point between a disk head and an 
application program; we see no good reason why it 
should not happen within Mesa code, although it should 
certainly be tightly encapsulated. 

4.3 Priorities 

In some applications it is desirable to use a priority 
scheduling discipline for allocating the processor(s) to 
processes which are not waiting. Unless care is taken, the 
ordering implied by the assignment of  priorities can be 
subverted by monitors. Suppose there are three priority 
levels (3 highest, l lowest), and three processes P1, P2, 
and P3, one running at each level. Let P~ and Pa com- 
municate using a monitor M. Now consider the following 
sequence of  events: 
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P1 enters M. 
P, is preempted by P2. 
P2 is preempted by P3. 
P3 tries to enter the monitor, and waits for the lock. 
P2 runs again, and can effectively prevent P3 from 
running, contrary to the purpose of the priorities. 

A simple way to avoid this situation is to associate 
with each monitor the priority of  the highest-priority 
process which ever enters that monitor. Then whenever 
a process enters a monitor, its priority is temporarily 
increased to the monitor's priority. Modula solves the 
problem in an even simpler way--interrupts are disabled 
on entry to M, thus effectively giving the process the 
highest possible priority, as well as supplying the monitor 
lock for M. This approach fails if a page fault can occur 
while executing in M. 

The mechanism is not free, and whether or not it is 
needed depends on the application. For instance, if only 
processes with adjacent priorities share a monitor, the 
problem described above cannot occur. Even if this is 
not the case, the problem may occur rarely, and absolute 
enforcement of the priority scheduling may not be im- 
portant. 

5. Implementation 

The implementation of  processes and monitors is 
split more or less equally among the Mesa compiler, the 
runtime package, and the underlying machine. The com- 
piler recognizes the various syntactic constructs and gen- 
erates appropriate code, including implicit calls on built- 
in (i.e., known to the compiler) support procedures. The 
runtime implements the less heavily used operations, 
such as process creation and destruction. The machine 
directly implements the more heavily used features, such 
as process scheduling and monitor entry/exit. 

Note that it was primarily frequency of use, rather 
than cleanliness of abstraction, that motivated our divi- 
sion of labor between processor and software. Nonethe- 
less, the split did turn out to be a fairly clean layering, in 
which the birth and death of  processes are implemented 
on top of monitors and process scheduling. 

5.1 The Processor 
The existence of a process is normally represented 

only by its stack of  procedure activation records or 
frames, plus a small (10-byte) description called a 
ProcessState. Frames are allocated from a frame heap by 
a microcoded allocator. They come in a range of sizes 
which differ by 20 percent to 30 percent; there is a 
separate free list for each size up to a few hundred bytes 
(about 15 sizes). Allocating and freeing frames are thus 
very fast, except when more frames of a given size are 
needed. Because all frames come from the heap, there is 
no need to preplan the stack space needed by a process. 
When a frame of  a given size is needed but not available, 
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Fig. 1. A process queue. 

I QueueCell I 

~ ProcessState H ProcessState ~-----~ ProcessState ~ H e a d  Tail 

there is a frame fault, and the fault handler allocates 
more frames in virtual memory. Resident procedures 
have a private frame heap which is replenished by seizing 
real memory from the virtual memory manager. 

The ProcessStates are kept in a fixed table known to 
the processor; the size of this table determines the max- 
imum number of processes. At any given time, a 
ProeessState is on exactly one queue. There are four 
kinds of queues: 

Ready queue. There is one ready queue, containing 
all processes which are ready to run. 

Monitor lock queue. When a process attempts to enter 
a locked monitor, it is moved from the ready queue to a 
queue associated with the monitor lock. 

Condition variable queue. When a process executes a 
WAIT, it is moved from the ready queue to a queue 
associated with the condition variable. 

Fault queue. A fault can make a process temporarily 
unable to run; such a process is moved from the ready 
queue to a fault queue, and a fault-handling process is 
notified. 

Queues are kept sorted by process priority. The im- 
plementation of  queues is a simple one-way circular list, 
with the queue-cell pointing to the tail of  the queue (see 
Figure 1). This compact structure allows rapid access to 
both the head and the tail of  the queue. Insertion at the 
tail and removal at the head are quick and easy; more 
general insertion and deletion involve scanning some 
fraction of the queue. The queues are usually short 
enough that this is not a problem. Only the ready queue 
grows to a substantial size during normal operation, and 
its patterns of insertions and deletions are such that 
queue scanning overhead is small. 

The queue cell of the ready queue is kept in a fixed 
location known to the processor, whose fundamental 
task is to always execute the next instruction of the 
highest priority ready process. To this end, a check is 
made before each instruction, and a process switch is 
done if necessary. In particular, this is the mechanism by 
which interrupts are serviced. The machine thus imple- 
ments a simple priority scheduler, which is preemptive 
between priorities and FIFO within a given priority. 

Queues other than the ready list are passed to the 
processor by software as operands of instructions, or 
through a trap vector in the case of  fault queues. The 
queue cells are passed by reference, since in general they 
must be updated (i.e., the identity of  the tail may change.) 
Monitor locks and condition variables are implemented 
as small records containing their associated queue cells 
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plus a small amount of extra information: in a monitor 
lock, the actual lock; in a condition variable, the timeout 
interval and the wakeup-waiting switch. 

At a fixed interval (~20 times per second) the pro- 
cessor scans the table of ProcessStates and notifies any 
waiting processes whose timeout intervals have expired. 
This special NOTIFY is tricky because the processor does 
not know the location of the condition variables on 
which such processes are waiting, and hence cannot 
update the queue cells. This problem is solved by leaving 
the queue cells out of date, but marking the processes in 
such a way that the next normal usage of the queue cells 
will notice the situation and update them appropriately. 

There is no provision for time-slicing in the current 
implementation, but it could easily be added, since it has 
no effect on the semantics of processes. 

5.2 The Runtime Support Package 
The Process module of the Mesa runtime package 

does creation and deletion of processes. This module is 
written (in Mesa) as a monitor, thus utilizing the under- 
lying synchronization machinery of the processor 
to coordinate the implementation of FORK and JOIN as 
the built-in entry procedures Process.Fork and 
Process.Join, respectively. The unused ProcessStates are 
treated as essentially normal processes which are all 
waiting on a condition variable called rebirth. A call of 
Process.Fork performs appropriate "brain surgery" on 
the first process in the queue and then notifies rebirth to 
bring the process to life; Process.Join synchronizes with 
the dying process and retrieves the results. The (implicitly 
invoked) procedure Process.End synchronizes the dying 
process with the joining process and then commits sui- 
cide by waiting on rebirth. An explicit cell on 
Process.Detach marks the process so that when it later 
calls Process.End, it will simply destroy itself immedi- 
ately. 

The operations Process.Abort and Process. Yield are 
provided to allow special handling of processes which 
wait too long and compute too long, respectively. Both 
adjust the states of the appropriate queues, using the 
machine's standard queueing mechanisms. Utility rou- 
tines are also provided by the runtime for such operations 
as setting a condition variable timeout and setting a 
process priority. 

5.3 The Compiler 
The compiler recognizes the syntactic constructs for 

processes and monitors and emits the appropriate code 
(e.g., a MONITORENTRY instruction at the start of each 
entry procedure, an implicit call of Process.Fork for each 
FORK). The compiler also performs special static checks 
to help avoid certain frequently encountered errors. For 
example, use of WAIT in an external procedure is flagged 
as an error, as is a direct call from an external procedure 
to an internal one. Because of the power of  the under- 
lying Mesa control structure primitives, and the care with 
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which concurrency was integrated into the language, the 
introduction of processes and monitors into Mesa re- 
suited in remarkably little upheaval inside the compiler. 

5.4 Performance 
Mesa's concurrent programming facilities allow the 

intrinsic parallelism of application programs to be rep- 
resented naturally; the hope is that well-structured pro- 
grams with high global efficiency will result. At the same 
time, these facilities have nontrivial local costs in storage 
and/or  execution time when compared with similar se- 
quential constructs; it is important to minimize these 
costs, so that the facilities can be applied to a finer 
"grain" of concurrency. This section summarizes the 
costs of processes and monitors relative to other basic 
Mesa constructs, such as simple statements, procedures, 
and modules. Of course, the relative efficiency of an 
arbitrary concurrent program and an equivalent sequen- 
tial one cannot be determined from these numbers alone; 
the intent is simply to provide an indication of the 
relative costs of various local constructs. 

Storage costs fall naturally into data and program 
storage (both of which reside in swappable virtual mem- 
ory unless otherwise indicated). The minimum cost for 
the existence of a Mesa module is 8 bytes of data and 2 
bytes of code. Changing the module to a monitor adds 
2 bytes of data and 2 bytes of code. The prime component 
of a module is a set of procedures, each of  which requires 
a minimum of an 8-byte activation record and 2 bytes of 
code. Changing a normal procedure to a monitor entry 
procedure leaves the size of the activation record un- 
changed, and adds 8 bytes of code. All of these costs are 
small compared with the program and data storage 
actually needed by typical modules and procedures. The 
other cost specific to monitors is space for condition 
variables; each condition variable occupies 4 bytes of 
data storage, while WAIT and NOTIFY require 12 bytes 
and 3 bytes of code, respectively. 

The data storage overhead for a process is 10 bytes 
of resident storage for its ProcessState, plus the swapp- 
able storage for its stack of procedure activation records. 
The process itself contains no extra code, but the code 
for the FORK and JOIN which create and delete it together 
occupy 13 bytes, as compared with 3 bytes for a normal 
procedure call and return. The FORK/JOIN sequence also 
uses 2 data bytes to store the process value. In summary: 

Space (bytes) 
Construct data code 

m o d u l e  8 2 

p r o c e d u r e  8 2 

cal l  + r e t u r n  - -  3 

m o n i t o r  10 4 

e n t r y  p r o c e d u r e  8 10 
F O R K + J O I N  2 13 

process  10 0 

c o n d i t i o n  v a r i a b l e  4 - -  
W A I T  - -  12 

N O T I F Y  - -  3 

C o m m u n i c a t i o n s  
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For measuring execution times we define a unit called 
a tick: The time required to execute a simple instruction 
(e.g., on a "one-MIP" machine, one tick would be one 
microsecond). A tick is arbitrarily set at one-fourth of 
the time needed to execute the simple statement "a ~-- b 
+ c" (i.e., two loads, an add, and a store). One interesting 
number against which to compare the concurrency facil- 
ities is the cost of a normal procedure call (and its 
associated return), which takes 30 ticks if  there are no 
arguments or results. 

The cost of calling and returning from a monitor 
entry procedure is 50 ticks, about 70 percent more than 
an ordinary call and return. In practice, the percentage 
increase is somewhat lower, since typical procedures pass 
arguments and return results, at a cost of 2-4 ticks per 
item. A process switch takes 60 ticks; this includes the 
queue manipulations and all the state saving and restor- 
ing. The speed of WAIT and NOTIFY depends somewhat 
on the number and priorities of the processes involved, 
but representative figures are 15 ticks for a WAIT and 6 
ticks for a NOTIFY. Finally, the minimum cost of a FORK/ 
JOIN pair is 1,100 ticks, or about 38 times that of a 
procedure call. To summarize: 

Construct Time (ticks) 

simple instruction 1 
call+return 30 
monitor call+return 50 
process switch 60 
WAIT 15 
NOTIFY, no one waiting 4 
NOTIFY, process waiting 9 
FORK+JOIN 1,100 

On the basis of these performance figures, we feel 
that our implementation has met our efficiency goals, 
with the possible exception of FORK and JOIN. The deci- 
sion to implement these two language constructs in soft- 
ware rather than in the underlying machine is the main 
reason for their somewhat lackluster performance. 
Nevertheless, we still regard this decision as a sound one, 
since these two facilities are considerably more complex 
than the basic synchronization mechanism, and are used 
much less frequently (especially JOIN, since the detached 
processes discussed in Section 2 have turned out to be 
quite popular). 

6. Applications 

In this section we describe the way in which processes 
and monitors are used by three substantial Mesa pro- 
grams: an operating system, a calendar system using 
replicated databases, and an internetwork gateway. 

6.1 Pilot: A General-Purpose Operating System 
Pilot is a Mesa-based operating system [18] which 

runs on a large personal computer. It was designed 
jointly with the new language features, and makes heavy 
use of them. Pilot has several autonomous processes of 
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its own, and can be called by any number of  client 
processes of any priority, in a fully asynchronous man- 
ner. Exploiting this potential concurrency requires exten- 
sive use of monitors within Pilot; the roughly 75 program 
modules contain nearly 40 separate monitors. 

The Pilot implementation includes about 15 dedi- 
cated processes (the exact number depends on the hard- 
ware configuration); most of these are event handlers for 
three classes of events: 

I / 0  interrupts. Naked notifies as discussed in 
Section 4.2. 

Process faults. Page faults and other such events, 
signaled via fault queues as discussed in Section 5.1. 
Both client code and the higher levels of Pilot, including 
some of the dedicated processes, can cause such faults. 

Internal exceptions. Missing entries in resident data- 
bases, for example, cause an appropriate high level 
"helper" process to wake up and retrieve the needed 
data from secondary storage. 

There are also a few "daemon" processes, which 
awaken periodically and perform housekeeping chores 
(e.g., swap out unreferenced pages). Essentially all of 
Pilot's internal processes and monitors are created at 
system initialization time (in particular, a suitable com- 
plement of interrupt-handler processes is created to 
match the actual hardware configuration, which is deter- 
mined by interrogating the hardware). The running sys- 
tem makes no use of dynamic process and monitor 
creation, largely because much of  Pilot is involved in 
implementing facilities such as virtual memory which 
are themselves used by the dynamic creation software. 

The internal structure of Pilot is fairly complicated, 
but careful placement of monitors and dedicated pro- 
cesses succeeded in limiting the number of  bugs which 
caused deadlock; over the life of the system, somewhere 
between one and two dozen distinct deadlocks have been 
discovered, all of which have been fixed relatively easily 
without any global disruption of the system's structure. 

At least two areas have caused annoying problems in 
the development of Pilot: 

(1) The lack of mutual exclusion in the handling of 
interrupts. As in more conventional interrupt systems, 
subtle bugs have occurred due to timing races between 
I /O devices and their handlers. To some extent, the 
illusion of mutual exclusion provided by the casting of 
interrupt code as a monitor may have contributed to this, 
although we feel that the resultant economy of mecha- 
nism still justifies this choice. 

(2) The interaction of the concurrency and exception 
facilities. Aside from the general problems of exception 
handling in a concurrent environment, we have experi- 
enced some difficulties due to the specific interactions of 
Mesa signals with processes and monitors (see Sections 
3.1 and 3.4). In particular, the reasonable and consistent 
handling of signals (including UNWINDS) in entry pro- 
cedures represents a considerable increase in the mental 
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overhead involved in designing a new monitor or under- 
standing an existing one. 

6.2 Violet: A Distributed Calendar System 
The Violet system [6, 7] is a distributed database 

manager which supports replicated data files, and pro- 
vides a display interface to a distributed calendar system. 
It is constructed according to the hierarchy of  abstrac- 
tions in Figure 2. Each level builds on the next lower 
one by calling procedures supplied by it. In addition, two 
of  the levels explicitly deal with more than one process. 
Of course, as any level with multiple processes calls 
lower levels, it is possible for multiple processes to be 
executing procedures in those levels as well. 

The user interface level has three processes: Display, 
Keyboard, and DataChanges. The Display process is 
responsible for keeping the display of  the database con- 
sistent with the views specified by the user and with 
changes occurring in the database itself. It is notified by 
the other processes when changes occur, and calls on 
lower levels to read information for updating the display. 
Display never calls update operations in any lower level. 
The other two processes respond to changes initiated 
either by the user (Keyboard) or by the database 
(DataChanges). The latter process is FORKed from the 
Transactions module when data being looked at by Violet 
changes, and disappears when it has reported the changes 
to  Display. 

A more complex constellation of  processes exists in 
FileSuites, which constructs a single replicated file from 
a set of representative files, each containing data from 
some version of  the replicated file. The representatives 
are stored in a transactional file system [1 l], so that each 
one is updated atomically, and each carries a version 
number. For each FileSuite being accessed, there is a 
monitor which keeps track of the known representatives 
and their version numbers. The replicated file is consid- 
ered to be updated when all the representatives in a write 
quorum have been updated; the latest version can be 
found by examining a read quorum. Provided the sum of  
the read quorum and the write quorum is as large as the 
total set of representatives, the replicated file behaves 
like a conventional file. 

When the file suite is created, it FORKS and detaches 
an inquiry process for each representative. This process 
tries to read the representative's version number, and if 
successful, reports the number to the monitor associated 
with the file suite and notifies the condition Crowd- 
Larger. Any process trying to read from the suite must 
collect a read quorum. If  there are not enough repre- 
sentatives present yet, it waits on CrowdLarger. The 
inquiry processes expire after their work is done. 

When the client wants to update the FileSuite, he 
must collect a write quorum of  representatives containing 
the current version, again waiting on CrowdLarger if one 
is not yet present. He then FORKS an update process for 
each representative in the quorum, and each tries to 
write its file. After FORKing the update processes, the 
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Fig. 2. The internal structure of Violet. 
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client JOINS each one in turn, and hence does not proceed 
until all have completed. Because all processes run within 
the same transaction, the underlying transactional file 
system guarantees that either all the representatives in 
the quorum will be written, or none of  them. 

It is possible that a write quorum is not currently 
accessible, but a read quorum is. In this case the writing 
client FORKS a copy process for each representative which 
is accessible but is not up to date. This process copies the 
current file suite contents (obtained from the read quo- 
rum) into the representative, which is now eligible to join 
the write quorum. 

Thus as many as three processes may be created for 
each representative in each replicated file. In the normal 
situation when the state of enough representatives is 
known, however, all these processes have done their 
work and vanished; only one monitor call is required to 
collect a quorum. This potentially complex structure is 
held together by a single monitor containing an array of  
representative states and a single condition variable. 

6.3 Gateway: An Internetwork Forwarder 
Another substantial application program which has 

been implemented in Mesa using the process and moni- 
tor facilities is an internetwork gateway for packet net- 
works [2]. The gateway is attached to two or more 
networks and serves as the connection point between 
them, passing packets across network boundaries as re- 
quired. To perform this task efficiently requires rather 
heavy use of  concurrency. 

At the lowest level, the gateway contains a set of  
device drivers, one per device, typically consisting of  a 
high priority interrupt process, and a monitor for syn- 
chronizing with the device and with noninterrupt level 
software. Aside from the drivers for standard devices 
(disk, keyboard, etc.) a gateway contains two or more 
drivers for Ethernet local broadcast networks [16] and /  
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or common-carr ier  lines. Each Ethernet  driver has two 
processes, an interrupt process, and a background  pro- 
cess for au tonomous  handl ing o f  t imeouts and other 
infrequent events. The driver for common-car r ie r  lines 
is similar, but has a third process which makes a collec- 
tion o f  lines resemble a single Ethernet  by  iteratively 
simulating a broadcast. The other  network drivers have 
much the same structure; all drivers provide the same 
standard network interface to higher level software. 

The next level o f  software provides packet routing 
and dispatching functions. The dispatcher consists o f  a 
moni tor  and a dedicated process. The  moni tor  synchro-  
nizes interactions between the drivers and the dispatcher 
process. The dispatcher process is normal ly  waiting for 
the complet ion o f  a packet transfer (input or  output); 
when one occurs, the interrupt process handles the inter- 
rupt, notifies the dispatcher, and immediate ly  returns to 
await the next interrupt. For  example, on input the 
interrupt process notifies the dispatcher, which dis- 
patches the newly arrived packet to the appropriate  
socket  for further processing by invoking a procedure 
associated with the socket. 

The router contains a moni tor  which keeps a routing 
table mapping  network names to addresses o f  other  
gateway machines. This defines the next " h o p "  in the 
path to each accessible remote network. The  router  also 
contains a dedicated housekeeping process which main-  
tains the table by exchanging special packets with other  
gateways. A packet is transmitted rather  differently than 
it is received. The process wishing to transmit to a remote 
socket calls into the router moni tor  to consult the routing 
table, and then the same process calls directly into the 
appropriate network driver moni tor  to initiate the output  
operation. Such asymmetry  between input and output  
is particularly characteristic o f  packet communica t ion ,  
but is also typical o f  much  other  I / O  software. 

The pr imary operat ion o f  the gateway is now easy to 
describe: When  the arrival o f  a packet has been processed 
up through the level o f  the dispatcher, and it is discovered 
that the packet is addressed to a remote socket, the 
dispatcher forwards it by  doing a normal  transmission; 
i.e., consulting the routing table and calling back down 
to the driver to initiate output.  Thus, a l though the gate- 
way contains a substantial number  o f  asynchronous  
processes, the most critical path (forwarding a message) 
involves only a single switch between a pair  o f  processes. 

Conclusion 

refined sufficiently to fit into this context. The task has 
been accomplished, however,  yielding a set o f  language 
features o f  sufficient power  that they serve as the only 
software concurrency mechanism on our  personal  com- 
puter, handl ing situations ranging f rom inpu t /ou tpu t  
interrupts to cooperative resource sharing among  unre- 
lated application programs. 
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The integration o f  processes and monitors  into the 
Mesa language was a somewhat  more  substantial task 
than one might have anticipated, given the flexibility o f  
Mesa's control structures and the amount  o f  published 
work on monitors. This was largely due to the fact that 
Mesa is designed for the construction o f  large, serious 
programs, and that processes and monitors  had  to be 
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