
Acknowledgments. The authors wish to thank Prof.
Nico Habermann, whose comments concerning both the
operating system and this paper have been extremely
helpful.

Received June 1979; accepted September 1979; revised November 1979

References
1. Baskett, F., Howard, J.H., and Montague, J.T. Task
communication in DEMOS. Proc. 6th Symp. Operating Systems
Principles, SIGOPS, 1977, pp. 23-32.
2. Bell, G.C., and Newell A. Computer Structures: Readings and
Examples. McGraw-Hill, New York, 1971.
3. Cheriton, D.R., Malcolm, M.A., Melen, L.S., and Sager, G.R.
Thoth, a portable real-time operating system. Comm. ACM 22, 2
(Feb. 1979), 105-114.
4. Cohen, E., and Jefferson, D. Protection in the Hydra operating
system. Proc. 5th Symp. Operating Systems Principles, SIGOPS,
1975, pp. 141-160.
5. Denning, P.J. Fault tolerant operating systems. Comput. Surv. 8,
4 (Dec. 1976), 359-389.
6. Fuller, S.H., Jones, A.K., Durham, I., Eds. Cm* Review, June
1977. Carnegie-Mellon Univ., June 1977.
7. Fuller, S.H., Ousterhout, J.K., Raskin, L., Rubinfeld, P., Sindhu,
P.S., and Swan, R.J. Multi-microprocessors: An overview and
working example. Proc. IEEE 66, 2 (1978), 216-228.
8. Goodenough, J.B. Exception handling: Issues and a proposed
notation. Comm. ACM 18, 12 (Dec. 1975), 683-696.
9. Habermann, A.N., Flon, L., and Cooprider, L. Modularization
and hierarchy in a family of operating systems. Comm. A CM 19, 5
(May 1976), 266-272.
10. Jones, A.K., Chansler, R.J. Jr., Durham, I., Feiler, P., and
Schwans, K. Software management of Cm*--A distributed
multiprocessor. Proc. AFIPS 1977 NCC, Vol. 46, AFIPS Press,
Arlington, Va., 1977, pp. 657-663.
i l . Jones, A.K., Chansler, R.J. Jr., Durham, I., Feiler, P., Scelza,
D.A., Schwans, K., and Vegdahl, S.R. Programming issues raised by
a multiprocessor. Proc. IEEE 66, 2 (1978), 229-237.
12. Jones, A.K., et al. StarOS, a multiprocessor operating system for
the support of task forces. Proc. 7th Symp. Operating Systems
Principles, SIGOPS, 1979, pp. 117-127.
13. Jones, A.K., and Schwans, K. TASK forces: Distributed software
for solving problems of substantial size. 4th Int. Conf. Software Eng.,
SIGSOFT, 1979, pp. 315-330.
14. Jones, A.K. Protection in programmed systems. Ph.D. Th.,
Carnegie-Mellon Univ., Pittsburgh, Pa., 1973.
15. Lauer, H.C., and Needham, R.M. On the duality of operating
system structures. Proc. 2nd Int. Symp. Operating Systems, 1RIA,
1978; Reprinted in Operating Syst. Rev. 13, 2 (April 1979), 3-19.
16. Levin, R. Program structures for exceptional condition handling.
Ph.D Th., Carnegie-Mellon Univ., Pittsburgh, Pa., June 1977.
17. Liskov, B., and Snyder, A. Structured exception handling. Lab.
for Computer Science, M.I.T., Cambridge, Mass., March 1979.
18. Parnas, D.L. On the criteria to be used in decomposing systems
into modules. Comm. ACM 15, 12 (Dec. 1972), 1053-1058.
19. Raskin, L. Performance evaluation of multiple processor systems.
Ph.D. Th., Carnegie-Mellon Univ., Pittsburgh, Pa., Aug. 1978.
20. Ritchie, D.M., and Thompson, K. The UNIX time-sharing
system. Comm. ACM 17, 7 (July 1974), 365-375.
21. Saltzer, J.H., and Schroeder, M.D. The protection of information
in computer systems. Proc. IEEE 63, 9 (1975), 1278-1308.
22. Schroeder, M.D., Clark, D.D., and Saltzer, J.H. The Multics
kernel design project. Proc. 6th Symp. Operating Systems Principles,
SIGOPS, 1977, pp. 43-56.
23. Sutherland, I.E., and Mead, C.A. Microelectronics and computer
science. Sci. Amer. 237, 3 (Sept. 1977), 210-229.
24. Swan, R.J. The switching structure and addressing architecture of
an extensible multiprocessor: Cm*. Ph.D. Th., Carnegie-Mellon
Univ., Pittsburgh, Pa., Aug. 1978.
25. Swan, R.J., Bechtolsheim, A., Lai, K., and Ousterhout, J.K. The
implementation of the Cm* multi-microprocessor. Proc. AFIPS 1977
NCC, Vol. 46, AFIPS Press, Arlington, Va. 1977, pp. 645-655.
26. Swan, R.J., Fuller, S.H., and Siewiorek, D.P. Cm*--A modular,
multi-microprocessor. Proc. AFIPS 1977 NCC, Vol. 46, AFIPS Press,
Arlington Va., 1977, pp. 637-644.

105

Operating R. Stockton Gaines
Systems Editor

Experience with
Processes and
Monitors in Mesa
Butler W. Lampson
Xerox Palo Alto Research Center

David D. Redell
Xerox Business Systems

The use of monitors for describing concurrency has
been much discussed in the literature. When monitors
are used in real systems of any size, however, a number
of problems arise which have not been adequately dealt
with: the semantics of nested monitor calls; the various
ways of defining the meaning of WAIT; priority
scheduling; handling of timeouts, aborts and other
exceptional conditions; interactions with process
creation and destruction; monitoring large numbers of
small objects. These problems are addressed by the
facilities described here for concurrent programming in
Mesa. Experience with several substantial applications
gives us some confidence in the validity of our
solutions.

Key Words and Phrases: concurrency, condition
variable, deadlock, module, monitor, operating system,
process, synchronization, task

CR Categories: 4.32, 4.35, 5.24

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

A version of this paper was presented at the 7th ACM Symposium
on Operating Systems Principles, Pacific Grove, Calif., Dec. 10-12,
1979.

Authors' present address: B. W. Lampson and D. D. Redell, Xerox
Corporation, 3333 Coyote Hill Road, Palo Alto, CA 94304.
© 1980 ACM 0001-0782/80/0200-0105 $00.75.

Communications February 1980
of Volume 23
the ACM Number 2

1. Introduction

In early 1977 we began to design the concurrent
programming facilities of Pilot, a new operating system
for a personal computer [18]. Pilot is a fairly large
program itself (24,000 lines of Mesa code). In addition,
it must support a variety of quite large application
programs, ranging from database management to inter-
network message transmission, which are heavy users of
concurrency; our experience with some of these appli-
cations is discussed later in the paper. We intended the
new facilities to be used at least for the following pur-
poses:

Local concurrent programming. An individual appli-
cation can be implemented as a tightly coupled group of
synchronized processes to express the concurrency in-
herent in the application.

Global resource sharing. Independent applications
can run together on the same machine, cooperatively
sharing the resources; in particular, their processes can
share the processor.

Replacing interrupts. A request for software attention
to a device can be handled directly by waking up an
appropriate process, without going through a separate
interrupt mechanism (e.g., a forced branch).

Pilot is closely coupled to the Mesa language [17],
which is used to write both Pilot itself and the applica-
tions programs it supports. Hence it was natural to design
these facilities as part of Mesa; this makes them easier to
use, and also allows the compiler to detect many kinds
of errors in their use. The idea of integrating such
facilities into a language is certainly not new; it goes
back at least as far as PL/ I [1]. Furthermore the invention
of monitors by Dijkstra, Hoare, and Brinch Hansen [3,
5, 8] provided a very attractive framework for reliable
concurrent programming. There followed a number of
papers on the integration of concurrency into program-
ming languages, and at least one implementation [4].

We therefore thought that our task would be an easy
one: read the literature, compare the alternatives offered
there, and pick the one most suitable for our needs. This
expectation proved to be naive. Because of the large size
and wide variety of our applications, we had to address
a number of issues which were not clearly resolved in
the published work on monitors. The most notable
among these are listed below, with the sections in which
they are discussed.
(a) Program structure. Mesa has facilities for organizing

programs into modules which communicate
through well-defined interfaces. Processes must fit
into this scheme (see Section 3.1).

(b) Creating processes. A set of processes fixed at com-
pile-time is unacceptable in such a general-purpose
system (see Section 2). Existing proposals for vary-
ing the amount of concurrency were limited to
concurrent elaboration of the statements in a block,
in the style of Algol 68 (except for the rather
complex mechanism in PL/I) .

106

(c) Creating monitors. A fixed number of monitors is
also unacceptable, since the number of synchroniz-
ers should be a function of the amount of data, but
many of the details of existing proposals depended
on a fixed association of a monitor with a block of
the program text (see Section 3.2).

(d) WAIT in a nested monitor call. This issue had been
(and has continued to be) the source of a consid-
erable amount of confusion, which we had to re-
solve in an acceptable manner before we could
proceed (see Section 3.1).

(e) Exceptions. A realistic system must have timeouts,
and it must have a way to abort a process (see
Section 4.1). Mesa has an UNWIND mechanism for
abandoning part of a sequential computation in an
orderly way, and this must interact properly with
monitors (see Section 3.3).

(f) Scheduling. The precise semantics of waiting on a
condition variable had been discussed [10] but not
agreed upon, and the reasons for making any par-
ticular choice had not been articulated (see Section
4). No attention had been paid to the interaction
between monitors and priority scheduling of pro-
cesses (see Section 4.3).

(g) Input-output. The details of fitting I /O devices into
the framework of monitors and condition variables
had not been fully worked out (see Section 4.2).

Some of these points have also been made by Keedy
[12], who discusses the usefulness of monitors in a mod-
em general-purpose mainframe operating system. The
Modula language [21] addresses (b) and (g), but in a
more limited context than ours.

Before settling on the monitor scheme described be-
low, we considered other possibilities. We felt that our
first task was to choose either shared memory (i.e.,
monitors) or message passing as our basic interprocess
communication paradigm.

Message passing has been used (without language
support) in a number of operating systems; for a recent
proposal to embed messages in a language, see [9]. An
analysis of the differences between such schemes and
those based on monitors was made by Lauer and Need-
ham [14]. They conclude that, given certain mild restric-
tions on programming style, the two schemes are duals
under the transformation

message ~ process
process o monitor
send/reply o call/return

Since our work is based on a language whose main tool
of program structuring is the procedure, it was consid-
erably easier to use a monitor scheme than to devise a
message-passing scheme properly integrated with the
type system and control structures of the language.

Within the shared memory paradigm, we considered
the possibility of adopting a simpler primitive synchro-
nization facility than monitors. Assuming the absence of
multiple processors, the simplest form of mutual exclu-

Communications February 1980
of Volume 23
the ACM Number 2

sion appears to be a nonpreemptive scheduler; if pro-
cesses only yield the processor voluntarily, then mutual
exclusion is insured between yield-points. In its simplest
form, this approach tends to produce very delicate pro-
grams, since the insertion of a yield in a random place
can introduce a subtle bug in a previously correct pro-
gram. This danger can be alleviated by the addition of
a modest amount of"syntactic sugar" to delineate critical
sections within which the processor must not be yielded
(e.g., pseudo monitors). This sugared form of non-
preemptive scheduling can provide extremely efficient
solutions to simple problems, but was nonetheless re-
jected for four reasons:

(1) While we were willing to accept an implementation
which would not work on multiple processors, we
did not want to embed this restriction in our basic
semantics.

(2) A separate preemptive mechanism is needed any-
way, since the processor must respond to time-
critical events (e.g., I /O interrupts) for which vol-
untary process switching is clearly too sluggish.
With preemptive process scheduling, interrupts can
be treated as ordinary process wakeups, which re-
duces the total amount of machinery needed and
eliminates the awkward situations which tend to
occur at the boundary between two scheduling re-
gimes.

(3) The use of nonpreemption as mutual exclusion
restricts programming generality within critical sec-
tions; in particular, a procedure that happens to
yield the processor cannot be called. In large sys-
tems where modularity is essential, such restrictions
are intolerable.

(4) The Mesa concurrency facilities function in a vir-
tual memory environment. The use of nonpreemp-
tion as mutual exclusion forbids multiprogramming
across page faults, since that would effectively insert
preemptions at arbitrary points in the program.

For mutual exclusion with a preemptive scheduler, it
is necessary to introduce explicit locks, and machinery
which makes requesting processes wait when a lock is
unavailable. We considered casting our locks as sema-
phores, but decided that, compared with monitors, they
exert too little structuring discipline on concurrent pro-
grams. Semaphores do solve several different problems
with a single mechanism (e.g, mutual exclusion, pro-
ducer/consumer) but we found similar economies in our
implementation of monitors and condition variables (see
Section 5. l).

We have not associated any protection mechanism
with processes in Mesa, except what is implicit in the
type system of the language. Since the system supports
only one user, we feel that the considerable protection
offered by the strong typing of the language is sufficient.
This fact contributes substantially to the low cost of
process operations.

107

2. Processes

Mesa casts the creation of a new process as a special
procedure activation which executes concurrently with
its caller. Mesa allows any procedure (except an internal
procedure of a monitor; see Section 3.1) to be invoked in
this way, at the caller's discretion. It is possible to later
retrieve the results returned by the procedure. For ex-
ample, a keyboard input routine might be invoked as a
normal procedure by writing:

buffer ~- ReadLine[terminal]

but since ReadLine is likely to wait for input, its caller
might wish instead to compute concurrently:

p ~ FORK Readline[terminal];
. . . (concurrent computation) . . .
buffer ~-- JOIN p;

Here the types are

Readline: PROCEDURE [Device] RETURNS [Line];
p: PROCESS RETURNS [Line].

The rendezvous between the return from ReadLine
which terminates the new process and the JOIN in the old
process is provided automatically. ReadLine is the root
procedure of the new process.

This scheme has a number of important properties.
(a) It treats a process as a first-class value in the lan-

guage, which can be assigned to a variable or an
array element, passed as a parameter, and in general
treated exactly like any other value. A process value
is like a pointer value or a procedure value which
refers to a nested procedure, in that it can become
a dangling reference if the process to which it refers
goes away.

(b) The method for passing parameters to a new pro-
cess and retrieving its results is exactly the same as
the corresponding method for procedures, and is
subject to the same strict type checking. Just as
PROCEDURE is a generator for a family of types
(depending on the argument and result types), so
PROCESS is a similar generator, slightly simpler since
it depends only on result types.

(c) No special declaration is needed for a procedure
which is invoked as a process. Because of the im-
plementation of procedure calls and other global
control transfers in Mesa [13], there is no extra
execution cost for this generality.

(d) The cost of creating and destroying a process is
moderate, and the cost in storage is only twice the
minimum cost of a procedure instance. It is there-
fore feasible to program with a large number of
processes, and to vary the number quite rapidly. As
Lauer and Needham [14] point out, there are many
synchronization problems which have straightfor-
ward solutions using monitors only when obtaining
a new process is cheap.

Communications February 1980
of Volume 23
the ACM Number 2

Many patterns of process creation are possible. A
common one is to create a detached process, which never
returns a result to its creator, but instead functions quite
independently. When the root procedurep of a detached
process returns, the process is destroyed without any
fuss. The fact that no one intends to wait for a result
from p can be expressed by executing:

Detach[p]

From the point of view of the caller, this is similar to
freeing a dynamic variable--it is generally an error to
make any further use of the current value of p, since
the process, running asynchronously, may complete
its work and be destroyed at any time. Of course the
design of the program may be such that this cannot
happen, and in this case the value of p can still be
useful as a parameter to the Abort operation (see
Section 4.1).

This remark illustrates a general point: Processes
offer some new opportunities to create dangling refer-
ences. A process variable itself is a kind of pointer, and
must not be used after the process is destroyed. Further-
more, parameters passed by reference to a process are
pointers, and if they happen to be local variables of a
procedure, that procedure must not return until the
process is destroyed. Like most implementation lan-
guages, Mesa does not provide any protection against
dangling references, whether connnected with processes
or not.

The ordinary Mesa facility for exception handling
uses the ordering established by procedure calls to con-
trol the processing of exceptions. Any block may have
an attached exception handler. The block containing the
statement which causes the exception is given the first
chance to handle it, then its enclosing block, and so forth
until a procedure body is reached. Then the caller of the
procedure is given a chance in the same way. Since the
root procedure of a process has no caller, it must be
prepared to handle any exceptions which can be gener-
ated in the process, including exceptions generated by
the procedure itself. If it fails to do so, the resulting error
sends control to the debugger, where the identity of the
procedure and the exception can easily be determined
by a programmer. This is not much comfort, however,
when a system is in operational use. The practical con-
sequence is that while any procedure suitable for forking
can also be called sequentially, the converse is not gen-
erally true.

3. Monitors

When several processes interact by sharing data, care
must be taken to properly synchronize access to the data.
The idea behind monitors is that a proper vehicle for this
interaction is one which unifies

108

- - the synchronization,
- - the shared data,
- - t he body of code which performs the accesses.

The data is protected by a monitor, and can only be
accessed within the body of a monitor procedure. There
are two kinds of monitor procedures: entry procedures,
which can be called from outside the monitor, and
internalprocedures, which can only be called from mon-
itor procedures. Processes can only perform operations
on the data by calling entry procedures. The monitor
ensures that at most one process is executing a monitor
procedure at a time; this process is said to be in the
monitor. If a process is in the monitor, any other process
which calls an entry procedure will be delayed. The
monitor procedures are written textually next to each
other, and next to the declaration of the protected data,
so that a reader can conveniently survey all the references
to the data.

As long as any order of calling the entry procedures
produces meaningful results, no additional synchroni-
zation is needed among the processes sharing the moni-
tor. If a random order is not acceptable, other provisions
must be made in the program outside the monitor. For
example, an unbounded buffer with Put and Get proce-
dures imposes no constraints (of course a Get may have
to wait, but this is taken care of within the monitor, as
described in the next section). On the other hand, a tape
unit with Reserve, Read, Write, and Release operations
requires that each process execute a Reserve first and a
Release last. A second process executing a Reserve will
be delayed by the monitor, but another process doing a
Read without a prior Reserve will produce chaos. Thus
monitors do not solve all the problems of concurrent
programming; they are intended, in part, as primitive
building blocks for more complex scheduling policies. A
discussion of such policies and how to implement them
using monitors is beyond the scope of this paper.

3.1 Monitor Modules

In Mesa the simplest monitor is an instance of a
module, which is the basic unit of global program struc-
turing. A Mesa module consists of a collection of pro-
cedures and their global data, and in sequential program-
ming is used to implement a data abstraction. Such a
module has PUBLIC procedures which constitute the ex-
ternal interface to the abstraction, and PRIVATE proce-
dures which are internal to the implementation and
cannot be called from outside the module; its data is
normally entirely private. A MONITOR module differs
only slightly. It has three kinds of procedures: entry,
internal (private), and external (nonmonitor procedures).
The first two are the monitor procedures, and execute
with the monitor lock held. For example, consider a
simple storage allocator with two entry procedures, Al-
locate and Free, and an external procedure Expand which
increases the size of a block.

Communications February 1980
of Volume 23
the ACM Number 2

StorageAllocator. MONITOR = BEGIN

availableStorage: INTEGER;
moreAvailable: CONDITION;

Allocate: ENTRY PROCEDURE [size: INTEGER]

RETURNS [p: POINTER] = BEGIN

UNTIL availableStorage _> size
DO WAIT morea vailable ENDLOOP;

p ~- (remove chunk of size words & update availableStorage)
END;

Free: ENTRY PROCEDURE [p: POINTER, size: INTEGER]

= BEGIN

(put back chunk of size words & update availableStorage);
NOTIFY morea vailable END;

Expand: PUBLIC PROCEDURE [pOId: POINTER,

size: INTEGER]

RETURNS [pNew: POINTER] = BEGIN

pNew ~ A llocate[size];
(copy contents from old block to new block);
Free[pOM] END;

END.

A Mesa module is normally used to package a col-
lection of related procedures and protect their private
data from external access. In order to avoid introducing
a new lexical structuring mechanism, we chose to make
the scope of a monitor identical to a module. Sometimes,
however, procedures which belong in an abstraction do
not need access to any shared data, and hence need not
be entry procedures of the monitor; these must be distin-
guished somehow.

For example, two asynchronous processes clearly
must not execute in the Allocate or Free procedures at
the same time; hence, these must be entry procedures.
On the other hand, it is unnecessary to hold the monitor
lock during the copy in Expand, even though this pro-
cedure logically belongs in the storage allocator module;
it is thus written as an external procedure. A more
complex monitor might also have internal procedures,
which are used to structure its computations, but which
are inaccessible from outside the monitor. These do not
acquire and release the lock on call and return, since
they can only be called when the lock is already held.

I f no suitable block is available, Allocate makes its
caller wait on the condition variable morea vailable. Free
does a NOTIFY to this variable whenever a new block
becomes available; this causes some process waiting on
the variable to resume execution (see Section 4 for
details). The WAIT releases the monitor lock, which is
reacquired when the waiting process reenters the moni-
tor. I f a WAIT is done in an internal procedure, it still
releases the lock. If, however, the monitor calls some
other procedure which is outside the monitor module,
the lock is not released, even if the other procedure is
in (or calls) another monitor and ends up doing a
WAIT. The same rule is adopted in Concurrent
Pascal [4].

To understand the reasons for this, consider the form
of a correctness argument for a program using a monitor.
The basic idea is that the monitor maintains an invariant
which is always true of its data, except when some
process is executing in the monitor. Whenever control

109

leaves the monitor, this invariant must be established. In
return, whenever control enters the monitor the invariant
can be assumed. Thus an entry procedure must establish
the invariant before returning, and monitor procedures
must establish it before doing a WAIT. The invariant can
be assumed at the start of an entry procedure, and after
each WAIT. Under these conditions, the monitor lock
ensures that no one can enter the monitor when the
invariant is false. Now, if the lock were to be released on
a WAIT done in another monitor which happens to be
called from this one, the invariant would have to be
established before making the call which leads to the
WAIT. Since in general there is no way to know whether
a call outside the monitor will lead to a WAIT, the
invariant would have to be established before every such
call. The result would be to make calling such procedures
hopelessly cumbersome.

An alternative solution is to allow an outside block to
be written inside a monitor, with the following meaning:
on entry to the block the lock is released (and hence the
invariant must be established); within the block the
protected data is inaccessible; on leaving the block the
lock is reacquired. This scheme allows the state repre-
sented by the execution environment of the monitor to
be maintained during the outside call, and imposes a
minimal burden on the programmer: to establish the
invariant before making the call. This mechanism would
be easy to add to Mesa; we have left it out because we
have not seen convincing examples in which it signifi-
cantly simplifies the program.

I f an entry procedure generates an exception in the
usual way, the result will be a call on the exception
handler from within the monitor, so that the lock will
not be released. In particular, this means that the excep-
tion handler must carefully avoid invoking that same
monitor, or a deadlock will result. To avoid this restric-
tion, the entry procedure can restore the invariant and
then execute

RETURN WITH E R R O R [(a r g u m e n t s)]

which returns from the entry procedure, thus releasing
the lock, and then generates the exception.

3.2 Monitors and Deadlock
There are three patterns of pairwise deadlock that

can occur using monitors. In practice, of course, dead-
locks often involve more than two processes, in which
case the actual patterns observed tend to be more com-
plicated; conversely, it is also possible for a single process
to deadlock with itself (e.g., if an entry procedure is
recursive).

The simplest form of deadlock takes place inside a
single monitor when two processes do a WAIT, each
expecting to be awakened by the other. This represents
a localized bug in the monitor code and is usually easy
to locate and correct.

A more subtle form of deadlock can occur if there is
a cyclic calling pattern between two monitors. Thus if

Communicat ions February 1980
of Volume 23
the ACM Number 2

monitor M calls an entry procedure in N, and N calls
one in M, each will wait for the other to release the
monitor lock. This kind of deadlock is made neither
more nor less serious by the monitor mechanism. It arises
whenever such cyclic dependencies are allowed to occur
in a program, and can be avoided in a number of ways.
The simplest is to impose a partial ordering on resources
such that all the resources simultaneously possessed by
any process are totally ordered, and insist that if resource
r precedes s in the ordering, then r cannot be acquired
later than s. When the resources are monitors, this re-
duces to the simple rule that mutually recursive monitors
must be avoided. Concurrent Pascal [4] makes this check
at compile time; Mesa cannot do so because it has
procedure variables.

A more serious problem arises if M calls N, and N
then waits for a condition which can only occur when
another process enters N through M and makes the
condition true. In this situation, N will be unlocked,
since the WAIT occurred there, but M will remain locked
during the WAIT in N. This kind of two-level data
abstraction must be handled with some care. A straight-
forward solution using standard monitors is to break M
into two parts: a monitor M' and an ordinary module O
which implements the abstraction defined by M, and
calls M' for access to the shared data. The call on N must
be done from O rather than from within M'.

Monitors, like any other interprocess communication
mechanism, are a tool for implementing synchroniza-
tion constraints chosen by the programmer. It is unrea-
sonable to blame the tool when poorly chosen constraints
lead to deadlock. What is crucial, however, is that the
tool make the program structure as understandable as
possible, while not restricting the programmer too much
in his choice of constraints (e.g., by forcing a monitor
lock to be held much longer than necessary). To some
extent, these two goals tend to conflict; the Mesa con-
currency facilities attempt to strike a reasonable balance
and provide an environment in which the conscientious
programmer can avoid deadlock reasonably easily. Our
experience in this area is reported in Section 6.

3.3 Monitored Objects
Often we wish to have a collection of shared data

objects, each one representing an instance of some ab-
stract object such as a file, a storage volume, a virtual
circuit, or a database view, and we wish to add objects
to the collection and delete them dynamically. In a
sequential program this is done with standard techniques
for allocating and freeing storage. In a concurrent pro-
gram, however, provision must also be made for serial-
izing access to each object. The straightforward way is to
use a single monitor for accessing all instances of the
object, and we recommend this approach whenever pos-
sible. If the objects function independently of each other
for the most part, however, the single monitor drastically
reduces the maximum concurrency which can be ob-
tained. In this case, what we want is to give each object

110

its own monitor; all these monitors will share the same
code, since all the instances of the abstract object share
the same code, but each object will have its own lock.

One way to achieve this result is to make multiple
instances of the monitor module. Mesa makes this quite
easy, and it is the next recommended approach. How-
ever, the data associated with a module instance includes
information which the Mesa system uses to support
program linking and code swapping, and there is some
cost in duplicating this information. Furthermore, mod-
ule instances are allocated by the system; hence the
program cannot exercise the free control over allocation
strategies which is possible for ordinary Mesa data ob-
jects. We have therefore introduced a new type construc-
tor called a monitored record, which is exactly like an
ordinary record, except that it includes a monitor lock
and is intended to be used as the protected data of a
monitor.

In writing the code for such a monitor, the program-
mer must specify how to access the monitored record,
which might be embedded in some larger data structure
passed as a parameter to the entry procedures. This is
done with a LOCKS clause which is written at the begin-
ning of the module:

MONITOR LOCKS file t
USING.file: POINTER TO FileData;

if the FileData is the protected data. An arbitrary expres-
sion can appear in the LOCKS clause; for instance, LOCKS
file.buffers[currentPage] might be appropriate if the pro-
tected data is one of the buffers in an array which is part
of the .file. Every entry procedure of this monitor, and
every internal procedure that does a WAIT, must have
access to a file, so that it can acquire and release the lock
upon entry or around a WAIT. This can be accomplished
in two ways: the .file may be a global variable of the
module, or it may be a parameter to every such proce-
dure. In the latter case, we have effectively created a
separate monitor for each object, without limiting the
program's freedom to arrange access paths and storage
allocation as it likes.

Unfortunately, the type system of Mesa is not strong
enough to make this construction completely safe. If the
value of file is changed within an entry procedure, for
example, chaos will result, since the return from this
procedure will release not the lock which was acquired
during the call, but some other lock instead. In this
example we can insist that file be read-only, but with
another level of indirection aliasing can occur and such
a restriction cannot be enforced. In practice this lack of
safety has not been a problem.

3.4 Abandoning a Computation
Suppose that a procedure P1 has called another pro-

cedure P2, which in turn has called Pa and so forth until
the current procedure is Pn. If Pn generates an exception
which is eventually handled by P1 (because P2 . . . Pn do
not provide handlers), Mesa allows the exception handler

Communications February 1980
of Volume 23
the ACM Number 2

in P1 to abandon the portion of the computation being
done in P2 . . . Pn and continue execution in P1. When
this happens, a distinguished exception called UNWIND
is first generated, and each of P 2 . . . Pn is given a chance
to handle it and do any necessary cleanup before its
activation is destroyed.

This feature of Mesa is not part of the concurrency
facilities, but it does interact with those facilities in the
following way. If one of the procedures being aban-
doned, say Pi, is an entry procedure, then the invariant
must be restored and the monitor lock released before Pi
is destroyed. Thus if the logic of the program allows an
UNWIND, the programmer must supply a suitable handler
in P~ to restore the invariant; Mesa will automatically
supply the code to release the lock. If the programmer
fails to supply an UNWIND handler for an entry proce-
dure, the lock is not automatically released, but remains
set; the cause of the resulting deadlock is not hard to
f'md.

4. Condition Variables

In this section we discuss the precise semantics of
WAIT, and other details associated with condition varia-
bles. Hoare's definition of monitors [8] requires that a
process waiting on a condition variable must run im-
mediately when another process signals that variable,
and that the signaling process in turn runs as soon as the
waiter leaves the monitor. This definition allows the
waiter to assume the truth of some predicate stronger
than the monitor invariant (which the signaler must of
course establish), but it requires several additional pro-
cess switches whenever a process continues after a WAIT.
It also requires that the signaling mechanism be perfectly
reliable.

Mesa takes a different view: When one process estab-
lishes a condition for which some other process may be
waiting, it notifies the corresponding condition variable.
A NOTIFY is regarded as a hint to a waiting process; it
causes execution of some process waiting on the condi-
tion to resume at some convenient future time. When the
waiting process resumes, it will reacquire the monitor
lock. There is no guarantee that some other process will
not enter the monitor before the waiting process. Hence
nothing more than the monitor invariant may be as-
sumed after a WAIT, and the waiter must reevaluate the
situation each time it resumes. The proper pattern of
code for waiting is therefore:

WHILE NOT (OK to proceed) DO WAIT C
ENDLOOP.

This arrangement results in an extra evaluation of the
(OK tO proceed) predicate after a wait, compared to
Hoare's monitors, in which the code is:

IF NOT (OK to proceed) THEN WAIT C.

In return, however, there are no extra process switches,

I l l

and indeed no constraints at all on when the waiting
process must run after a NOTIFY. In fact, it is perfectly all
right to run the waiting process even if there is not any
NOTIFY, although this is presumably pointless if a NOTIFY
is done whenever an interesting change is made to the
protected data.

It is possible that such a laissez-faire attitude to
scheduling monitor accesses will lead to unfairness and
even starvation. We do not think this is a legitimate
cause for concern, since in a properly designed system
there should typically be no processes waiting for a
monitor lock. As Hoare, Brinch Hansen, Keedy, and
others have pointed out, the low level scheduling mech-
anism provided by monitor locks should not be used to
implement high level scheduling decisions within a sys-
tem (e.g., about which process should get a printer next).
High level scheduling should be done by taking account
of the specific characteristics of the resource being sched-
uled (e.g., whether the fight kind of paper is in the
printer). Such a scheduler will delay its client processes
on condition variables after recording information about
their requirements, make its decisions based on this
information, and notify the proper conditions. In such a
design the data protected by a monitor is never a bottle-
neck.

The verification rules for Mesa monitors are thus
extremely simple: The monitor invariant must be estab-
lished just before a return from an entry procedure or a
WAIT, and it may be assumed at the start of an entry
procedure and just after a WAIT. Since awakened waiters
do not run immediately, the predicate established before
a NOTIFY cannot be assumed after the corresponding
WAIT, but since the waiter tests explicitly for (OK tO
proceed), verification is actually made simpler and more
localized.

Another consequence of Mesa's treatment of NO-
TIFY as a hint is that many applications do not trouble to
determine whether the exact condition needed by a
waiter has been established. Instead, they choose a very
cheap predicate which implies the exact condition (e.g.,
some change has occurred), and NOTIFY a covering con-
dition variable. Any waiting process is then responsible
for determining whether the exact condition holds; if not,
it simply waits again. For example, a process may need
to wait until a particular object in a set changes state. A
single condition covers the entire set, and a process
changing any of the objects broadcasts to this condition
(see Section 4.1). The information about exactly which
objects are currently of interest is implicit in the states of
the waiting processes, rather than having to be repre-
sented explicitly in a shared data structure. This is an
attractive way to decouple the detailed design of two
processes; it is feasible because the cost of waking up a
process is small.

4.1 Alternatives to NOTIFY
With this rule it is easy to add three additional ways

to resume a waiting process:

Communicat ions February 1980
of Volume 23
the ACM Number 2

Timeout. Associated with a condition variable is a
timeout interval t. A process which has been waiting for
time t will resume regardless of whether the condition
has been notified. Presumably in most cases it will check
the time and take some recovery action before waiting
again. The original design for timeouts raised an excep-
tion if the timeout occurred; it was changed because
many users simply
objected to the cost
the exception. This
way.

wanted to retry on a timeout, and
and coding complexity of handling
decision could certainly go either

Abort. A process may be aborted at any time by
executing Abort[p]. The effect is that the next time the
process waits, or if it is waiting now, it will resume
immediately and the Aborted exception will occur. This
mechanism allows one process to gently prod another,
generally to suggest that it should clean up and terminate.
The aborted process is, however, free to do arbitrary
computations, or indeed to ignore the abort entirely.

Broadcast. Instead of doing a NOTIFY to a condition,
a process may do a BROADCAST, which causes all the
processes waiting on the condition to resume, instead of
simply one of them. Since a NOTIFY is just a hint, it is
always correct to use BROADCAST. It is better to use
NOTIFY if there will typically be several processes waiting
on the condition, and it is known that any waiting
process can respond properly. On the other hand, there
are times when a BROADCAST is correct and a NOTIFY is

not; the alert reader may have noticed a problem with
the example program in Section 3. l, which can be solved
by replacing the NOTIFY with a BROADCAST.

None of these mechanisms affects the proof rule for
monitors at all. Each provides a way to attract the
attention of a waiting process at an appropriate time.

Note that there is no way to stop a runaway process.
This reflects the fact that Mesa processes are cooperative.
Many aspects of the design would not be appropriate in
a competitive environment such as a general-purpose
time-sharing system.

4.2 Naked NOTIFY

Communication with input/output devices is han-
dled by monitors and condition variables much like
communication among processes. There is typically a
shared data structure, whose details are determined by
the hardware, for passing commands to the device and
returning status information. Since it is not possible for
the device to wait on a monitor lock, the updating
operations on this structure must be designed so that the
single-word atomic read and write operations provided
by the memory are sufficient to make them atomic.
When the device needs attention, it can NOTIFY a con-
dition variable to wake up a waiting process (i.e., the
interrupt handler); since the device does not actually
acquire the monitor lock, its NOTIFY is called a naked

112

NOTIFY. The device finds the address of the condition
variable in a fixed memory location.

There is one complication associated with a naked
NOTIFY: Since the notification is not protected by a
monitor lock, there can be a race. It is possible for a
process to be in the monitor, find the (OK tO proceed)
predicate to be FALSE (i.e., the device does not need
attention), and be about to do a WAIT, when the device
updates the shared data and does its NOTIFY. The WAIT
will then be done and the NOTIFY from the device will be
lost. With ordinary processes, this cannot happen, since
the monitor lock ensures that one process cannot be
testing the predicate and preparing to WAIT, while an-
other is changing the value of (OK to proceed) and doing
the NOTIFY. The problem is avoided by providing the
familiar wakeup-waiting switch [19] in a condition vari-
able, thus turning it into a binary semaphore [8]. This
switch is needed only for condition variables that are
notified by devices.

We briefly considered a design in which devices
would wait on and acquire the monitor lock, exactly like
ordinary Mesa processes; this design is attractive because
it avoids both the anomalies just discussed. However,
there is a serous problem with any kind of mutual
exclusion between two processes which run on processors
of substantially different speeds: The faster process may
have to wait for the slower one. The worst-case response
time of the faster process therefore cannot be less than
the time the slower one needs to finish its critical section.
Although one can get higher throughput from the faster
processor than from the slower one, one cannot get better
worst-case real-time performance. We consider this a
fundamental deficiency.

It therefore seemed best to avoid any mutual exclu-
sion (except for that provided by the atomic memory
read and write operations) between Mesa code and
device hardware and microcode. Their relationship is
easily cast into a producer-consumer form, and this can
be implemented, using linked lists or arrays, with only
the memory's mutual exclusion. Only a small amount of
Mesa code must handle device data structures without
the protection of a monitor. Clearly a change of models
must occur at some point between a disk head and an
application program; we see no good reason why it
should not happen within Mesa code, although it should
certainly be tightly encapsulated.

4.3 Priorities

In some applications it is desirable to use a priority
scheduling discipline for allocating the processor(s) to
processes which are not waiting. Unless care is taken, the
ordering implied by the assignment of priorities can be
subverted by monitors. Suppose there are three priority
levels (3 highest, l lowest), and three processes P1, P2,
and P3, one running at each level. Let P~ and Pa com-
municate using a monitor M. Now consider the following
sequence of events:

Communications February 1980
of Volume 23
the ACM Number 2

P1 enters M.
P, is preempted by P2.
P2 is preempted by P3.
P3 tries to enter the monitor, and waits for the lock.
P2 runs again, and can effectively prevent P3 from
running, contrary to the purpose of the priorities.

A simple way to avoid this situation is to associate
with each monitor the priority of the highest-priority
process which ever enters that monitor. Then whenever
a process enters a monitor, its priority is temporarily
increased to the monitor's priority. Modula solves the
problem in an even simpler way--interrupts are disabled
on entry to M, thus effectively giving the process the
highest possible priority, as well as supplying the monitor
lock for M. This approach fails if a page fault can occur
while executing in M.

The mechanism is not free, and whether or not it is
needed depends on the application. For instance, if only
processes with adjacent priorities share a monitor, the
problem described above cannot occur. Even if this is
not the case, the problem may occur rarely, and absolute
enforcement of the priority scheduling may not be im-
portant.

5. Implementation

The implementation of processes and monitors is
split more or less equally among the Mesa compiler, the
runtime package, and the underlying machine. The com-
piler recognizes the various syntactic constructs and gen-
erates appropriate code, including implicit calls on built-
in (i.e., known to the compiler) support procedures. The
runtime implements the less heavily used operations,
such as process creation and destruction. The machine
directly implements the more heavily used features, such
as process scheduling and monitor entry/exit.

Note that it was primarily frequency of use, rather
than cleanliness of abstraction, that motivated our divi-
sion of labor between processor and software. Nonethe-
less, the split did turn out to be a fairly clean layering, in
which the birth and death of processes are implemented
on top of monitors and process scheduling.

5.1 The Processor
The existence of a process is normally represented

only by its stack of procedure activation records or
frames, plus a small (10-byte) description called a
ProcessState. Frames are allocated from a frame heap by
a microcoded allocator. They come in a range of sizes
which differ by 20 percent to 30 percent; there is a
separate free list for each size up to a few hundred bytes
(about 15 sizes). Allocating and freeing frames are thus
very fast, except when more frames of a given size are
needed. Because all frames come from the heap, there is
no need to preplan the stack space needed by a process.
When a frame of a given size is needed but not available,

113

Fig. 1. A process queue.

I QueueCell I

~ ProcessState H ProcessState ~-----~ ProcessState ~ H e a d Tail

there is a frame fault, and the fault handler allocates
more frames in virtual memory. Resident procedures
have a private frame heap which is replenished by seizing
real memory from the virtual memory manager.

The ProcessStates are kept in a fixed table known to
the processor; the size of this table determines the max-
imum number of processes. At any given time, a
ProeessState is on exactly one queue. There are four
kinds of queues:

Ready queue. There is one ready queue, containing
all processes which are ready to run.

Monitor lock queue. When a process attempts to enter
a locked monitor, it is moved from the ready queue to a
queue associated with the monitor lock.

Condition variable queue. When a process executes a
WAIT, it is moved from the ready queue to a queue
associated with the condition variable.

Fault queue. A fault can make a process temporarily
unable to run; such a process is moved from the ready
queue to a fault queue, and a fault-handling process is
notified.

Queues are kept sorted by process priority. The im-
plementation of queues is a simple one-way circular list,
with the queue-cell pointing to the tail of the queue (see
Figure 1). This compact structure allows rapid access to
both the head and the tail of the queue. Insertion at the
tail and removal at the head are quick and easy; more
general insertion and deletion involve scanning some
fraction of the queue. The queues are usually short
enough that this is not a problem. Only the ready queue
grows to a substantial size during normal operation, and
its patterns of insertions and deletions are such that
queue scanning overhead is small.

The queue cell of the ready queue is kept in a fixed
location known to the processor, whose fundamental
task is to always execute the next instruction of the
highest priority ready process. To this end, a check is
made before each instruction, and a process switch is
done if necessary. In particular, this is the mechanism by
which interrupts are serviced. The machine thus imple-
ments a simple priority scheduler, which is preemptive
between priorities and FIFO within a given priority.

Queues other than the ready list are passed to the
processor by software as operands of instructions, or
through a trap vector in the case of fault queues. The
queue cells are passed by reference, since in general they
must be updated (i.e., the identity of the tail may change.)
Monitor locks and condition variables are implemented
as small records containing their associated queue cells

Communications February 1980
of Volume 23
the ACM Number 2

plus a small amount of extra information: in a monitor
lock, the actual lock; in a condition variable, the timeout
interval and the wakeup-waiting switch.

At a fixed interval (~20 times per second) the pro-
cessor scans the table of ProcessStates and notifies any
waiting processes whose timeout intervals have expired.
This special NOTIFY is tricky because the processor does
not know the location of the condition variables on
which such processes are waiting, and hence cannot
update the queue cells. This problem is solved by leaving
the queue cells out of date, but marking the processes in
such a way that the next normal usage of the queue cells
will notice the situation and update them appropriately.

There is no provision for time-slicing in the current
implementation, but it could easily be added, since it has
no effect on the semantics of processes.

5.2 The Runtime Support Package
The Process module of the Mesa runtime package

does creation and deletion of processes. This module is
written (in Mesa) as a monitor, thus utilizing the under-
lying synchronization machinery of the processor
to coordinate the implementation of FORK and JOIN as
the built-in entry procedures Process.Fork and
Process.Join, respectively. The unused ProcessStates are
treated as essentially normal processes which are all
waiting on a condition variable called rebirth. A call of
Process.Fork performs appropriate "brain surgery" on
the first process in the queue and then notifies rebirth to
bring the process to life; Process.Join synchronizes with
the dying process and retrieves the results. The (implicitly
invoked) procedure Process.End synchronizes the dying
process with the joining process and then commits sui-
cide by waiting on rebirth. An explicit cell on
Process.Detach marks the process so that when it later
calls Process.End, it will simply destroy itself immedi-
ately.

The operations Process.Abort and Process. Yield are
provided to allow special handling of processes which
wait too long and compute too long, respectively. Both
adjust the states of the appropriate queues, using the
machine's standard queueing mechanisms. Utility rou-
tines are also provided by the runtime for such operations
as setting a condition variable timeout and setting a
process priority.

5.3 The Compiler
The compiler recognizes the syntactic constructs for

processes and monitors and emits the appropriate code
(e.g., a MONITORENTRY instruction at the start of each
entry procedure, an implicit call of Process.Fork for each
FORK). The compiler also performs special static checks
to help avoid certain frequently encountered errors. For
example, use of WAIT in an external procedure is flagged
as an error, as is a direct call from an external procedure
to an internal one. Because of the power of the under-
lying Mesa control structure primitives, and the care with

114

which concurrency was integrated into the language, the
introduction of processes and monitors into Mesa re-
suited in remarkably little upheaval inside the compiler.

5.4 Performance
Mesa's concurrent programming facilities allow the

intrinsic parallelism of application programs to be rep-
resented naturally; the hope is that well-structured pro-
grams with high global efficiency will result. At the same
time, these facilities have nontrivial local costs in storage
and/or execution time when compared with similar se-
quential constructs; it is important to minimize these
costs, so that the facilities can be applied to a finer
"grain" of concurrency. This section summarizes the
costs of processes and monitors relative to other basic
Mesa constructs, such as simple statements, procedures,
and modules. Of course, the relative efficiency of an
arbitrary concurrent program and an equivalent sequen-
tial one cannot be determined from these numbers alone;
the intent is simply to provide an indication of the
relative costs of various local constructs.

Storage costs fall naturally into data and program
storage (both of which reside in swappable virtual mem-
ory unless otherwise indicated). The minimum cost for
the existence of a Mesa module is 8 bytes of data and 2
bytes of code. Changing the module to a monitor adds
2 bytes of data and 2 bytes of code. The prime component
of a module is a set of procedures, each of which requires
a minimum of an 8-byte activation record and 2 bytes of
code. Changing a normal procedure to a monitor entry
procedure leaves the size of the activation record un-
changed, and adds 8 bytes of code. All of these costs are
small compared with the program and data storage
actually needed by typical modules and procedures. The
other cost specific to monitors is space for condition
variables; each condition variable occupies 4 bytes of
data storage, while WAIT and NOTIFY require 12 bytes
and 3 bytes of code, respectively.

The data storage overhead for a process is 10 bytes
of resident storage for its ProcessState, plus the swapp-
able storage for its stack of procedure activation records.
The process itself contains no extra code, but the code
for the FORK and JOIN which create and delete it together
occupy 13 bytes, as compared with 3 bytes for a normal
procedure call and return. The FORK/JOIN sequence also
uses 2 data bytes to store the process value. In summary:

Space (bytes)
Construct data code

m o d u l e 8 2

p r o c e d u r e 8 2

cal l + r e t u r n - - 3

m o n i t o r 10 4

e n t r y p r o c e d u r e 8 10
F O R K + J O I N 2 13

process 10 0

c o n d i t i o n v a r i a b l e 4 - -
W A I T - - 12

N O T I F Y - - 3

C o m m u n i c a t i o n s
o f
the A C M

F e b r u a r y 1980
V o l u m e 23
N u m b e r 2

For measuring execution times we define a unit called
a tick: The time required to execute a simple instruction
(e.g., on a "one-MIP" machine, one tick would be one
microsecond). A tick is arbitrarily set at one-fourth of
the time needed to execute the simple statement "a ~-- b
+ c" (i.e., two loads, an add, and a store). One interesting
number against which to compare the concurrency facil-
ities is the cost of a normal procedure call (and its
associated return), which takes 30 ticks if there are no
arguments or results.

The cost of calling and returning from a monitor
entry procedure is 50 ticks, about 70 percent more than
an ordinary call and return. In practice, the percentage
increase is somewhat lower, since typical procedures pass
arguments and return results, at a cost of 2-4 ticks per
item. A process switch takes 60 ticks; this includes the
queue manipulations and all the state saving and restor-
ing. The speed of WAIT and NOTIFY depends somewhat
on the number and priorities of the processes involved,
but representative figures are 15 ticks for a WAIT and 6
ticks for a NOTIFY. Finally, the minimum cost of a FORK/
JOIN pair is 1,100 ticks, or about 38 times that of a
procedure call. To summarize:

Construct Time (ticks)

simple instruction 1
call+return 30
monitor call+return 50
process switch 60
WAIT 15
NOTIFY, no one waiting 4
NOTIFY, process waiting 9
FORK+JOIN 1,100

On the basis of these performance figures, we feel
that our implementation has met our efficiency goals,
with the possible exception of FORK and JOIN. The deci-
sion to implement these two language constructs in soft-
ware rather than in the underlying machine is the main
reason for their somewhat lackluster performance.
Nevertheless, we still regard this decision as a sound one,
since these two facilities are considerably more complex
than the basic synchronization mechanism, and are used
much less frequently (especially JOIN, since the detached
processes discussed in Section 2 have turned out to be
quite popular).

6. Applications

In this section we describe the way in which processes
and monitors are used by three substantial Mesa pro-
grams: an operating system, a calendar system using
replicated databases, and an internetwork gateway.

6.1 Pilot: A General-Purpose Operating System
Pilot is a Mesa-based operating system [18] which

runs on a large personal computer. It was designed
jointly with the new language features, and makes heavy
use of them. Pilot has several autonomous processes of

115

its own, and can be called by any number of client
processes of any priority, in a fully asynchronous man-
ner. Exploiting this potential concurrency requires exten-
sive use of monitors within Pilot; the roughly 75 program
modules contain nearly 40 separate monitors.

The Pilot implementation includes about 15 dedi-
cated processes (the exact number depends on the hard-
ware configuration); most of these are event handlers for
three classes of events:

I / 0 interrupts. Naked notifies as discussed in
Section 4.2.

Process faults. Page faults and other such events,
signaled via fault queues as discussed in Section 5.1.
Both client code and the higher levels of Pilot, including
some of the dedicated processes, can cause such faults.

Internal exceptions. Missing entries in resident data-
bases, for example, cause an appropriate high level
"helper" process to wake up and retrieve the needed
data from secondary storage.

There are also a few "daemon" processes, which
awaken periodically and perform housekeeping chores
(e.g., swap out unreferenced pages). Essentially all of
Pilot's internal processes and monitors are created at
system initialization time (in particular, a suitable com-
plement of interrupt-handler processes is created to
match the actual hardware configuration, which is deter-
mined by interrogating the hardware). The running sys-
tem makes no use of dynamic process and monitor
creation, largely because much of Pilot is involved in
implementing facilities such as virtual memory which
are themselves used by the dynamic creation software.

The internal structure of Pilot is fairly complicated,
but careful placement of monitors and dedicated pro-
cesses succeeded in limiting the number of bugs which
caused deadlock; over the life of the system, somewhere
between one and two dozen distinct deadlocks have been
discovered, all of which have been fixed relatively easily
without any global disruption of the system's structure.

At least two areas have caused annoying problems in
the development of Pilot:

(1) The lack of mutual exclusion in the handling of
interrupts. As in more conventional interrupt systems,
subtle bugs have occurred due to timing races between
I /O devices and their handlers. To some extent, the
illusion of mutual exclusion provided by the casting of
interrupt code as a monitor may have contributed to this,
although we feel that the resultant economy of mecha-
nism still justifies this choice.

(2) The interaction of the concurrency and exception
facilities. Aside from the general problems of exception
handling in a concurrent environment, we have experi-
enced some difficulties due to the specific interactions of
Mesa signals with processes and monitors (see Sections
3.1 and 3.4). In particular, the reasonable and consistent
handling of signals (including UNWINDS) in entry pro-
cedures represents a considerable increase in the mental

Communications February 1980
of Volume 23
the ACM Number 2

overhead involved in designing a new monitor or under-
standing an existing one.

6.2 Violet: A Distributed Calendar System
The Violet system [6, 7] is a distributed database

manager which supports replicated data files, and pro-
vides a display interface to a distributed calendar system.
It is constructed according to the hierarchy of abstrac-
tions in Figure 2. Each level builds on the next lower
one by calling procedures supplied by it. In addition, two
of the levels explicitly deal with more than one process.
Of course, as any level with multiple processes calls
lower levels, it is possible for multiple processes to be
executing procedures in those levels as well.

The user interface level has three processes: Display,
Keyboard, and DataChanges. The Display process is
responsible for keeping the display of the database con-
sistent with the views specified by the user and with
changes occurring in the database itself. It is notified by
the other processes when changes occur, and calls on
lower levels to read information for updating the display.
Display never calls update operations in any lower level.
The other two processes respond to changes initiated
either by the user (Keyboard) or by the database
(DataChanges). The latter process is FORKed from the
Transactions module when data being looked at by Violet
changes, and disappears when it has reported the changes
to Display.

A more complex constellation of processes exists in
FileSuites, which constructs a single replicated file from
a set of representative files, each containing data from
some version of the replicated file. The representatives
are stored in a transactional file system [1 l], so that each
one is updated atomically, and each carries a version
number. For each FileSuite being accessed, there is a
monitor which keeps track of the known representatives
and their version numbers. The replicated file is consid-
ered to be updated when all the representatives in a write
quorum have been updated; the latest version can be
found by examining a read quorum. Provided the sum of
the read quorum and the write quorum is as large as the
total set of representatives, the replicated file behaves
like a conventional file.

When the file suite is created, it FORKS and detaches
an inquiry process for each representative. This process
tries to read the representative's version number, and if
successful, reports the number to the monitor associated
with the file suite and notifies the condition Crowd-
Larger. Any process trying to read from the suite must
collect a read quorum. If there are not enough repre-
sentatives present yet, it waits on CrowdLarger. The
inquiry processes expire after their work is done.

When the client wants to update the FileSuite, he
must collect a write quorum of representatives containing
the current version, again waiting on CrowdLarger if one
is not yet present. He then FORKS an update process for
each representative in the quorum, and each tries to
write its file. After FORKing the update processes, the

116

Fig. 2. The internal structure of Violet.

Level

4 User interface

/
/ I

V i e w s

Calendar names

Buffers

~ e ! u i t ~

Process table Stable files Volatile files

client JOINS each one in turn, and hence does not proceed
until all have completed. Because all processes run within
the same transaction, the underlying transactional file
system guarantees that either all the representatives in
the quorum will be written, or none of them.

It is possible that a write quorum is not currently
accessible, but a read quorum is. In this case the writing
client FORKS a copy process for each representative which
is accessible but is not up to date. This process copies the
current file suite contents (obtained from the read quo-
rum) into the representative, which is now eligible to join
the write quorum.

Thus as many as three processes may be created for
each representative in each replicated file. In the normal
situation when the state of enough representatives is
known, however, all these processes have done their
work and vanished; only one monitor call is required to
collect a quorum. This potentially complex structure is
held together by a single monitor containing an array of
representative states and a single condition variable.

6.3 Gateway: An Internetwork Forwarder
Another substantial application program which has

been implemented in Mesa using the process and moni-
tor facilities is an internetwork gateway for packet net-
works [2]. The gateway is attached to two or more
networks and serves as the connection point between
them, passing packets across network boundaries as re-
quired. To perform this task efficiently requires rather
heavy use of concurrency.

At the lowest level, the gateway contains a set of
device drivers, one per device, typically consisting of a
high priority interrupt process, and a monitor for syn-
chronizing with the device and with noninterrupt level
software. Aside from the drivers for standard devices
(disk, keyboard, etc.) a gateway contains two or more
drivers for Ethernet local broadcast networks [16] and /

Communications February 1980
of Volume 23
the ACM Number 2

or common-carr ier lines. Each Ethernet driver has two
processes, an interrupt process, and a background pro-
cess for au tonomous handl ing o f t imeouts and other
infrequent events. The driver for common-car r ie r lines
is similar, but has a third process which makes a collec-
tion o f lines resemble a single Ethernet by iteratively
simulating a broadcast. The other network drivers have
much the same structure; all drivers provide the same
standard network interface to higher level software.

The next level o f software provides packet routing
and dispatching functions. The dispatcher consists o f a
moni tor and a dedicated process. The moni tor synchro-
nizes interactions between the drivers and the dispatcher
process. The dispatcher process is normal ly waiting for
the complet ion o f a packet transfer (input or output);
when one occurs, the interrupt process handles the inter-
rupt, notifies the dispatcher, and immediate ly returns to
await the next interrupt. For example, on input the
interrupt process notifies the dispatcher, which dis-
patches the newly arrived packet to the appropriate
socket for further processing by invoking a procedure
associated with the socket.

The router contains a moni tor which keeps a routing
table mapping network names to addresses o f other
gateway machines. This defines the next " h o p " in the
path to each accessible remote network. The router also
contains a dedicated housekeeping process which main-
tains the table by exchanging special packets with other
gateways. A packet is transmitted rather differently than
it is received. The process wishing to transmit to a remote
socket calls into the router moni tor to consult the routing
table, and then the same process calls directly into the
appropriate network driver moni tor to initiate the output
operation. Such asymmetry between input and output
is particularly characteristic o f packet communica t ion ,
but is also typical o f much other I / O software.

The pr imary operat ion o f the gateway is now easy to
describe: When the arrival o f a packet has been processed
up through the level o f the dispatcher, and it is discovered
that the packet is addressed to a remote socket, the
dispatcher forwards it by doing a normal transmission;
i.e., consulting the routing table and calling back down
to the driver to initiate output. Thus, a l though the gate-
way contains a substantial number o f asynchronous
processes, the most critical path (forwarding a message)
involves only a single switch between a pair o f processes.

Conclusion

refined sufficiently to fit into this context. The task has
been accomplished, however, yielding a set o f language
features o f sufficient power that they serve as the only
software concurrency mechanism on our personal com-
puter, handl ing situations ranging f rom inpu t /ou tpu t
interrupts to cooperative resource sharing among unre-
lated application programs.

Received June 1979; accepted September 1979; revised November 1979

References
1. American National Standard Programming Language PL/L
X3.53, American Nat. Standards Inst., New York, 1976.
2. Boggs, D.R., et+ al. Pup: An internetwork architecture. IEEE
Trans, on Communications 28, 4 (April 1980).
3. Brinch Hansen, P. Operating System Principles. Prentice-Hall,
Englewood Cliffs, New Jersey, July 1973.
4. Brinch Hansen, P. The programming language Concurrent
Pascal. IEEE Trans. on Software Eng. 1, 2 (June 1975), 199-207.
5. Dijkstra, E.W. Hierarchical ordering of sequential processes. In
Operating Systems Techniques, Academic Press, New York, 1972.
6. Gifford, D.K. Weighted voting for replicated data. Operating
Systs. Rev. 13, 5 (Dec. 1979), 150-162.
7. Gifford, D.K. Violet, an experimental decentralized system.
Integrated Office Syst, Workshop, IRIA, Rocquencourt, France, Nov.
1979 (also available as CSL Rep. 79-12, Xerox Res. Ctr., Palo Alto,
Calif.).
8. Hoare, C.A.R. Monitors: An operating system structuring
concept. Comm. ACM 17, 10 (Oct. 1974), 549-557.
9. Hoare, C.A.R. Communicating sequential processes. Comm.
ACM 21, 8 (Aug. 1978), 666-677.
10. Howard, J.H. Signaling in monitors. Second Int. Conf. on
Software Eng., San Francisco, Calif., Oct. 1976, pp. 47-52.
il. Israel, J.E., Mitchell, J.G., and Sturgis, H.E. Separating data
from function in a distributed file system. Second Int. Symp. on
Operating Systs., IRIA, Rocquencourt, France, Oct. 1978.
12. Keedy, J.J. On structuring operating systems with monitors.
Australian Comptr. J. 10, 1 (Feb. 1978), 23-27 (reprinted in Operating
Systs. Rev. 13, 1 (Jan. 1979), 5-9).
13. Lampson, B.W., Mitchell, J.G., and Satterthwaite, E.H. On the
transfer of control between contexts. In Lecture Notes in Computer
Science 19, Springer-Verlag, New York, 1974, pp. 181-203.
14. Lauer, H.E., and Needham, R.M. On the duality of operating
system structures. Second Int. Symp. on Operating Systems, IRIA,
Rocquencourt, France, Oct. 1978 (reprinted in Operating Systs. Rev.
13, 2 (April 1979), 3-19).
15. Lister, A.M., and Maynard, K.J. An implementation of monitors.
Software--Practice and Experience 6, 3 (July 1976), 377-386.
16. Metcalfe, R.M., and Boggs, D.G. Ethernet: Packet switching for
local computer networks. Comm. ACM 19, 7 (July 1976), 395-403.
17. Mitchell, J.G., Maybury, W., and Sweet, R. Mesa Language
Manual. Xerox Res. Ctr., Palo Alto, Calif., 1979.
18. Redell, D., et. al. Pilot: An operating system for a personal
computer. Comm. ACM 23, 2 (Feb. 1980).
19. Saltzer, J.H. Traffic control in a multiplexed computer system.
Th., MAC-TR-30, MIT, Cambridge, Mass., July 1966.
20. Saxena, A.R., and Bredt, T.H. A structured specification of a
hierarchical operating system. SIGPLAN Notices 10, 6 (June 1975),
310-318.
21. Wirth, N. Modula: A language for modular multiprogramming.
Software--Practice and Experience 7, 1 (Jan. 1977), 3-36.

The integration o f processes and monitors into the
Mesa language was a somewhat more substantial task
than one might have anticipated, given the flexibility o f
Mesa's control structures and the amount o f published
work on monitors. This was largely due to the fact that
Mesa is designed for the construction o f large, serious
programs, and that processes and monitors had to be

117 Communications February 1980
of Volume 23
the ACM Number 2

