
Fine-Grained Mobility in the Emerald System

ERIC JUL, HENRY LEVY, NORMAN HUTCHINSON, and ANDREW BLACK
University of Washington

Emerald is an object-based language and system designed for the construction of distributed programs.
An explicit goal of Emerald is support for object mobility; objects in Emerald can freely move within
the system to take advantage of distribution and dynamically changing environments. We say that
Emerald has fine-grained mobility because Emerald objects can be small data objects as well as
process objects. Fine-grained mobility allows us to apply mobility in new ways but presents imple-
mentation problems as well. This paper discusses the benefits of tine-grained mobility, the Emerald
language and run-time mechanisms that support mobility, and techniques for implementing mobility
that do not degrade the performance of local operations. Performance measurements of the current
implementation are included.

Categories and Subject Descriptors: C.2.4[Computer-Communications Networks]: Distributed
Systems-distributed applications, network operating systems; D.3.3[Programming Languages]:
Language Constructs-&tract data types, control structures; D.4.2[Operating Systems]: Storage
Management-distributed memories; D.4.4[0perating Systems]: Communications Management-
message sending; D.4.7[Operating Systems]: Organization and Design-distributed system

General Terms: Design, Languages, Measurement, Performance

Additional Key Words and Phrases: Distributed languages, object-oriented languages, object-oriented
systems, process mobility

1. INTRODUCTION

Process migration has been implemented or described as a goal of several
distributed systems [B, 11, 16, 20, 23, 24, 281. In these systems, entire address
spaces are moved from node to node. For example, a process manager might
initiate a move to share processor load more evenly, or users might initiate
remote execution explicitly. In either case, the running process is typically
ignorant of its location and unaffected by the move.

This work was supported in part by the National Science Foundation under grants MCS-8004111,
DCR-6420945 and CCR-8700106, by Kebenhavns Universitet (University of Copenhagen), Denmark
under grant J.nr. 574-2,2, by a Digital Equipment Corporation External Research Grant, and by an
IBM Graduate Fellowship.
Authors’ current addresses: E. Jul, DIKU, Dept. of Computer Science, University of Copenhagen,
Universitetparken 1, DK-2100 Copenhagen, Denmark; H. Levy, University of Washington, Dept. of
Computer Science, FR-35, Seattle, WA 98195; N. Hutchinson, Dept. of Computer Science, University
of Arizona, Tucson, AZ 85721; A. Black, Digital Equipment Corporation, 550 King St., Littleton, MA
01460.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1988 ACM 0734-2071/66/0200-0109 $01.50

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966, Pages 109-133.

110 l E. Jul, H. Levy, N. Hutchinson, and A. Black

During the last three years, we have designed and implemented Emerald [6,
71, a distributed object-based language and system. A principal goal of Emerald
is to experiment with the use of mobility in distributed programming. Mobility
in the Emerald system differs from existing process migration schemes in two
important respects. First, Emerald is object-based, and the unit of distribution
and mobility is the object. Although some Emerald objects contain processes,
others contain only data: arrays, records, and single integers are all objects.
Thus, the unit of mobility can be much smaller than in process migration systems.
Object mobility in Emerald subsumes both process migration and data transfer.
Second, Emerald has language support for mobility. Not only does the Emerald
language explicitly recognize the notions of location and mobility, but the design
of conventional parts of the language (e.g., parameter passing) is affected by
mobility.

The advantages of process migration, which have been noted in previous work,
include

(1) Load sharing-By moving objects around the system, one can take advantage
of lightly used processors.

(2) Communications performance-Active objects that interact intensively can
be moved to the same node to reduce the communications cost for the
duration of their interaction.

(3) Availability-Objects can be moved to different nodes to provide better failure
coverage.

(4) Reconfiguration-Objects can be moved following either a failure or a recov-
ery or prior to scheduled downtime.

(5) Utilizing special capabilities-An object can move to take advantage of unique
hardware or software capabilities on a particular node.

Along with these advantages, fine-grained mobility provides three additional
benefits:

(1) Data Movement-Mobility provides a simple way for the programmer to
move data from node to node without having to explicitly package data. No
separate message-passing or file-transfer mechanism is required.

(2) Invocation Performance-Mobility has the potential for improving the per-
formance of remote invocation by moving parameter objects to the remote
site for the duration of the invocation.

(3) Garbage Collection-Mobility can help simplify distributed garbage collection
by moving objects to sites where references exist [16, 291.

To our knowledge, the only other system that implements object mobility in a
style similar to Emerald is a recent implementation of distributed Smalltalk [4].

In addition to mobility and distribution, we intend that Emerald provide
efficient execution. We want to achieve performance competitive with stan-
dard procedural languages in the local case and standard remote procedure
call (RPC) systems in the remote case. These goals are not trivial in a location-
independent object-based environment. To meet them, we have relied heavily
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1968.

Fine-Grained Mobility in the Emerald System l 111

on an appropriate choice of language semantics, a tight coupling between the
compiler and run-time kernel, and careful attention to implementation.

Emerald is not intended to run in large, long-haul networks. We assume a local
area network with a modest number of nodes (e.g., 100). In addition, we assume
that nodes are homogeneous in the sense that they all run the same instruction
set and that they are trusted.

In this paper we concentrate primarily on the language and run-time mecha-
nisms that support fine-grained mobility while retaining efficient intranode
operation. First, we present a brief overview of the Emerald language and system
and its mobility and location primitives. A more detailed description of object
structure in Emerald can be found in [6] and of the type system in [7]. Second,
we discuss the implementation of fine-grained mobility in Emerald and new
problems that arise from providing such support. Third, we present measure-
ments of the implementation and draw implications from the measurements and
our design experience.

2. OVERVIEW OF EMERALD

As previously stated, an important goal of Emerald is explicit support for mobility.
From a conceptual viewpoint, a more important goal is a single-object model.
Object-based systems typically lie at the ends of a spectrum: object-based lan-
guages such as Smalltalk [13] and CLU [22] provide small, local data objects;
object-based operating systems like Hydra [30] and Clouds [l] provide large,
active objects. Distributed systems such as Argus [21] and Eden [3] that support
both kinds of objects have a separate object definition mechanism for each.
Choosing the right mechanism requires that the programmer know ahead of time
all uses to which an object will be put; the alternative is to accept the inefficiency
and inconvenience of using the “wrong” mechanism or to reprogram the object
later as needs change. For example, while programming a Collaborative Editing
System in Argus, Greif, Seliger, and Weihl have observed that a designer can be
forced to use a Guardian where a cluster might be more appropriate [141.

The motivation for two distinct definition mechanisms is the need for two
distinct implementations. In distributed object-based systems such as Clouds and
Eden, a local execution of the general invocation mechanism can take milliseconds
or tens of milliseconds [26]. A more restrictive and efficient implementation is
appropriate for objects that are known to be always local; for example, shared
store can be used in preference to messages.

Although we believe in the importance of multiple implementations, we do not
believe that these need to be visible to the programmer. In Emerald, programmers
use a single object definition mechanism with a single semantics for defining
all objects. This includes small, local data-only objects and active, mobile distrib-
uted objects. However, the Emerald compiler is capable of analyzing the needs
of each object and generating an appropriate implementation. For example, an
array object whose use is entirely local to another object will be implemented
differently from an array that is shared globally. The compiler produces different
implementations from the same piece of code, depending on the context in which
it is compiled [18].

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

112 l E. Jul, H. Levy, N. Hutchinson, and A. Black

Table I. Timings of Local Emerald Invocations

Emerald oueration Examole Time/us

Primitive integer invocation i-i+23 0.4

Primitive real invocation x t x + 23.0 3.4

Local invocation localobject.no-op 16.6

Resident global invocation globalobject.no-op 19.4

The motivation for designing a new language, instead of applying these ideas
to an existing language, is that the semantics of a language often preclude
efficient implementation in either the local or remote case. In designing Emerald,
we kept both implementations in mind. Moreover, Emerald’s unique type system
allows the programmer to state either nothing or a great deal about the use of a
variable; in general, the more information the compiler has, the better the code
that it generates.

We believe that the current Emerald implementation demonstrates the viabil-
ity of this approach and meets our goal of local performance commensurate with
procedural languages. Table I shows the performance of several local Emerald
operations executed on a MicroVAX II;l more details on the compiler and its
implementation can be found in [181. The “resident global invocation” time is
for a global object (i.e., one that can move around the network) when invoked by
another object resident on the same node.

For comparison with procedural languages, a C procedure call takes 13.4
microseconds, while a Concurrent Euclid procedure call takes 16.4 microseconds.
Concurrent Euclid is slower because, like Emerald, it must make explicit stack
overflow checks on each call.

2.1 Emerald Objects

Each Emerald object has four components:

(1) A unique network-wide name;
(2) A representation, that is, the data local to the object, which consists of

primitive data and references to other objects;

(3) A set of operations that can be invoked on the object;

(4) An optional process.

Emerald objects that contain a process are active; objects without a process
are passive data structures. Objects with processes make invocations on other
objects, which in turn invoke other objects, and so on to any depth. As a
consequence, a thread of control originating in one object may span other objects,
both locally and on remote machines. Multiple threads of control may be active
concurrently within a single object; synchronization is provided by monitors.

Figure 1 shows an example definition of an Emerald object, in this case a
simple directory object called aDirectory. The representation of the object

1 Micro VAX is a trademark of Digital Equipment Corporation.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

Fine-Grained Mobility in the Emerald System . 113

object aDirectory
export Add, Lookup, Delete

monitor
const DirElement == record DirElement

var name : String
var obj : Any

end DirElement
const D == A~ray.of[DirElenient].empty

function Lookup[n : String] - [o : Any]
var elencerzt : DirEIement

var i : Integer - o.lowerbound

loop
exit wlxm i > aupperbound

element - o.getehnent[i]

if elemerkgetnome = n then
o - element.getobj

return
cud if
i+i+l

end loop
0 - nil

end Lookup

% Implementation of Add and Delete

end monitor
end aDirectory

Fig. 1. An Emerald directory object definition.

consists of an array a of directory elements. The object exports three operations:
Add, Lookup, and Delete. The array a and the operations are defined within a
monitor to guarantee exclusive access to the array.

2.2 Types in Emerald

The Emerald language supports the concept of abstract type [7]. The abstract
type of an object defines its interface: the number of operations that it exports,
their names, and the number and abstract types of the parameters to each
operation. For example, consider the abstract type definition for Simple-
DirectoryType below:

const SimpleDirType == type SimpleDirType
operation Lookup [String]
operation Add [String, Ani [Any1

end SimpleDirType

This abstract-type definition has two operations, Lookup and Add. Lookup has
an input parameter of abstract type String and returns an object of abstract
type Any. We say that an object conforms to an abstract type if it implements
at least the operations of that abstract type and if the abstract types of the
parameters conform in the proper way. When an object is assigned to a variable,
the abstract type of that object must conform to the declared abstract type of
the variable. All objects conform to type Any since Any has no operation.

Abstract types permit new implementations of an object to be added to an
executing system. To use a new object in place of another, the abstract type of
the new object must conform to the required abstract type. For example, we could
assign the object aDirectory in Figure 1 to a variable declared to have abstract
type SimpleDirType because aDirectory conforms to SimpleDirType. Note that
each object can implement a number of different abstract types, and an abstract
type can be implemented by a number of different objects.

ACM Transactions on Computer Systenis, Vol. 6, No. 1, February 1988.

114 l E. Jul, H. Levy, N. Hutchinson, and A. Black

Emerald has no class/instance hierarchy, in contrast to Smalltalk. Objects are
not members of a class; conceptually, each object carries its own code. This
distinction is important in a distributed environment where separating an object
from its code would be costly. However, identically implemented Emerald objects
on each node do share code. In the implementation, the code is stored in a
concrete type object. Because concrete type objects are immutable, they can be
freely copied. When an object is moved to another node, only its data are moved.
If the object contains a process, part of that data will include the process’s stack,
but no code is transferred.

When a kernel receives an object, it determines whether a copy of the concrete
type object implementing that object already exists locally; if it does not, the
kernel obtains a copy of it by finding one on another node using the location
algorithm (described in Section 3.2). Typically, the concrete type will be available
from the node that sent the object. When a concrete type object arrives, it is
dynamically linked into the kernel-the compiler generates relocatable code and
sufficient symbol table information to make such dynamic linking possible. This
scheme makes it possible to add dynamically new concrete types that implement
existing abstract types. Concrete type objects are kept on a node for as long as
there are objects referencing them, after which they are garbage collected.

2.3 Primitives for Mobility

Object mobility in Emerald is provided by a small set of language primitives. An
Emerald object can

---Locate an object (e.g., “locate X” returns the node where X resides).

-Move an object to another node (e.g., “move X to Y” colocates X with Y).
-Fix an object at a particular node (e.g., “fix X at I”‘).
-Unfix an object and make it mobile again following a fix (e.g., “unfix X”).
-Refix an object by atomically performing an Unfix, Move, and Fix at a new

mode (e.g., “refix X at 2”).

The move primitive is actually a hint; the kernel is not obliged to perform the
move, and the object is not obliged to remain at the destination site. Fix and
refix have stronger semantics; if the primitives succeed, the object will stay at
the destination until it is explicitly unfixed.

Central to these primitives is the concept of location, which is encapsulated in
a node object. A node object is an abstraction of a physical machine. Location
may be specified by naming either a node object or any other object. If the
programmer specifies a nonnode object, the location implied is the node on which
that object resides. These concepts are similar to the location-dependent primi-
tives in Eden [5].

A crucial issue when moving objects containing references is deciding how
much to move [25]. An object is part of a graph of references, and one could
move a single object, several levels of objects, or the entire graph. The simplest
approach-moving the specified object alone-may be inappropriate. Depending
on how the object is implemented, invocations of the moved object may require
remote references that would have been avoided if other related objects had been
moved as well.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Fine-Grained Mobility in the Emerald System . 115

The Emerald programmer may wish to specify explicitly which objects move
together. For this purpose, the Emerald language allows the programmer to attach
objects to other objects. When a variable is declared, the programmer can specify
the variable to be an “attached variable.”

For example, in the Emerald mail system, mail messages have four fields: a
sender, an array of destination mailboxes, a subject line, and a text string. It
makes sense for the array of destination mailboxes to be attached to the mail
message, and this could be specified as

attached var ToList: Array.of[Mailbox]

When the mail message is moved, the array pointed to at that time by ToList
is moved with it. This may affect the performance of invocations on ToList but
not their semantics.

Attachment is transitive: any object attached to T.Li.st will also be moved. For
example, linked structures may be moved as a whole by attaching the link fields.
Attachment is not symmetric; the object named by T.List can itself be moved,
perhaps before it is invoked, and no attempt will be made to move the mail
message with it.

2.4 Parameter Passing

An important issue in the design of distributed, object-based systems (as well as
RPC systems) is the choice of parameter passing semantics. In an object-based
system, all variables refer to other objects. The natural parameter-passing method
is therefore call-by-object-reference, where a reference to the argument object is
passed. This is, in fact, the semantics chosen by CLU (where it is called call by
sharing) [22] and Smalltalk [13].

In a distributed object-oriented system, the desire to treat local and remote
operations identically leads one to use the same semantics. However, such a
choice could cause serious performance problems: On a remote invocation, access
by the remote operation to an argument is likely to cause an additional remote
invocation. For this reason, systems such as Argus have required that arguments
to remote calls be passed by value, not by object-reference [15]. Similarly, RPC
systems require call-by-value since addresses are context dependent and have no
meaning in the remote environment.

The Emerald language uses call-by-object-reference parameter-passing seman-
tics for all invocations, local or remote. In both cases, the invoking code constructs
an activation record that contains references to the argument objects. In the
local case, the invoked object is called directly and receives a pointer to the
activation record for the invocation. In the remote case, the activation record
must be reconstructed on the remote system, but the basic operation and
semantics are identical.

Because Emerald objects are mobile, it may be possible to avoid many remote
references by moving argument objects to the site of a remote invocation.
Whether this is worthwhile depends on (1) the size of an argument object,
(2) other current or future invocations of the argument, (3) the number of
invocations that will be issued by the remote object to the argument, and (4) the
relative costs of mobility and local and remote invocation.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

116 - E. Jul, H. Levy, N. Hutchinson, and A. Black

In the current Emerald prototype, arguments are moved in two cases. First, on
the basis of compile-time information, the Emerald compiler may decide to move
an object along with an invocation. For example, small immutable objects are
obvious candidates for moving because they can be copied cheaply. Obviously, it
makes little sense to send a remote reference to a small string or integer. Second,
the Emerald programmer may decide that an object should be moved on the basis
of knowledge about the application. To make this possible, Emerald provides a
parameter-passing mode that we call call-by-move. Call-by-move does not change
the semantics, which is still call-by-object-reference, but at invocation time the
argument object is relocated to the destination site. Following the call, the
argument object may either return to the source of the call or remain at
the destination site (we call these two modes call-by-visit and call-by-move,
respectively).

Call-by-move is a convenience and a performance optimization. Arguments
could instead be moved by explicit move statements. However, providing call-by-
move as a parameter-passing mode allows packaging of the argument objects in
the same network packet as the invocation message.

As an example, consider another mail system example. After composing a mail
message (whose fields were described previously), the user invokes the message’s
Deliver operation:

operation Deliver
var aMailbox: Mailbox
if ToList.length = 1 then

aMailbox c Tolistgetelement [ToListJowerbound]
aMailbox.Deliver[move self]

else
var i: Integer t ToLi.st.1owerboun.d
loop

exit when i > ToList.upperbound
aMailbox t ToList.getelement[i]
aMailbox.Deliver[selfj
ici+l

end loop
end if

end Deliver

This operation delivers the message to all the mailboxes on the ToList.
However, in the common case in which there is only one destination, call-by-
move is used to colocate the mail message with the (single) destination mailbox.

2.5 Processes, Objects, and Mobility

An Emerald process is a thread of control that is initiated when an object with a
process is created. A process can invoke operations on its object or on any object
that it can reference. We think of a process as being a stack of activation records,
as shown in Figure 2. The thread of control of one object’s process may pass
through other objects; in the case of Figure 2, the process owned by object A
invokes operations in objects A, B, and C.

One can think of remote invocations in several ways. In the traditional remote
operation model [27], the sending process blocks, and an existing remote process
executes the operation, possibly returning a value to the caller, which then
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Fine-Grained Mobility in the Emerald System l 117

A

activation record
of operation in C

I activation record
of operation in B

I activation record
of operation in A

Process A Stack
Ease

Fig. 2. Process stack and activation
ords.

rec-

continues execution. In Emerald, when a remote invocation occurs, we think of
the process moving to the destination node and invoking the object there. Or,
alternatively, the new activation record moves to the destination node to become
the base of a new segment of the process stack on that node. The invocation
stack of a single Emerald process can therefore be distributed across several
nodes.

Mobility presents a special problem to this process structure. For example,
given the process activation stack in Figure 2, suppose that object B is moved to
another node. In that case, the part of the thread that is executing in B must
move along with B; that is, the activation record must move. Furthermore, when
the operation in C terminates, it must now return to a different node. If object C
were to move to a different node from B, we would have three parts of the process
stack on three different nodes. Invocation returns would propagate control back
from node to node.

One could imagine a different scheme that left the stack intact, with invocations
always returning to the node on which the root process resides; at that point the
situation could be analyzed and control passed to the proper location. The
problem with this design is that it leaves residual dependencies. In the situation
in which objects C and B have moved to different nodes, it should be possible for
control to return from C to B even if A is temporarily unreachable. Depending
on B’s behavior, it may, in fact, be some time before a return to A or its node is
actually required. Moving invocation frames along with the objects in which they
execute ensures that execution can continue as long as possible and removes
the computational burden from nodes that do not need to be involved in a
communication.

3. IMPLEMENTING MOBILITY IN EMERALD

Adding process mobility to existing systems often proves to be a difficult task.
One problem is extracting the entire state of a process, which may be distributed
through numerous operating system data structures. Second, the process may
have variables that directly index those operating system data structures, such
as open file descriptors, window numbers, and so forth.

ACM Transactions on Computer System, Vol. 6, No. 1, February 1988.

118 l E. Jul, H. Levy, N. Hutchinson, and A. Black

In a distributed object-based system, this problem may be somewhat simplified.
Objects cleanly define the boundaries of all system entities. Furthermore, since
all resources are objects, addressing is standardized and location independent.
All objects, whether user-implemented or kernel-implemented, are addressed
indirectly using an object ID. Operations are performed through a standard
invocation interface.

Although distribution and mobility increase the generality of a system, they
often reduce its performance. Anyone building an object-based system must be
sensitive to performance because of the generally poor performance of such
systems. The implementation of mobility in Emerald involves trade-offs between
the performance of mobility and that of more fundamental mechanisms, such as
local invocation. Where possible, we have made these trade-offs in favor of the
performance of frequent operations, and we would typically be willing to increase
the complexity of mobility to save a microsecond or two on local invocation.
Furthermore, it takes 100 times longer to move an object than to perform a local
invocation; adding 5 microseconds to the object move time makes little relative
difference, whereas 5 microseconds is 25 percent of the local invocation time.
The result of this philosophy is that, to a great extent, the existence of mobility
and distribution in Emerald do not interfere with the performance of objects on
a single node.

In the following sections, we describe some of the implementation of the
Emerald kernel that is relevant to mobility and some of the trade-offs that we
have made in this design.

3.1 Object Implementation and Addressing

To meet our goal of building a distributed object-based system with efficient local
execution, the Emerald implementation relies heavily on shared memory. We
have implemented a prototype of Emerald on top of DEC’s Ultrix system (which
is based on UNIX 4.2BSD) running on five DEC MicroVAX II workstations.2
The Emerald kernel and all Emerald objects on a single node execute within a
single Ultrix address space. Emerald processes are lightweight threads scheduled
within that address space. Protection among objects is guaranteed by the compiler
both through type checking and through run-time checks inserted into the code.
Objects that are resident on the same node address each other directly-an
implementation style that has implications for mobility.

As previously stated, all objects are coded using a single object definition
mechanism. However, based on its knowledge of an object’s use, the compiler is
free to choose an appropriate addressing mechanism, storage strategy, and
invocation protocol [181. The Emerald compiler uses three different styles of
object implementation:

(1) A global object can be moved independently, can be referenced globally in
the network, and can be invoked by objects not known at compile time. Global
objects are heap allocated. An invocation of such an object may require a remote
invocation. In Figure 1, the object aDirectory is implemented as a global object.

‘UNIX is a trademark of AT&T Bell Laboratories. Ultrix is a trademark of Digital Equipment
Corporation.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Fine-Grained Mobility in the Emerald System l 119

z: 1 32-bit data I

Fig. 3. Emerald addressing structures.

(2) A local object is completely contained within another object; that is, a
reference to the local object is never exported outside the boundary of the
enclosing object. Such objects cannot move independently; they always move
along with their enclosing object. Local objects are heap allocated. An invocation
is implemented by a local procedure call or in-line code. The array a in Figure 1
is not used outside of the directory and can thus be implemented as a local object.

(3) A direct object is a local object whose data area is allocated directly in the
representation of the enclosing object. Direct objects are used mainly for primitive
built-in types, structures of primitive types, and other simple objects whose
organization can be deduced at compile time. For example, all integers are direct
objects.

Figure 3 shows the various implementation and addressing options used by
Emerald. Variable X names a global object, and the value stored in X is the
address of a local object descriptor. Each node contains an object descriptor for
every global object for which references exist on that node. When the last
reference to object m is deleted from node k, k’s object descriptor for m can be
garbage collected.

An object descriptor contains information about the state and location of a
global object. The first word of the object descriptor identifies it as a descriptor
and contains control bits indicating whether the object is local or global (the G
bit) and whether or not the object is resident (the R bit). If the resident bit is
set, the object descriptor contains the memory address of the object’s data area;
otherwise, the descriptor contains a forwarding address to the object as described
in Section 3.2.

Variable Y in Figure 3 names a local object. The value stored in Y is the
address of the object’s data area. The first word of this data area, like the first
word of an object descriptor, contains fields identifying the area and indicating
that this is a local object, that is, the data area acts as its own descriptor. Finally,
variable 2 names a direct object that was allocated within the variable itself.

Notice that within a single node, all objects can be addressed directly without
kernel intervention. Emerald variables contain references that are location

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

120 - E. Jul, H. Levy, N. Hutchinson, and A. Black

dependent, that is, they have meaning only within the context of a particular
node. For invocation of global objects, compiled code first checks the resident bit
to see if a local invocation can be performed directly. If the target object is not
resident, the compiled code will trap to the kernel so that a remote invocation
can be performed. In this way, global objects can be invoked locally in time
comparable to a local procedure call.

3.2 Finding Objects

Since objects are allowed to move freely, it is not always possible to know the
location of a given object, for example, when invoking it. The run-time system
must keep track of objects or at least be able to find them when needed. Keeping
every node in the system up-to-date on the current location of every object is
expensive and unnecessary. Instead, we use a scheme based on the concept of
forwarding addresses as described in Fowler [121.

Each global object is assigned a unique network-wide Object Identifier (OID),
and each node has a hashed access table mapping OIDs to object descriptors. The
access table contains an entry for each local object for which a remote reference
exists and each remote object for which a local reference exists.

As previously described, an object descriptor contains a forwarding address as
well as the object’s OID. A forwarding address is a tuple (timestamp, node) in
which the node is the last known location of the object and the timestamp
specifies the age of the forwarding address. Fowler [12] has shown that it is
sufficient to maintain the timestamp as a counter incremented every time the
object moves. Given conflicting forwarding addresses for the same object, it is
simple to determine which one is most recent. Every reference sent across a node
boundary contains the OID of the referenced object and the latest available
forwarding address. The receiving node may then update its forwarding address
for the referenced object, if required.

If an object is moved from node A to node B, both A and B will update their
forwarding addresses for the object. No action is taken to inform other nodes.
Should node C try to invoke the object at A, A will forward the invocation
message to B. When the invocation completes, B will send the reply to C with
the new forwarding address piggybacked onto the reply message.

An alternative strategy, which we did not adopt, would be to keep track of all
nodes that have references to a particular object. Should that object move, update
messages could be sent to those nodes. However, these extra messages could
significantly increase the cost of move and of passing references. For example,
when an object reference is passed to a node for the first time, that node would
have to register with the node responsible for the object. The DEMOS/MP
system used a forwarding address update scheme, and updating forwarding
addresses was shown to incur significant overhead [23]. In addition, sending
update messages on every move will not avoid the need for invocation forwarding,
since update messages do not arrive immediately at all destinations. Our scheme
places the cost of forwarding-address maintenance on the current users of a
forwarding address.

When it is necessary to locate an object, for example when the locate primitive
is used, we apply the following algorithm. If the kernel has a forwarding address

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Fine-Grained Mobility in the Emerald System l 121

for the object, it asks the specified node whether the object is resident there; if it
is, we are done. Otherwise, if that node has a newer forwarding address, then we
start over using that forwarding address. However, if that node is unreachable or
has no better information, we resort to a broadcast protocol.

The broadcast protocol is used whenever the previous step has failed to find
the object. The searching kernel sends a first broadcast message to all other
nodes seeking the location of the object. To reduce message traffic, only a kernel
that has the specified object responds to the broadcast. If the searching kernel
receives no response within a time limit, it sends a second broadcast requesting
a positive or negative reply from all other nodes. All nodes not responding within
a short time are sent a reliable, point-to-point message with the location request.
If every node responds negatively, we conclude that the object is unavailable.

When performing remote invocations, the invocation message is sent without
locating the target object first. Only if there is a lost forwarding address some-
where along the path will the location algorithm be used. This optimizes for the
common case in which the object has not moved or where a valid forwarding
address exists.

3.3 Finding and Translating Pointers

The use of direct memory addresses in Emerald (as opposed to indirect references,
such as those used in the standard Smalltalk implementation [13]) increases the
performance of local invocations. Consequently, movement of an object involves
finding and modifying all of the direct addresses, which increases the cost of
mobility. We feel that this is reasonable, since motion is less frequent than
invocation. This design places the price of mobility on those who use it.

Finding and translating references could be done in several ways. For example,
a tag bit in each word could indicate whether or not the word contains an object
reference. Smalltalk 80 uses such bits to distinguish integers from references, but
using tags increases the overhead of arithmetic operations and complicates the
implementation in general.

Instead, the Emerald compiler generates templates for object data areas de-
scribing the layout of the area. The template is stored with the code in the
concrete type object that defines the object’s operations. Each object data area
contains a reference to the concrete type object so that the code and the template
can be found, given only the data area. In addition to their use for mobility,
templates are used for garbage collection and debugging, since these tasks must
also understand an object’s data area.

As an example, consider the Emerald program shown in Figure 4 that defines
a single object containing three variables inside a monitor. The variable myself
contains a pointer to its own object descriptor. The variable name is initialized
to point to a local string object. The variable i does not contain a pointer, since
integers are implemented as direct objects. The corresponding object data area
and template are shown in Figure 5.

The data area for simpleobject contains

-control information as described earlier,

-a pointer to the code for simpleobject,

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

122 l E. Jul, H. Levy, N. Hutchinson, and A. Black

Fig. 4. Simple Emerald object definition.

const simpleobject == object simpleobject
monitor

var myself : Any +- simpleobject
var nome : String - “Emerald”
var i : Integer - 17

operation GetAfyName + [n : String]
n - nan,e

end GetMyName

end monitor
end simpleobject

Concrete Type

Data Area

tag IGIR 1

I code pointer I-

Operation

Code

Monitor 1 a Data 4
Pointer 2
Temphte

t+iif+

Object Descriptor for stmpleobject

“Emerald”

Fig. 5. Data area and template structure.

-a lock for the monitor,

-the variable i allocated as 4 bytes of data, and

-the variables myself and name, each allocated as a pointer to an object.

The template does not describe the first two items since every data area
contains them. Each template entry contains a count of the number of items
described and the types of the items (called template-types). Typical template-
types are

-Pointer, which is the address of an object; pointers must be translated if the
object is moved.

-Data, which are direct data (e.g., integers) stored as numbers of bytes; these
are not translated.

--MonitorLock, which controls access to the object’s monitor. Monitors are
implemented as a Boolean and a queue of processes awaiting entry to the
monitor. A monitor must be translated if the object is moved.

Attached objects, which must move along with an object being moved, are
indicated simply by a bit in the template entry. The compiler contiguously
allocates variables that can be described by identical template entries. Therefore,
the average template contains only two or three entries.

In addition to data areas, the compiler must produce templates to describe
activation records so that active invocations can be moved along with objects.
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

Fine-Grained Mobility in the Emerald System l 123

A template for an activation record describes three things: the parameters to the
operation, the local variables used by the operation, and the contents of the CPU
registers.

To simplify activation-record templates, the Emerald compiler does not permit
registers to change their template-type during an operation. A register that
contains a pointer must contain a pointer for the lifetime of the invocation;
however, the pointer register can point to different objects during its lifetime.
This restriction is similar to the segregation of address and data registers in some
architectures but is more dynamic since the division is made for each specific
operation. Without this restriction, we would need to have different templates at
different points in an operation’s execution-a design considered early in the
project but later abandoned as unnecessary.

3.4 Moving Objects

Using the addressing and implementation structure described above, the actual
moving of an object is rather straightforward. Although some systems precopy
objects to be moved for performance reasons [28], we do not believe this is
necessary in the Emerald environment for several reasons. First, unlike process
mobility systems, we do not copy entire address spaces. Second, many objects
contain only a small amount of data. Third, even when an object with an active
process is moved, we may not need to copy any code.

3.4.1 Moving Data Objects. Objects without active invocations are the simplest
ones to move. For these, the Emerald kernel builds a message to be transmitted
to the destination node. At the head of this message is the data area of the object
to be moved. As we previously described, this data area is likely to contain
pointers to both global and local objects. Following the data area is translation
information to aid the destination kernel in mapping location-dependent ad-
dresses. For global object pointers, the kernel sends the OID, the forwarding
address, and the address of the object’s descriptor on the source node. For local
objects, the data area is sent along with its address.

On receipt of this information, the destination kernel allocates space for the
moved objects, copies the data areas into the newly allocated space, and builds a
translation table that maps the original addresses into addresses in the newly
allocated space. OIDs are used to locate object descriptors for existing global
objects, or new object descriptors are created where necessary. The kernel then
locates the template for each moved object, traverses its data area, and replaces
any pointers with their corresponding addresses found in the translation table.

3.4.2 Moving Process Activation Records. As previously described in Sec-
tion 2.5, when an object is moved, the activation records for processes executing
its operations must also move. This presents a particularly difficult problem:
Given an object to move, how do we know which activation records need to move
with it? Finding the correct activation records requires a list of all active
invocations for a particular object.

Several solutions are possible, but all have potentially serious performance
implications. The simplest solution is to link each activation record to the object
on each invocation and unlink it on invocation exit. Unfortunately, this would

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1986.

124 l E. Jul, H. Levy, N. Hutchinson, and A. Black

increase our invocation overhead by 50 percent in the current implementation.
On the other hand, finding the invocations to move would require only a simple
list traversal.

A second solution is to create the list only at move time. This would eliminate
the invocation-time cost but would require a search of all activation records on
the node. Although we believe that mobility should not increase the cost of
invocation, exhaustive search seems to be an unacceptable price to pay on every
move.

We have therefore adopted an intermediate solution. We do maintain a list of
all activation records executing in each object, as in the first solution above.
However, on invocation, the activation record is not actually linked into this
structure. Instead, space is left for the links, and the activation record is marked
as “not linked,” which is an inexpensive operation. When an Emerald process is
preempted, its activation stack is searched for “not linked” activation records,
and these are then linked to the object descriptors of their respective objects.

The search stops as soon as an activation record is found that has been linked
previously. In this way, the work is only done at preemption time, and its cost is
related to the difference in stack depth between the start and end of the execution
interval, not to the number of invocations performed.

An operation must still unlink its activation record when it terminates. Each
return must check for a queued activation record and dequeue it before freeing
the record. However, most returns will find a “not linked” activation record, in
which case no work need be done.

Therefore, when an object moves we can find all activation records that must
move with it merely by traversing the linked list associated with the object. These
activation records are moved in a manner similar to moving data areas as
described above.

If necessary, the activation records are removed from the stack containing
them. This is accomplished by splitting the stack into (at most) three parts: the
“bottom” part that remains on the source node, the “middle” part that is moved
to the destination node, and the “top” part that is copied onto a new stack
segment on the source node. The stack break points are found by using the
templates for the activation records. At each of the two stack breaks, invocation
frames are modified to appear as if remote invocations had been performed
instead of local invocations. Figure 6 shows the structure that would exist if
object B from Figure 2 were moved from node CY to node /3.

3.4.3 Handling Processor Registers. An additional complexity in moving Em-
erald processes and activation records is the management of processor registers.
The Emerald compiler attempts to optimize the addressing of objects by storing
local variables in registers instead of in the activation record. In this way, some
of the processor registers may contain machine-dependent pointers, and these
must be translated when the activation record moves.

Unfortunately, the registers for a given activation record are not kept in one
place. Each invocation saves in its activation record a copy of registers that will
be modified by that invocation. Referring back to Figure 2, suppose that the first

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

Fine-Grained Mobility in the Emerald System l 125

node a

activation record
of operation in C

Process A Stack

I

Segment 2

node /3

activation record
of operation in B

Process A Stack
Segment 1

node c1

activation record
of operation in A

Fig. 6. Process stack after object move.

invocation (of A) and the third invocation (of C) both use register 5. In this case,
a copy of A’s register 5 is saved in C’s activation record, as it would be in any
conventional stack-based language implementation.

If object A moves, its activation record will move with it. The stack will be
segmented, and the rest of the stack will be left behind. Furthermore, the copy
of A’s register stored in C’s activation record will be incorrect when C returns
because the data that it refers to will be at a different location on a different
node.

To handle this situation, the kernel sends a copy of the registers used in an
invocation along with the moving activation record. First, the kernel finds the
template for the activation record in the concrete type object of the invoked
object. Second, it determines which registers are used as pointers in an activation
record by looking at its template. The templates for activation records have
special entries for registers and for the area of the activation record where
registers are saved. Third, the kernel scans the invocation stack and looks for
the next activation record that has saved each of the registers. This enables
copies of the current values of the registers to be sent along with the record. On
the destination node, the registers are modified using the translation table (as
described in Section 3.4.1) and stored with the newly created stack segment.

For each stack segment of an Emerald process, there is a separate image of the
registers. When an invocation return crosses a stack segment boundary, the
registers used are those stored with the stack segment receiving control. These

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

126 l E. Jul, H. Levy, N. Hutchinson, and A. Black

are the possibly translated values of registers that were computed when the stack
was segmented.

3.5 Garbage Collection

As with any object-based system, Emerald must rely on garbage collection to
recover memory occupied by objects that are no longer reachable. Furthermore,
Emerald must deal with the problems of garbage collection in a distributed
environment. Although our garbage collector is not yet fully implemented, we
describe its general design in this section.

The principal problem with distributed garbage collection is that object refer-
ences can cross node boundaries. The system must ensure that it does not delete
an object that can still be referenced. In a distributed system, a reference to an
object could be on a node different from the object, on a node that is unavailable,
or “on the wire” in a message. While Emerald has mobile objects, this presents
no special difficulty; other distributed object-based systems may not have mobile
objects, but they all have mobile references, which are the root of the problem. In
fact, if an Emerald object moves, we know implicitly that it cannot be garbage,
since either the object is actively executing or someone with a reference to that
object must have requested the move. Furthermore, garbage collection is simpli-
fied by the presence of object descriptors. Each node retains a descriptor for
every nonresident object that it has referenced since the last collection.

The Emerald garbage collection design calls for two collectors: a node-local
collector that can be run at any time independently of other nodes and a
distributed collector that requires the nodes to cooperate in collecting distributed
garbage. Both are mark-and-sweep collectors modified to operate in parallel with
executing Emerald processes.

We expect most garbage to consist of objects that are created and disposed of
on a single node with no reference ever leaving that node. To know which objects
can be collected by the node-local collector, each object descriptor has a flag
called the RefGivenOut bit. The kernel sets this bit in an object’s descriptor
whenever a reference to the object is passed to another node. The kernel also
sets this bit in the descriptor for a moving object that has arrived at its
destination, since the source node retains a reference to the object. When the
node-local collector finds an object with the RefGivenOut bit set, it considers the
object to be reachable. The node-local collector ignores every reference to a
nonresident object.

Distributed collection is performed using a modified mark-and-sweep collection
algorithm. In the conventional mark-and-sweep, all objects are initially marked
as white, indicating that they are not yet known to be reachable. Then, objects
that are known to be reachable, for example, containing executable processes,
are marked gray. A gray object is reachable, but its references need to be scanned
to mark gray all objects reachable from that object; once this is done the original
object is marked black. When all gray objects have been scanned, the system
consists of black objects that are reachable and white objects that are garbage
and can be deleted.

To perform a distributed collection in Emerald, a collecting process is started
on each node, and all global collectors proceed in parallel. All global objects, that
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

Fine-Grained Mobility in the Emerald System . 127

is, all objects with the RefGivenOut set, are first marked as being unreachable, as
in the traditional mark-and-sweep scheme. Each global collector marks all of its
explicitly reachable global objects gray. When attempting to scan a gray object,
a global collector may find that the object resides on another node. In that case,
it sends a mark-gray message to the node where the object resides. The collector
on the receiving node adds the object to its gray set and sends back an object-is-
black message when the object has been traversed and marked. Upon receiving
an object-is-black message, a collector removes the object from its gray set and
marks it black. The collection is complete when all nodes have exhausted their
gray sets.

To prevent an object from “outrunning” traverse-and-mark requests by moving
often, objects are traversed and marked black when moved. This is done even for
objects currently marked white, since any moved object is a priori reachable-
the object would eventually be marked anyway.

If a node is currently unavailable (e.g., has crashed) when a mark-gray message
is sent to it, then the reference is ignored for the moment. Eventually the only
gray references left are to objects on unreachable nodes. At this point, the
collectors exchange information about the remaining gray objects so that every
collector knows which objects still need to be scanned.

When an unavailable node becomes available again, the collectors continue
marking gray objects until either the collection is done or there is a gray reference
to an object on an unavailable node. The collectors again exchange gray sets and
wait for a node to become available. This process is repeated until the collection
completes, at which point garbage objects and object descriptors can be collected.
Note that it is not necessary for all nodes to be up simultaneously-it is only
necessary for each node to be available long enough for the collection to make
progress over time.

Finally, a major problem with the traditional mark-and-sweep scheme is that
all other activity must be suspended while collecting. In a distributed system,
this is obviously not acceptable. There have been several suggestions for making
mark-and-sweep collectors operate in parallel with the garbage-generating pro-
cesses [lo, 191, some of which have been implemented [4, 91. Typically, parallel
mark-and-sweep requires processes to cooperate with the collector by setting
coloring bits of referenced objects when performing assignments.

Emerald avoids this extra work on assignment by using a scheme proposed by
Hewitt [171. At the start of the marking phase, each executable process is marked
before being allowed to run again. Marking a process means marking the objects
reachable from the activation records of the process and, transitively, any object
reachable from such objects. After an individual process has been marked, it can
proceed in parallel with the rest of the collection even though not all objects and
processes have been marked. Should a process become executable (e.g., after
waiting for entry to a monitor) then that process must be marked before being
allowed to execute.

This scheme allows our collectors to proceed in parallel with executing pro-
cesses, but there is a high initial cost when making a process executable: All
objects reachable from the process must be marked. To reduce the number of
objects traversed before a process may be restarted, we have developed a faulting

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

128 l E. Jul, H. Levy, N. Hutchinson, and A. Black

garbage collection scheme. Reachable global objects are marked but are not
traversed. Instead, they are frozen by setting a bit in the object descriptor. When
a process subsequently attempts to invoke a frozen object, it will fault to the
kernel exactly as if the object had been remote. The kernel lets the collector
traverse the object, unfreezes the object, and allows the invocation to continue.
Thus, only the global objects immediately reachable from the process need be
traversed. This replaces one large delay at the start of garbage collection by a
number of smaller delays spread throughout a process’s execution.

4. PERFORMANCE

We measured the performance of Emerald’s mobility primitives on 4 MicroVAX
II workstations connected by a 10 megabit/second Ethernet. These primitives
have been operational for only a short time, and no effort has yet been made to
optimize their implementation. In addition, we measured the impact of mobility
on network message traffic using the Emerald mail system driven by a synthetic
workload. The results of these measurements are reported in the following
sections.

4.1, Emerald Mobility Primitives

Table II shows the elapsed time cost of various Emerald operations. The measured
performance figures are averages ,of repeated measurements. For the simplest
remote invocation, the time spent in the Emerald kernel is 3.4 milliseconds. For
historical reasons, we currently use a set of network communications routines
that provide reliable, flow-controlled message passing on top of UDP datagrams.
These routines are slow: The time to transmit 128 bytes of data and receive a
reply is about 24.5 milliseconds. Hence, the total elapsed time to send the
invocation message and receive the reply is 27.9 milliseconds.

Table III shows the benefit of call-by-move for a simple argument object. The
table compares the incremental cost of call-by-move and call-by-visit with the
incremental cost of call-by-object-reference. The additional cost of call-by-move
was 2 milliseconds, whereas call-by-visit costs 6.4 milliseconds. These are com-
puted by subtracting the time for a remote invocation with an argument reference
that is local to the destination. The call-by-visit time includes sending the
invocation message and the argument object, performing the remote invocation
(which then invokes its argument), and returning the argument object with the
reply. Had the argument been a reference to a remote object (i.e., had the object
not been moved), the incremental cost would have been 30.8 milliseconds. These
measurements are of a somewhat lower bound because the cost of moving an
object depends on the complexity of the object and the types of objects it names.

Compared with the cost of a remote invocation, call-by-move and call-by-visit
are worthwhile for even a single invocation of the argument object. As previously
stated, the advantage of call-by-move depends on the size of the argument object,
the number of invocations of the argument object, and the local and remote
invocation costs. Emerald’s fast local invocation time, about 20 microseconds,
easily recaptures the time for the move. Even with the current unoptimized
implementation, call-by-move and call-by-visit would be worthwhile for a remote
invocation cost of under 10 milliseconds.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Fine-Grained Mobility in the Emerald System

Table II. Remote Operation Timing

l 129

Operation type Timelms

Local invocation 0.019

Kernel CPU time. remote invocation 3.4

Elapsed time, remote invocation

Remote invocation, local reference parameter

27.9

31.0

Remote invocation. call-bv-move parameter 33.0

Remote invocation, call-by-visit parameter 37.4

Remote invocation, remote reference parameter 61.8

Table III. Incremental Cost of Remote
Invocation Parameters

Parameter passing mode Time/ms

Call-bv-move 2.0

Call-bv-visit 6.4

Call-by-remote-reference 30.8

Moving a simple data object, such as the object in Figure 4, takes about 12
milliseconds. This time is less than the round-trip message time because the
reply messages are “piggybacked” on other messages (i.e., each move does not
require a unique reply). Moving an object with a process is more complex; as
previously stated, although Emerald does not need to move an entire address
space, it must send translation data so that the object can be linked into the
address space on the destination node. The time to move a small process object
with 6 variables is 40 milliseconds. In this case, the Emerald kernel constructs a
message consisting of about 600 bytes of information, including object references,
immediate data for replicated objects, a stack segment, and general process-
control information. The process-control information and stack segment together
consume about 180 bytes.

4.2 Message Traffic In The Emerald Mail System

The elapsed time benefit of call-by-move, as shown in Table III, is due primarily
to the reduction in network message traffic. We have measured the effect of this
traffic reduction in the Emerald mail system, an experimental application mod-
eled after the Eden mail system [2]. Mailboxes and mail messages are both
implemented as Emerald objects. In contrast to traditional mail systems, a
message addressed to multiple recipients is not copied into each mailbox. Rather,
the single mail message is shared between the multiple mailboxes to which it is
addressed.

In a workstation environment, we would expect each person’s mailbox normally
to remain on its owner’s private workstation. Only when a person changes
workstations or reads mail from another workstation would the mailbox be
moved. However, we expect mail messages to be more mobile. When a message

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

130 l E. Jul, H. Levy, N. Hutchinson, and A. Black

Table IV. Mail System Traffic

Without mobility

Total elapsed time (in seconds) 71

Remote invocations 1,386

Network sent messages 2,772

Network packets sent 2,940

Total bytes transferred 568,716

Total bytes moved 0

With mobility

55

666

1,312

1,954

528,696

382,848

is composed, it will be invoked heavily by the sender (in order to define the
contents of its fields) and should reside on the sender’s node. In section 2.4 we
discussed how mail messages may utilize call-by-move to colocate themselves
with a single destination mailbox upon delivery. If there are multiple destinations
it is reasonable for the message to stay at the sender’s node, but when the message
is read it may be profitable to colocate the message with the reader’s mailbox.

To measure the impact of mobility in the mail system, we have implemented
two versions: one which does not use mobility, and one which uses mobility in
an attempt to decrease message traffic. In the Emerald mail system, the reading
of a mail message takes five invocations: one to get the mail message from a
mailbox, and four to read the four fields. If the mail message is remote, then
reading the message will take four remote invocations. By moving the mail
message, these four remote invocations are replaced by a move followed by four
local invocations. However, additional effort may be required by other mailboxes
to find the message once it has moved.

To facilitate comparison, a synthetic workload was used to drive each of the
mail system implementations. Ten short messages (about one hundred bytes)
and ten long messages (several thousand bytes) were sent from a user on each of
four nodes to various combinations of users on other nodes; the recipients then
read the mail that they received.

Table IV shows some of the measurement data collected by the Emerald kernel.
As the Table shows, the use of mobility more than halved the number of remote
invocations, reduced the number of network packets by 34 percent, and cut the
total elapsed time by 22 percent. The number of network messages sent is exactly
twice the number of invocations; each invocation requires a send and a reply.
The number of packets is slightly higher than the number of network messages
because the long mail messages require two packets. Note that the number of
packets required per invocation is higher with mobility because mobile mail
messages cause subsequent message readers to follow forwarding addresses.

Moving the mail messages reduces the total number of bytes transferred only
slightly, by seven percent. Although the same data must eventually arrive at the
remote site, whether by remote invocation or by move, the per-byte overhead of
move is slightly less than that of invocation. In applications in which only a
small portion of the data in an object is required at the remote site, invocation
might still be more efficient than move.
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

Fine-Grained Mobility in the Emerald System l 131

Finally, it is interesting to note that the 22 percent execution time difference
was achieved by simply adding the word “move” in two places in the application.

5. SUMMARY

We have designed and implemented Emerald, an object-based language and
system for distributed programming. Emerald is operational on a small network
of VAX computers and has recently been ported to the SUN 3.3 Several appli-
cations have been implemented including a hierarchical directory system, a
replicated name server, a load-sharing application, a shared appointment calendar
system, and a mail system.

The goals of Emerald included

-support for fine-grained object mobility,

-efficient local execution, and

-a single object model, suitable for programming both small, local data-only
objects and active, mobile distributed objects.

This paper has described the language features and run-time mechanisms that
support fine-grained mobility. Although process mobility (i.e., the movement of
complete address spaces) has been previously demonstrated in distributed sys-
tems, we believe that object mobility, as implemented in Emerald, has additional
benefits. Because the overhead of an Emerald object is commensurate with its
complexity, mobility provides a relatively efficient way to transfer fine-grained
data from node to node.

The need for semantic support for mobility, distribution, and abstract types
led us to design a new language, and language support is a crucial part of mobility
in Emerald. Although invocation is location independent, language primitives
can be used to find and manipulate the location of objects. The programmer can
declare “attached” variables; the objects named by attached variables move along
with the objects to which they are attached. More important, on remote invoca-
tions a parameter-passing mode called call-by-move permits an invocation’s
argument object to be moved along with the invocation request. Our measure-
ments demonstrate the potential of this facility to improve remote invocation
performance while retaining the advantages of call-by-reference semantics.

Implementing fine-grained mobility, while minimizing its impact on local
performance, presents significant problems. In Emerald, all objects on a node
share a single address space and objects are addressed directly. Invocations are
implemented through procedure call or in-line code where possible. The result is
that pointers must be translated when an object is moved. Addresses can appear
in an object’s representation, in activation records, and in registers. The Emerald
run-time system relies on compiler-produced templates to describe the format of
these structures. A combination of compiled invocation code and run-time
support is responsible for maintaining data structures linking activation records
to the objects they invoke. A lazy evaluation of this structure helps to reduce the
cost of its maintenance.

3 SUN is a trademark of SUN Microsystems, Inc.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

132 - E. Jul, H. Levy, N. Hutchinson, and A. Black

Through the use of language support and a tightly coupled compiler and kernel,
we believe that our design has been successful in providing generalized mobility
without much degradation of local performance.

ACKNOWLEDGMENTS

We would like to thank Edward Lazowska and Richard Pattis for extensive
reviews of early versions of this paper. We also thank Brian Bershad, Carl
Binding, Kevin Jeffay, Rajendra Raj, and the referees for their helpful comments.

REFERENCES

1. ALLCHIN, J. E., AND MCKENDRY, M. S. Synchronization and recovery of actions. In Proceedings
of the 2ndACM SIGACT/SIGOPS Symposium on Principles of Distributed Computing (Montreal,
Aug. 17-19,1983). ACM, New York, 1983, pp. 31-44.

2. ALMES, G. T., BLACK, A. P., BUNJE, C., AND WIEBE. D. Edmas: A locally distributed mail
system. In Proceedings of the 7th International Conference on Software Engineering (Orlando,
Fla., Mar. 26-29, 1984). ACM, New York, 1984, pp. 56-66.

3. ALMES, G. T., BLACK, A. P., LAZOWSKA, E. D., AND NOE, J. D. The Eden system: A technical
review. IEEE Trans. Softw. Eng. SE-II, 1 (Jan. 1985), 43-59.

4. BENNETT, J. K. Distributed Smalltalk. In Proceedings of the 2nd ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications (Orlando, Fl., Oct. 1987). ACM,
New York, 1987, pp. 318-330.

5. BLACK, A. P. Supporting distributed applications: Experience with Eden. In Proceedings of the
20th ACM Symposium on Operating System Principles (Orcas Island, Wash., Dec. l-4, 1985).
ACM, New York, 1985, pp. 181-193.

6. BLACK, A., HUTCHINSON, N., JUL, E., AND LEVY. H. Object structure in the Emerald system.
In Proceedings of the 1st ACM Conference on Object-Oriented Programming Systems, Languuges,
and Applications (Portland, Ore., Oct. 1986). ACM, New York, 1986, pp. 78-86.

7. BLACK, A., HUTCHINSON, N., JUL, E. LEVY, H., AND CARTER, L. Distribution and abstract
types in Emerald. IEEE Trans. Softw. Eng. 13, 1 (Jan. 1987).

8. BUTTERFIELD, D. A., AND POPEK, G. J. Network tasking in the Locus distributed UNIX system.
In USENIX Summer 1984 Conference Proceedings (Salt Lake City, Ut., June 1984), USENIX
Association, pp. 62-71.

9. CHANSLER, R. J., JR. Coupling in systems with many processors. PhD dissertation, Dept. of
Computer Science, Carnegie Mellon Univ., Pittsburgh, Pa., Aug. 1982.

10. DIJKSTRA, E. W., LAMPORT, L., MARTIN, A. J., SCHOLTEN, C. S., AND STEFFENS, E. F. M. On-
the-fly garbage collection: An exercise in cooperation. Commun. ACM 22, 11 (Nov. 1978),
966-975.

11. DOUGLIS, F. Process migration in the Sprite operating system. Tech. Rep. UCB/CSD 87/343,
Computer Science Division, Univ. of California, Berkeley, Feb. 1987.

12. FOWLER, R. J. Decentralized object finding using forwarding addresses. PhD dissertation, Univ.
of Washington, Seattle, Wash., Dec. 1985. Also available as Dept. of Computer Science Tech.
Rep. 85-12-1.

13. GOLDBERG, A., AND ROBSON, D. Smalltalk-80: The Language and Its Implementation. Addison-
Wesley, Reading, Mass., 1983.

14. GREIF, I., SELIGER, R., AND WEIHL, W. Atomic data abstractions in a distributed collaborative
editing system. In Proceedings of the 23th Symposium on Principles of Distributed Computing
(Jan. 1986). ACM, New York, 1986.

15. HERLIHY, M., AND LISKOV, B. A value transmission method for abstract data types. ACM
Trans. Program. Lang. Syst. 4, 4 (Oct. 1982), 527-551.

16. HEWIIT, C. The Apiary network architecture for knowledgeable systems. In Conference Record
of the 1980 Lisp Conference (Palo Alto, Calif., Aug. 1980). Stanford Univ., 1980, pp. 107-118.

17. HEWITT, C., AND BAKER, H. Actors and continuous functionals. In IFZP Working Conference
on Formal Description of Programming Concepts (St. Andrews, N.B., Aug. 1977). North-Holland,
Amsterdam, pp. 16.1-16.21.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Fine-Grained Mobility in the Emerald System 133

18. HUTCHINSON, N. C. Emerald: An object-based language for distributed programming. PhD
dissertation, Univ. of Washington, Seattle, Jan. 1987. Also available as Dept. of Computer Science
Tech. Rep. 87-01-01.

19. KUNG, H. T., AND SONG, S. W. An efficient parallel garbage collection system and its correct-
ness proof. In Proceedings of the 18th Annual Symposium on the Foundations of Computer Science
(Providence, RI., Oct. 1977). IEEE Computer Society, New York, 1977, pp. 120-131.

20. LAZOWSKA, E. D., LEVY, H. M., ALMES, G. T., FISCHER, M. J., FOWLER, R. J., AND VESTAL,
S. C. The architecture of the Eden system. In Proceedings of the 8th Symposium on Operating
Systems Principles (Pacific Grove, Calif., Dec. 1981). ACM, New York, 1981, pp. 148-159.

21. LISKOV, B. Overview of the Argus language and system. Programming Methodology Group
Memo 40, MIT Laboratory for Computer Science, MIT, Cambridge, Mass., Feb. 1984.

22. LISKOV, B., ATKINSON, R., BLOOM, T., Moss, E., SCHAFFERT, C., SCHEIFLER, B., AND SNYDER,
A. CLU reference manual. Tech. Rep. MIT/LCS/TR-225, MIT Laboratory for Computer
Science, MIT, Cambridge, Mass., Oct. 1979.

23. POWELL, M. L., AND MILLER, B. P. Process migration in DEMOS/MP. In Proceedings of the
9th ACM Symposium on Operating Systems Principles (Bretton Woods, N.H., Oct. 11-13, 1983).
ACM/SIGOPS, New York, 1983, pp. 110-119.

24. RASHID, R. F., AND ROBERTSON, G. G. Accent: A communication oriented network operating
system kernel. In Proceedings of the 8th Symposium on Operating System Principles (Pacific
Grove, Calif., Dec. 14-16, 1981). ACM, New York, 1981, pp. 64-75.

25. SOLLINS, K. R. Copying complex structures in a distributed system. Master’s thesis, MIT/
LCS/TR-219, MIT, Cambridge, Mass., May 1979.

26. SPAFFORD, E. H. Kernel structures for a distributed operating system. PhD dissertation, School
of Information and Computer Science, Georgia Institute of Technology, Atlanta, Ga., May 1986.
Also available as Georgia Institute of Technology Tech. Rep. GIT-ICS-86/16.

27. SPECTOR, A. Z. Performing remote operations efficiently on a local computer network. Commun.
ACM 25,4 (Apr. 1982), 246-260.

28. THEIMER, M. M., LANTZ, K. A., AND CHERITON, D. R. Preemptable remote execution facilities
for the V-system. In Proceedings of the 10th ACM Symposium on Operating Systems Principles
(Orcas Island, Wash., Dec. l-4,1985). ACM/SIGOPS, New York, 1985, pp. 2-12.

29. VESTAL, S. Garbage collection: An exercise in distributed, fault-tolerant programming. PhD
dissertation, Univ. of Washington, Seattle, Jan. 1987. Also available as Dept. of Computer Science
Tech. Rep. 87-01-03.

30. WULF, W. A., LEVIN, R., AND HARBISON, S. P. HYDRA/C.mmp: An Experimental Computer
System. McGraw-Hill, New York, 1981.

Received May 1987; revised August 1987; accepted September 1987

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

