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A Prototype for Shell/Database Integration
Ben Uphoff, Marc Dreyfuss

Abstract
As database technology becomes more and more commonplace, it is beginn

become feasible to integrate this technology into the core operating system function
In the past there have been two key elements that have kept database technology ou
realm of operating system (OS) functionality. First, database management systems
(DBMSs) have traditionally been very expensive. Second, DBMSs have typically bee
difficult to use for many users. Once these problems are addressed, DBMS function
can be integrated into the OS.

The first problem, the prohibitive cost of DBMS, has been addressed by the p
larity of open source development and the Internet. As the DBMS market has matur
several powerful products such as PostgresSQL and Oracle 8i have become availabl
cost.

The second problem, the ease of use, is the focus of this project. We have de
oped a prototype shell interface that attempts to provide a consistent, straightforwar
interface to three DBMS products: Sybase, PostgresSQL and Minirel. These three p
ucts all have differing syntax and execution parameters. Our prototype hides these d
ences as much as possible without sacrificing any functionality. Thus, a user can co
to and operate on a Sybase database in the same manner as he or she would on a 
gresSQL database. This transparent operation is the key to the prototype.

1. Problem
Database technology has traditionally been very useful but expensive and ha

use. The popularity of open source software development and Internet has made ro
DBMS products freely available to the public. Unfortunately, these systems retain th
traditionally difficult learning curve.

Every DBMS differs in some way, either in syntax or application program inte
face (API). Some systems use Structured Query Language (SQL) while others use 
prietary grammar for communicating with the DBMS. The syntax of SQL, a suppose
standard, can also change from product to product. The APIs of various products ca
very complex and do not always meet the needs of the user. Some products do not pr
an API at all.

If a user only had to learn one particular DBMS, many of the difficulties of lea
ing the product can be overcome through time and training. However, it is often neces
in the business world for a user to learn several DBMS products. This makes it hard
keep track of what syntax works with what system and what API calls to make when
ing code. Our solution attempts to alleviate as much of this difficulty as possible with
limiting the power of the DBMS.

2. Solution
The logical point of integration on Unix is the shell. Although many OSs today a

graphical and do not rely on a shell, Unix users still spend a great deal of time in the s
Furthermore, the three products that we evaluated, PostgresSQL, Sybase and Minir
used the shell as their primary user interface.

The three key functions that have been added to the shell are:
Automated connection and log in
Automated data loading
Command line query execution
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2.1 Connection
The prototype allows seamless connection to various DBMS systems. The us

must define a connection script that provides information such as log in credentials,
tion of the DBMS. The script must also define any environment variables needed by
DBMS and start any background processes. The user must also define a disconnec
script to log the user off and clean up the environment.

Once the connection and disconnection scripts are created, the user does no
to worry about the connection details. If the user exits the shell or connects to a diffe
DBMS, the disconnection script is run. The connection script can be run at anytime 
enteringdb connect dbname. Where dbname is the name of the DBMS to connect to. T
disconnect the user simply typesdb disconnect.

It is important to note that the shell can only be connected to one DBMS at a ti
This was a conscious decision to simplify the various commands used to invoke DB
functionality. Each call to a database command would have required the database na
be given if multiple connections were allowed.  We felt that the case where a user w
need multiple connections would be rare and thus always typing the database name
seem useless. The user can overcome this limitation by starting a new shell and conn
to a different DBMS there.

2 1 Command Execution
The shell provides users the ability to execute commands from the shell. Mos

DBMS products have some sort of user interface where commands can be run agai
DBMS. This functionality has been added to the shell to avoid the user having to run p
uct specific program to execute queries and such. For instance, in the shell prototype
can enterdb command select * from Students to get a listing of the Students table. This
command is sent on to the DBMS without modification. This is the one area in the sys
where the user must know the particular syntax of the DBMS. The motivation for this
to avoid limiting the type of commands that can be executed from the shell. By using
interface, the user can do anything with the DBMS that can be done from the normal
interface but without ever leaving the shell environment.

2 2 Data Loading
The biggest benefit of this prototype is the power and flexibility of the data loa

functionality. The prototype provides users with the ability to redirect the output stream
a program or a file to a device calleddb. When the shell detects the redirection, the outp
is parsed to conform to a user-defined schema. The schema contains information on
layout of the output stream as well as the table layout in the DBMS.

Once parsed, the data is inserted into the DBMS. The user is then free to quer
data using the command execution procedure outlined above. Any information that di
parse is placed in an error file. The user can then look at the error file and make adj
ments to the schema or the output.

The key to making the interface seamless is the schema definitions. These sch
can be created in three ways: using a graphical user interface, using a shell program
hand coding. The schema definitions are stored as extensible markup language (XM
files. This makes the schemas easy to read and edit by person or program. It also a
developers to easily create schema definitions for their programs.

The schema definition stores detailed information about the formatting of the 
put or file. If the data does not have a consistent format of some sort, no schema defin
can be created for it. The schema definition can have any number of fields each with
length information, type information and delimiters. Delimiters can be mixed through
the schema.
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The schema definition is detailed enough to describe any consistently format
output with two minor drawbacks. The first restriction is that fields that may contain t
delimiter must be of fixed width. Building a parser to overcome this problem is out of
scope of the prototype.

Secondly, the prototype enforces a strict one line to one record correlation. T
the schema cannot define data that spans more than one line. This is a weakness in
parser that can be addressed without major changes in design. However, we felt tha
case was rare enough to not merit redesigning the parser.

Aside from
these two minor
flaws, the
schema defini-
tion is a robust
representation
for single line
data. Once a
schema defini-
tion is created
for a particular
set of data, the
user never has to
worry about
how the data is
populated into
the DBMS. All
the user has to
do is redirect the
data and then

check the error file to make sure the necessary data was inserted.

3. Implementation
There are two layers in the prototype design. The shell layer is responsible fo

communicating with the shell and executing various commands. The DBMS layer is
responsible for deciding how the shell layer should go about communicating with a pa
ular DBMS. These layers are necessary to provide a level of indirection between the
ous types of shells and DBMS products.

Between the shell and DBMS layers is the core functionality of the prototype 
well as various code modules, called engines. The core module contains the XML p
for parsing schema definitions. It also contains the necessary logic for extracting a pa
lar field value from a redirected output stream. The engines are code modules that ge
scripts for creating tables and performing inserts. There is one engine for each supp
DBMS as well as a generic SQL engine that can be used on a DBMS that adheres t
SQL standard.

3.1 The Shell Layer
As stated above, the shell layer is responsible for communicating with the sh

This layer of indirection allows the prototype to be easily ported to other shells such
Bash or Bourne.

The first communication responsibility that the shell layer has is to handle to c
nection and disconnection calls. The commanddb connect dbnamesignals the shell layer
that a connection needs to be handled. The shell layer first looks for a connection scri
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dbnamein a preset directory. The shell layer must also check to see that the script is
the proper shell type. Once the right script is found, the shell layer checks to see if t
shell is currently connected to another DBMS. If this is the case, the disconnection s
is run for that DBMS. Finally the connection script is run. Similarly, a call todb discon-
nect dbname will find the proper disconnection script and execute it.

The second communication responsibility of the shell layer is to execute com
mands passed into it by either the core module or the DBMS layer. Either of these la
can send the shell layer a command. The shell does not need to worry about the com
aside from checking that the shell is connected to a DBMS. Once this check is made
command is executed.

The final responsibility of the shell layer is to monitor errors generated from th
commands that it executes. This functionality is not implemented by our prototype b
discussed in section 5.1.

3.2 The DBMS Layer
The DBMS layer can communicate with the shell layer, the core module and 

engines. This layer provides a single point of interaction for all communication with t
DBMS. Although the DBMS layer decides what calls are needed to perform a specifi
task, it leaves the execution of a command up to the shell layer. Again, this is so the
DBMS layer does not have to worry about the details of the shell environment.

The DBMS layer is used when performing data loading operations. The core m
ule will instruct the DBMS layer to generate a table creation or insertion script based
given schema definition for a set of values. The DBMS layer takes the information p
vided by the core module and passes it to the engine for the connected DBMS. The e
returns a command that the DBMS layer then sends to the Shell layer for execution.
is the simplest element in the system; it does little more than handle the flow of traffi
the system.

3.3 Engines
Connected to the DBMS layer are a number of code modues, called engines

generate product specific commands or scripts. Every supported DBMS needs to be t
an engine. A generic SQL engine is provided, as are engines for Sybase, Minirel and
gresSQL. The following table is an example of a table creation script and an insertio
script for a schema definition by three different engines:

Engine Create Insert

SQL CREATE TABLE lsl(FileType
CHAR(10), OwnerPerms CHAR(3),
GroupPerms CHAR(3), OtherPerms
CHAR(3), OwnerID CHAR(8), Size
INTEGER, ModifyDate CHAR(6),
ModifyTime CHAR(5), Name
CHAR(255))

INSERT INTO lsl(FileType,
OwnerPerms, GroupPerms,
OtherPerms, OwnerID, Size,
ModifyDate, ModifyTime, Name)
VALUES ('File', 'rw-', 'r--', '-
--', 'bduphoff', 1917, 'May 8',
'10:21', 'SQLEngine.class')
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The differences in the above example illustrate the need for the various engin
By its name, PostgresSQL would suggest that it would run the first create table scrip
this is not the case. PostgresSQL requires several syntactical elements that SQL do
use. The PostgresSQL engine was easily created by extending the existing SQL en
This level of modularity allows the prototype to quickly switch between various datab
products. It also allows for new products to be added to the prototype. There are only
steps in adding support for a DBMS. First, the connection and disconnection scripts
be created. Then the new engine must be created, usually by modifying an existing en
Without the modularity of the engines, this process would be much more complicate

3.4 Schema Definitions
The area of most complexity in the prototype is in the schema definitions. As

stated above in section 2.2, the schema definitions are the critical element in the data
ing procedure.

Schema definitions are created by the user to map program output into a relat
model. A schema definition is stored as an XML data set that conforms to the Schem
Definition document type definition shown here:

<!ELEMENT SchemaDefinition (Field+)>
<!ATTLIST SchemaDefinition name CATA #REQUIRED>
<!ELEMENT Field (Value+)>
<!ATTLIST Field name         CDATA #REQUIRED>
<!ATTLIST Field isVariable   CDATA #REQUIRED>
<!ATTLIST Field minInLength  CDATA #REQUIRED>
<!ATTLIST Field maxInLength  CDATA #REQUIRED>
<!ATTLIST Field maxOutLength CDATA #REQUIRED>
<!ATTLIST Field delimiter    CDATA #REQUIRED>
<!ATTLIST Field type         CDATA #REQUIRED>
<!ATTLIST Field isIncluded   CDATA #REQUIRED>
<!ELEMENT Value EMPTY>
<!ATTLIST Value inValue  CDATA #REQUIRED>
<!ATTLIST Value outValue CDATA #REQUIRED>

This is a very convenient way to store such data sets. There are a variety of X
parsers available for both Java and C++. This prototype uses IBM’s XML4J, a valida
XML parser for Java. Very little coding is required to build objects from the XML. XM
is also easy to read and edit making schema definitions easy to modify and debug b
user.

PostgresSQL CREATE TABLE lsl (FileType
VARCHAR(10),
OwnerPerms VARCHAR(3),
GroupPerms VARCHAR(3),
OtherPerms VARCHAR(3),
junk VARCHAR(1),
OwnerID VARCHAR(8),
Size DECIMAL(8),
ModifyDate VARCHAR(6),
ModifyTime VARCHAR(5),
Name VARCHAR(255) );

INSERT INTO lsl (FileType,
OwnerPerms, GroupPerms,
OtherPerms, junk, OwnerID, Size,
ModifyDate, ModifyTime, Name)
VALUES ('File', 'rw-', 'r--', '-
--', '1', 'bduphoff', 1917, 'May
8', '10:21', 'SQLEngine.class');

Minirel create lsl(FileType=s10,
OwnerPerms=s3, GroupPerms=s3,
OtherPerms=s3, OwnerID=s8,
Size=i, ModifyDate=s6,
ModifyTime=s5, Name=s255);

insert lsl(FileType="File",
OwnerPerms="rw-", GroupPerms="r-
-", OtherPerms="---",
OwnerID="bduphoff", Size=1917,
ModifyDate="May  8",
ModifyTime="10:21",
Name="SQLEngine.class");
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However, storing these data sets has some drawbacks. First, using a XML par
slower than reading fields from a flat file. We feel that this tradeoff was acceptable, as
is a one-time cost when the schema is first loaded into memory. These schemas coul
be cached to reduce this delay. Also, storing a file as XML takes up somewhat more s
than a flat file might. Again, we felt that this was not a significant factor as these files
not likely to be over 10K in size.

The primary function of the schema definition once in memory is to extract fie
from a piece of data. The method to do this,getFieldValue(), has two parameters: the field
index and the string to extract the value from. In our implementation the string was alw
a single line from the program output file that was being mapped. This restriction coul
relaxed to provide support for multi-line schema definitions. The return value is the v
of the field as a string. In any case where the field value could not be processed, a n
string was returned. This signals the object callinggetFeildValue() that the line could not
be processed and should be placed in the error file.

The first step ingetFieldValue()is to handle value mapping. Value mapping can b
added to a field to map an input value into a different output value. An example of th
might be a field in the program output that was 1 for a true value and 0 for a false va
The user might want to see “true” instead of 1 and “false” instead of 0. The schema d
tion allows users to define such relationships.getFieldValue() checks to see if a field has
any such values and does a lookup on the value it found. If there is no match in the 
mapping, a user defined default value is used.

Before returning a value,getFieldValue()makes several checks on the field value
found. First, it compares the length of the field to the length specified in the schema d
tion. If the field is too long or too short, a null is returned. Next, the type of the field is
checked. A null is returned as in the previous cases.

The schema definition also has several utility methods for returning the conten
the schema definition including fields and value mapping attributes. One other notab
method isvalidate(). This method checks the state of the schema definition for errors
inconsistencies and returns a code describing the error. This method is used in the S
maDefiner tool to validate user input.

4. Benefits
The prototype described here offers several important benefits to the user. Th

most notable are:
Seamless data loading
Automated login/switch DBMS
Makes database technology more assessable

4.1 Data Loading Benefits
Seamless data loading is of key importance because it reduces the difficulty o

populating the database. Users are often turned off by database technology because
pain of data entry or the complexity of product specific importing tools. Our prototyp
alleviates these problems by providing a consistent, easy to use interface. We chose
common redirect operator because most Unix users are familiar with the concept of
rection. The only difficult part of the data loading process is setting up the schema d
tion.

The benefits of this form of data loading can be illustrated by the problems fa
by scientists. Scientific research is often done as a collaborative venture spanning co
tions and academic institutions. Ultimately, it is useful for the researchers to funnel t
data into a central location for analysis. This can be difficult as data can exist in man
ferent formats and locations. Our solution helps streamline the process by allowing
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researchers to tie a schema definition to their data and then populate a central data
using the simple redirect operator. Thus, researchers are not bound to use one speci
to generate research data. They can use a variety of tools and still easily populate th
tral database.

4.2 Benefits of Automated Connections
The benefits of an automated connection and disconnection procedure are n

ous. First, there is no need to set environment variables or start background process
This is all done for the user in the predefined connection script described in section 
Second, when switching to a different DBMS, there is no need to disconnect from the
rent DBMS. This is all done automatically. The last benefit of the automated connec
is the level of flexibility provided. The connection and disconnection scripts can be c
tomized for local or remote connection. The user, or perhaps an administrator, has c
plete control over these scripts and can configure them for any sort of installation. T
elements allow the user to spend more time working with the data and less time wor
with the ugly side of the DBMS.

4.3 The Overall Benefit: An Accessible Environment
The overall benefit of the prototype is that it makes database more accessible

typical user. The prototype tries to hide the messy details of the particular DBMS pro
where the user cannot see them. This makes for a friendly, easy to use environmen
feel that such an environment will allow users to use database technology where the
might otherwise have thought it to be too much trouble.

5. Performance
The nature of our prototype makes it difficult to measure performance. Our go

was to provide a simplified mechanism for using various DBMS products. To achieve
we have created two layers of indirection to provide portability across different shells
DBMS products. These additional layers mean more overhead when performing data
operations using thedb command. Thus, performance will always be somewhat slowe
when running though the shell as opposed to using a product specific interface.

We feel that this trade off in performance is acceptable when the easy of use
fits discussed in section 4 are considered. In our experiences with the prototype, we f
it much more desirable to execute commands from within the shell using thedbcommand
instead of running from the DBMS’s interface. This allowed us to stay in a true shell e
ronment at all times. This became even more convenient when we were switching b
and forth between several DBMSs. It was clear to us after working with the prototype
it was a clean and easy to use interface. We also found that the data loading mecha
worked very well for many data sets.

Although performance is hard to measure for the prototype, we have made a
attempt at doing so. We provide two areas of performance comparison: raw execution
usability performance.

For the raw execution tests, we attempted to find the cost for an operation to
traverse the layers added by the prototype. In this test, a simple program was create
generate a table creation script for PostgresSQL and an insertion script of ten rows.
test program used the same code to generate the scripts as the prototype. Next, the
creation and insert scripts were run by PostgresSQL’s psql interface. The total time 
these values is representative of the parsing time plus the actual cost of creating the
and performing the inserts. The same data set was then redirected to /dev/db to cal
the execution time from within the prototype. The difference of the two runs shows th
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general overhead added by the layers of indirection for this case. The following table
marizes the results. All execution times that are averages of five consecutive runs o
clean database.

The results of this test appear inconsistent at first. The prototype appears to b
raw execution for larger inserts. This is because the prototype intercepts the majorit
the output to the screen. Because the prototype does not display some messages, it a
executes mush faster than running through psql. This is an added bonus in our design
set of ten runs does illustrate the overhead of running in the prototype however. Run
through the prototype is over twice as slow in this case. We expect that the 4.5-secon
ferential would be constant if the prototype and psql displayed the same number of 
sages.

Our second set of tests shows how the prototype functionality could be used 
speed up certain common tasks that a system administrator might perform.

Find vs load then query

6. Future Integration
As previously stated, this implementation was designed as a prototype to sho

how database functionality could be integrated into a shell environment. We chose Ja
our coding platform because of the numerous available classes for managing proce
and string manipulation. The String class in Java proved invaluable for creating a pa
We ran into difficulty with the Process class and its supporting classes however. We f
it easy to send a command to the shell but found it hard to monitor the process’s pro

Another motivation for using Java was to avoid getting bogged down in the co
plexity of a shell like tcsh. We felt that our focus should be on functionality and ease
use and not in a true integration. This turned out to be a bad decision because Java d
give us the control over processes that was needed to make a well-performing proto
We would have been better served to work in C and take advantage of UNIX system
like fork(). This proved most costly in our attempt to support Sybase. Commands se
isql, the shell interface to Sybase, never seemed to return or resulted in cryptic error
we had used the C libraries for Sybase in conjunction with Unix system calls we cou
have successfully supported Sybase.

A future attempt at integration of our prototype would require the entire system
be rewritten in C and added to a shell like tsch. This would provide numerous advan
including better overall performance and superior control of processes and the shell
ronment.

Aside from the inherent performance benefits of C over Java, the biggest gain
performance would come from using the DBMS APIs instead of simply issuing com-
mands to a shell process. Most DBMS products have some sort of API routines writte
C. These calls are fast and provide the calling process with greater control over erro
ditions and conflict resolution.

By using commands likefork(), the shell would have complete control over API
calls and connection and disconnection scripts. This would allow the system to dete

# of Inserts Raw Execution (seconds) Prototype Execution (seconds) Differential (seconds)

10 3.06 7.598 4.538

100 7.726 9.558 1.83

1000 59.482 11.372 -48.1
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when a DBMS went off-line and allow the user to respond to the event. Our prototype
no knowledge of the status of a DBMS due to the limited functionality provided by Ja
This functionality would be critical in a true implementation.

Another addition would be the /dev/db device. This device does not really exi
our prototype but should be implemented as a UNIX device in a future implementati
Much of the prototype’s functionality could be placed in this device, minimizing additio
to the kernel.
One last addition to a future integration is the reduction of I/O in data loading. Curre
the prototype bundles inserts into a file before sending them to the DBMS. This is ef
tive for large data sets but unnecessary for small batches of inserts. Ideally, inserts s
be run in small, memory resident batches for both large and small data sets. This w
reduce the cost of I/O to reading the program output in a single pass.

7. Conclusions
In the end, our prototype shows that an easy to use database interface can b

designed for a multiple database environment within the shell. We have taken away 
of the dirty details of using a DBMS by automating connection and disconnection and
viding a seamless interface for data loading. The user defined schema definitions pr
the users with a robust but not overly complex means of representing formatted prog
output in a relational manner. In all, these enhancements to the shell combine to ma
using database technology more appealing to the user.

However, we acknowledge that our prototype has some drawbacks. As stated
section 6, the prototype needs to be written in C to provide optimal performance and
trol over the shell environment. Also, because of the two layers of indirection, DBMS
shell, the prototype can never be expected to be faster than execution from a produ
cific interface. These layers are essential however as they allow the prototype to be p
to other shells and DBMS products with minimal effort.

An interface such as this would be a useful addition to shell functionality in an
operating system. We encourage other researchers to consider this area for future s
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