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Abstract latent sector errors, within disk drives [18]. Latent secto
errors are detected by a drive’s internal error-correcting

An |mport:_;1nt threat to reliable storage_ of datais S'k.amcodes (ECC) and are reported to the storage system.
data corruption. In order to develop suitable protection . .
Less well-known, however, is that current hard drives

mechanisms against data corruption, it is essential to un- q troll ist of hundreds-of-th dsof I
derstand its characteristics. In this paper, we present th@nd CONtrofiers consist of hundreds-ot-thousands otiines

first large-scale study of data corruption. We analyze cor f Iow_—IeveI firmware code. This firmware code, a}long
ith higher-level system software, has the potential for

ruption instances recorded in production storage systemr‘%[ ; S
- - . . arboring bugs that can cause a more insidious type of
containing a total ofl.53 million disk drives, over a pe- disk err(?r ~ gsilent data corruption, where the dgg i

riod of 41 months. We study three classes of corruption: ilentl ted with no indication f the drive that
checksum mismatches, identity discrepancies, and pa?‘-I ently corrupted with no indication from the drive tha
gn error has occurred.

ity inconsistencies. We focus on checksum mismatcheS™ )
Silent data corruptions could lead to data loss more of-

since they occur the most. X _

We find more than 400 000 instances of Checksumtenthan latent sector errors, since, unlike latent sector e
mismatches over the 41—rr,10nth period. We find mam;ors, they cannot be detected or repaired by the disk drive
i rétheIf. Detecting and recovering from data corruption re-

interesting trends among these instances including: (i)~ . ! )
nearline disks (and their adapters) develop checksu uires protection techniques beyond those provided by

mismatches an order of magnitude more often than ente%ilg'signve' Inl fac;, basul:)Ipr?tedctltontst(;]hemes Sl‘)lfCh as
prise class disk drives, (ii) checksum mismatches within [13] may also be unable to detect these problems.

the same disk are not independent events and they show 1€ MOSt common technique used in storage systems
high spatial and temporal locality, and (iii) checksum ®© detect data corruption is for the storage system to add

mismatches across different disks in the same storagitS OWn higher-level checksum for each disk block, which

system are not independent. We use our observations {3 Validated on each disk block read. There is a long his-

derive lessons for corruption-proof system design. tory of enterprise-class storage systems, including ours,
in using checksums in a variety of manners to detect data

corruption [3, 6, 8, 22]. However, as we discuss later,
1 Introduction checksums do not protect against all forms of corruption.

Therefore, in addition to checksums, our storage system
One of the biggest challenges in designing storage sysalso uses file system-level disk block identity informa-
tems is providing the reliability and availability that wuse tion to detect previously undetectable corruptions.
expect. Once their data is stored, users expectit to be per- In order to further improve on techniques to handle
sistent forever, and perpetually available. Unfortunatel corruption, we need to develop a thorough understanding
in practice there are a number of problems that, if notof data corruption characteristics. While recent studies
dealt with, can cause data loss in storage systems. provide information on whole disk failures [11, 14, 16]

One primary cause of data loss is disk drive unreli-and latent sector errors [2] that can aid system designers

ability [16]. It is well-known that hard drives are me- in handling these error conditions, very little is known
chanical, moving devices that can suffer from mechani-about data corruption, its prevalence and its character-
cal problems leading to drive failure and data loss. Foiistics. This paper presents a large-scale study of silent
example, media imperfections, and loose particles causdata corruption based on field data frarfi3 million disk
ing scratches, contribute to media errors, referred to adrives covering a time period dfl months. We use the



same data set as the one used in recent studies of latetteds of customer sites. This section describes the ar-

sector errors [2] and disk failures [11]. We identify the chitecture of the system, its corruption detection mecha-

fraction of disks that develop corruption, examine fac-nisms, and the classes of corruptions in our study.

tors that might affect the prevalence of corruption, such

as disk class and age, and study characteristics of corrup-

tion, such as spatial and temporal locality. To the besto.1  Storage Stack

our knowledge, this is the first study of silent data cor-

ruption in production and development systems. Physically, the system is composed of a storage-
We classify data corruption into three categories basedontroller that contains the CPU, memory, network in-

on how it is discovered: checksum mismatches, idenierfaces, and storage adapters. The storage-controller

tity discrepancies, and parity inconsistencies (desdribeis connected to a set of disk shelves via Fibre Channel

in detail in Section 2.3). We focus on checksum mis-loops. The disk shelves house individual disk drives.

matches since they are found to occur the most. Our imThe disks may either be enterprise class FC disk drives

portant observations include the following: or nearline serial ATA (SATA) disks. Nearline drives

use hardware adapters to convert the SATA interface to

than400, 000 instances of checksum mismatch&, of the Fibre Channel protpcol. .Thus, the storage-controller

which were discovered during RAID reconstruction, cre-Views all drives as being Fibre Channel (however, for

ating the possibility of real data loss. Even though theth® purposes of the study_, we can still identify whether

rate of corruption is small, the discovery of checksum?@ drive is SATA and FC using its model type).

mismatches during reconstruction illustrates that data The software stack on the storage-controller is com-

corruption is a real problem that needs to be taken intg0sed of the WAF® file system, RAID, and storage
account by storage system designers. layers. The file system processes client requests by issu-

(il) We find that nearline (SATA) disks and their adaptersIng read and write operations to th_e RAID. Iaye_r, which
: .~ transforms the file system requests into logical disk block
develop checksum mismatches an order of magnitude

more often than enterprise class (FC) disks. Surprising| requests and issues them to the storage layer. The RAID

: . . . ayer also generates parity for writes and reconstructs
enterprise class disks with checksum mismatches dey g party

. . . : data after failures. The storage layer is a set of cus-
velop more of them than nearline disks with mismatches, . . . : . .
tomized device drivers that communicate with physical

(i) Checksum mismatches are not independent occurdisks using the SCSI command set [23].
rences — both within a disk and within different disks in
the same storage system.

(iv) Checksum mismatches have tremendous spatial 102.2 Corruption Detection Mechanisms

cality; on disks with multiple mismatches, it is often con-
secutive blocks that are affected. The system, like other commercial storage systems, is

designed to handle a wide range of disk-related errors.
%he data integrity checks in place are designed to de-
Mect and recover from corruption errors so that they are
not propagated to the user. The system does not know-
Therest of the paper is structured as follows. Section an|y propaga‘[e Corrupt data to the user under any cir-
presents the overall architecture of the storage system§mstance.
used for the study and Section 3 discusses the method- \ye focus on techniques used to detect silent data cor-

ology used. Section 4 presents the results of our analystion, that is, corruptions not detected by the disk drive
sis of checksum mismatches, and Section 5 presents thg any other hardware component. Therefore, we do not

results for identity discrepancies, and parity inconsiste  gescribe techniques used for other errors, such as trans-

cies. Section 6 provides an anecdotal discussion of COl50rt corruptions reported as SCSI transport errors or la-

ruption, developing insights for corruption-proof stoéag  tent sector errors. Latent sector errors are caused by
system design. Section 7 presents related work and Sef)hysical problems within the disk drive, such as media

(i) During the 41-month time period, we observe more

(v) Identity discrepancies and parity inconsistencies d
occur, but affect 3 to 10 times fewer disks than checksu
mismatches affect.

tion 8 provides a summary of the paper. scratches, “high-fly” writes, etc. [2, 18], and detected by
the disk drive itself by its inability to read or write sec-
2 Storage System Architecture tors, or through its error-correction codes (ECC).

In order to detect silent data corruptions, the system
The data we analyze is from tens-of-thousands of prostores extra information to disk blocks. It also peri-
duction and development Network Appliadééstorage  odically reads all disk blocks to perform data integrity
systems (henceforth callétle systefinstalled at hun- checks. We now describe these techniques in detalil.



| Corruption Class || Possible Causes | Detection Mechanism | Detection Operation |

Checksum mismatch] Bit-level corruption; torn write;| RAID block checksum Any disk read
misdirected write
Identity discrepancy|| Lost or misdirected write File system-level block identity File system read
Parity inconsistency| Memory corruption; lost write;| RAID parity mismatch Data scrub
bad parity calculation

Table 1:Corruption classes summary.

(a) Format for enterprise class disks original block can usually be restored through RAID re-
4 KB File system data block 74, e4a-byeData  construction. We refer to corruptions detected by RAID-
Integrity Segment |aye| checksum validation ahecksum mismatches

520|520|520| 520 520 520 520 520

A second component of the data integrity segment is
block identity information. In this case, the fact that the

(b) Format for nearline disks file system is part of the storage system is utilized. The
4 KB File system data block > 64-byte Data identity is the disk block’s identity within the file system

Integrity Segment + (@ ¢, this block belongs to inode 5 at offset 100). This

512‘ 514 51# 51% 51‘2 5#2 5#2 512 18 bytesunused 0 iity is cross-checked at file read time to ensure that
the block being read belongs to the file being accessed.

(c) Structure of the data integrity segment (DIS) If, on file read, the identity does not match, the data is

Checksum of data block reconstructed from parity. We refer to corruptions that
Identity of data block are not detected by checksums, but detected through file

system identity validation adentity discrepancies

Checksum of DIS

Figure 1:Data Integrity Segment. The figure shows the 2.2.2 Data Scrubbing
different on-disk formats used to store the data integréy-s
ment of a disk block on (a) enterprise class drives \&2053 In order to pro-actively detect errors, the RAID layer pe-
sectors, and on (b) nearline drives wiilhi2B sectors. The fig-  riodically scrubsall disks. A data scrub issues read op-
ure also shows (c) the structure of the data integrity segmen erations for each physical disk block, computes a check-
Ip partipular, in addition to thg checksum and idgntity inf@- sum over its data, and compares the computed check-
tion, this structure also contains a checksum of itself. sum to the checksum located in its data integrity seg-
ment. If the checksum comparison fails (i.e., a checksum
mismatch), the data is reconstructed from other disks in
the RAID group, after those checksums are also verified.
2.2.1 Data Integrity Segment If no reconstruction is necessary, the parity of the data
blocks is generated and compared with the parity stored
In order to detect disk block corruptions, the systemin the parity block. If the parity does not match the ver-
writes a 64-byte data integrity segment along with eachfied data, the scrub process fixes the parity by regener-
disk block. Figure 1 shows two techniques for storingating it from the data blocks. In a system protected by
this extra information, and also describes its structuredouble parity, it is possible to definitively tell which of
For enterprise class disks, the system uses 520-byte seite parity or data block is corrupt.

tors. Thus, a 4-KB file system block is stored along with  \we refer to these cases of mismatch between data and
64 bytes of data integrity segment in eight 520-byte secparity asparity inconsistencies Note that data scrubs
tors. For nearline disks, the system uses the default 51Zyre unable to validate the extra file system identity infor-
byte sectors and store the data integrity segment for eachation stored in the data integrity segment, since, by its
set of eight sectors in the following sector. We find thatnature, this information only has meaning to the file sys-
the protection offered by the data integrity segment istem and not the RAID-level scrub. Depending on sys-
well-worth the extra space needed to store them. tem load, data scrubs are initiated on Sunday evenings.

One component of the data integrity segment is aFrom our data, we find that an entire RAID group is
checksum of the entire 4 KB file system block. The scrubbed approximately once every two weeks on an av-
checksum is validated by the RAID layer whenever theerage. However, we cannot ascertain from the data that
data is read. Once a corruption has been detected, thevery disk in the study has been scrubbed.



2.3 Corruption Classes Disk class Enterprise Class or nearline disk drives with

. ) ) respectively Fibre Channel and ATA interfaces.
This study focuses on disk block corruptions caused by

both hardware and software errors. Hardware bugs inPisk family A particular disk drive product. The same
clude bugs in the disk drive or the disk shelf firmware, product (and hence a disk family) may be offered

bad memory, and adapter failures. Software bugs could [N different capacities. Typically, disks in the same
also cause some corruption. In many cases, the cause [amily only differ in the number of platters and/or
of corruption cannot be identified. We detect different ~ read/write heads [17].

forms of corruption using the different data protection Disk model The combination of a disk family and a par-
mechanisms in place. As mentioned earlier, we distin- ticular disk size. Note that this term does not imply
guish between these forms in our study. Table 1 gives a  an analytical or simulation model.

summary of these corruption classes.

e Checksum mismatches (CMs) This corruption
class refers to cases where the corruption is detected
from mismatched data and checksum. The cause could
be (i) data content corrupted by components within the
data path, or (”) a torn Write’ wherein On|y a portion Corl‘upt block This term refers to a 4-KB file SyStem
of the data block is written successfully, or (iii) a mis- block with a checksum mismatch.
directed write, wherein the data is written to either the
wrong disk or the wrong location on disk, thus overwrit-
ing and corrupting data [3, 15]. Checksum mismatches
can be detected anytime a disk block is read (file system
reads, data scrubs, RAID reconstructionand soon). 3.2 Data Collection and Analysis

e Identity discrepancies (IDs} This corruption class . . .
refers to a mismatch detected when a disk block idenWe now describe our data collection and analysis

. . : ) methodology and some limitations.
tity check is performed during a file system read. The J -

. . . . Data collection: The storage system has a built-in, low-
cause could be (i) a lost write, which typically occurs be-

cause a write destined for disk is not written but thoughtoverhe"’ld mechanism called Autosupport to log impor-

of as written, or (ii) a misdirected write, where the orig- tant system events back to a central repository. These

inal disk location is not updated. We are aware of actua[©3329¢€s can be enabled for a variety of system events

cases when the disk firmware replied successfully to éndUdmg disk errors. Not all customers enable logging,

write that was never written to stable media. Identity dis-éIIthough a large percentage do. Those that do, some-

) Lo times do so only after some period of initial use. These
crepancies can be detected only during file system readF. .
L . . . : 0gs allow customized support based on observed events.
e Parity inconsistencies (PIs) This corruption class

fers t : ich bet th - ted f Although these logs are primarily intended for support,
refers to a mismatch between the parity compute ronIhey have also been utilized for analyzing various disk

d%ta I?Ior::kskand thE parity slftgridh_on disk deslzlt; the indigyors. 1n addition to our corruption study, this repos-
vidual checksums being vald. s error could be cause ory (the “Network Appliance Autosupport Database”)

by lost or m_|sd|recteq writes, in-memory corrupt|9n§, has been used in disk failure [11] and latent sector er-
processor miscalculations, and software bugs. Parity in-

istenci detected onlv during dat b ror [2] studies.
consistencies are detected only during data scrubs. — \a1uic: \we study corruption instances that were

Our stucliy zrlrrr:arllyr/] focuses on checksum m'smﬁtCheslogged in tens of thousands of storage systems for a pe-
since we find that these corruptions occur much morg;,q of 41 months starting in January 2004. These sys-
frequently. tems belong to a range of different models, run differ-
ent versions of storage-controller software (perhaps with
one or more updates during the study period) and contain
many different models or versions of hardware compo-

. . . . nents. In order to have a complete history of the activities
This section describes some terminology, our data col- : . .
. . : of the disks used in the study, we constrain our sample to
lection and analysis methodology, and notation used tg . .
discuSS our results only those disks Fhat were s.hl_ppeo! after_ January 2004.
‘ Our sample consists df.53 million disk drives. These
drives belong to 14 disk families and 31 distinct models.
3.1 Terminology To deriv_e statistically significant rgsults, we often fl_mth _
constrain the sample set depending on the analysis being

We use the following terms in the remaining sections. performed. For example, we sometimes use shorter time

Disk age The amount of time a disk has been in the
field since its ship date, rather than the manufacture
date. In practice these these two values are typically
within a month of each other.

Corrupt disk This term is used to refer to a disk drive
that has at least one corrupt block.

3 Methodology



periods for our analysis so as to maximize the number We present data as the probability of developing
of models we can study; clearly not all disk families and checksum mismatches for a particular sample of disks.
models have been in the field for the same duration. Th&he notationP(X, > L) denotes the probability of a
disk models we consider for each study may have one oflisk developing at leadt checksum mismatches within
the following constraints: T months since the disk’s first use in the field.

e Model has at least 1000 disks in the field for time
period being considered.

e Model has at least 1000 disks in the field and at leas

15 corrupt disks for time being considered. ) . .
This section presents the results of our analysis of check-

The first constraint is used for studies of factors that i tch We first ide basic stafisti th
impact checksum mismatches, while other studies usgUM Mismaitches. YWe Tirst provide basic stalistics on the

the second constraint. In addition to the constraints orff ccU"ence of checksum mismatches in the entire pop-

the model sample, we often restrict our data to includeUIatlon of disk drives. We then examine various fac-

only the first17 months since a drive was shipped. This tors that affect the probability of developing checksum

helps make results more comparable, since many of thgnsmatches. Next, we analyze various characteristics of

drives in the study were shipped on different dates an&hecksum mismatches, such as spatial locality. Further,
have been in the field for different amounts of time we look for correlations between occurrence of check-

While we usually present data for individual disk mod- sum mismatches and other system or disk errors. Finally,

. we analyze the source of the disk requests that discovered
els, we sometimes also report averages (mean values) ﬁrﬂg

nearline disks and enterprise class disks. Since the sa 'e mismatches.

ple size for different disk models per disk class varies

considerably, we weigh the average by the sample siz¢, 1 Summary Statistics

of each disk model in the respective class. . .

Limitations: The study has a few limitations that mostly During the 41-month period covered by our data we ob-
stem from the data collection process. First, for a vari-Serve a total of about00, 000 checksum mismatches.
ety of reasons, disks may be removed from the systeme the total sample 0f._53 million disks, 3855 disks de-
Our study includes those disks up to the point of theirveloped checksum mismatches — 3088 of 348, 000
removal from the system. Therefore, we may not ob-nearline disks (0.86%) and 767 of tha 7 million enter-
serve errors from otherwise error prone disks after som@rise class disks (0.065%). Using our probability repre-
period of time. Second, since the logging infrastructuresentation,P(X; > 1) = 0.0086 for nearline disks, and
has been built with customized support as the primary?’(X: = 1) = 0.00065 for enterprise class disks with-
purpose, the data can be used to answer most but not &Ht any restriction on time, This indicates that nearline
questions that are interesting for a study such as ourslisks may be more susceptible to corruption leading to
For example, while we can identify the exact disk whenchecksum mismatches than enterprise class disks. On av-
an error is detected during a scrub, we cannot verify thagrage, each disk developed 0.26 checksum mismatches.

every disk in the study has been scrubbed periodically if-onsidering only corrupt disks, that is disks that experi-
the absence of errors. enced at least one checksum mismatch, the mean number

of mismatches per disk is 104, the median is 3 and the

. mode (i.e. the most frequently observed value) is 1 mis-

3.3 Notation match per disk. The maximum number of mismatches
observed for any single drive is 33,000.

# Checksum Mismatches

We denote each disk drive model damily-type). For
anonymization purposefamily is a single letter repre-
senting the disk familyg.g, Quantum Fireball EX) and 4.2 Factors

typeis a single number representing the disk’s particular

capacity. Although capacities are anonymized, relativéVe examine the dependence of checksum mismatches on
sizes within a family are ordered by the number repre-variOUS factors: disk class, disk model, disk age, disk
senting the capacity. For example, n-2 is larger than n-1$ize, and workload.

and n-3 is larger than both n-1 and n-2. The anonymized

cgpacitieg_ do not allow comparisons across disk fam!lies4'2'1 Disk Class, Model and Age

Disk families fromA to E (upper case letters) are nearline

disk families, while families fronf to o (lower case let- Figures 2 and 3 show the probability of a disk developing
ters) are enterprise class disk families. Lines on graphshecksum mismatches as it ages for nearline and enter-
labeledNL and ES represent the weighted average for prise class disks respectively. The graphs plot the cu-
nearline and enterprise class disk models respectively. mulative distribution function of the time until the first



0.04 ; 4.2.2 Disk Size

Al ——
C1 -
0,035 | D-1 ~-x-- e Observation 4 There is no clear indication that disk
003 LE3 o ] size affects the probability of developing checksum mis-
NL e g matches.

0.025 | R E
002 - ) /:;;«7’ | Figure 4 presents the fraction of disks that develop
i checksum mismatches withit¥ months of their ship-

1 date (i.e., the rightmost data points from Figures 2 and 3;
P(X17 > 1)). The disk models are grouped within
their families in increasing size. Since the impact of disk
size on the fraction of disks that develop checksum mis-
matches is not constant across all disk families (it occurs
in only 7 out of 10 families), we conclude that disk size
does not necessarily impact the probability of developing
checksum mismatches.

0.015

0.01 |

Fraction of total disks with at least 1 CM

0.005 |

18

Disk age (months)

Figure 2: Impact of disk age on nearline disks. The
probability that a disk develops checksum mismatches ag# a
is shown for nearline disk models. Note that the probabitity 4-2.3 Workload

cumulative. Observation 5 There is no clear indication that work-

checksum mismatch occurs. The figures can be reprdead affects the probability of developing checksum mis-
sented a® (X, > 1) fort ={3,6, 9,12, 15, 1ymonths,  matches.

i.e., the probability of at least one checksum mismatch

after - months. Note the different Y-axis scale for the ~The systems in the study collect coarse workload data

nearline and enterprise class disks. including the number of read and write operations, and
We see from the figures that checksum mismatches déhe number of blocks read and written for each week of
pend on disk class, disk model and disk age. our study. To study the effect of workload on checksum

Observation 1 Nearline disks (including the SATA/FC mismatches, we computed the correlation coefficient be-
tween the workload data and the number of checksum

adapter) have an order of magnitude higher probabil- _ . h b dinth
ity of developing checksum mismatches than enterprisg"SmatC es observed in the system.
We find that in all cases the correlation coefficient is

class disks. less than 0.1 (in fact, in most cases less than 0.001), in-
Figure 2 (line ‘NL" — Nearline average) shows that dicating no significant correlation between workload and
0.66% of nearline disks develop at least one mismatcfthecksum mismatches. However, these results might be
during the firstl7 months in the field (X:17 > 1) = due to having only coarse per-system rather than per-
0.0066), while Figure 3(b) (line ‘ES’) indicates that only drive workload data. A system consists of at least 14
0.06% of enterprise class disks develop a mismatch durdisks and can have as many as several hundred disks.
ing that time (X7 > 1) = 0.0006). Aggregating data across a number of disks might blur
Observation 2 The probability of developing check- €Xisting correlations between an individual drive’s work-
sum mismatches varies significantly across different diskoad and corruption behavior.
models within the same disk class.

We see in Figure 2 that there is an order of magnitude}.3 Characteristics

difference between models ‘C-1" and ‘E-2’ for develop- . . . .
ing at least one checksum mismatch aftemonths: i.e., In this subsection, we explore various characteristics of

P(X17 > 1) = 0.035 for ‘C-1’ and 0.0027 for ‘E-2". checksum mismatches. First, we analyze the number of

) ] ] ] mismatches developed by corrupt disks. Then, we ex-
Observation 3 Age affects different disk models differ- 4 mine whether mismatches are independent occurrences.

ently with respect to the probability of developing check-ginqly, we examine whether the mismatches have spatial
sum mismatches. or temporal locality.

On average, as nearline disks age, the probability of
developing a checksum mismatch is fairly consta}nt, with4_3_1 Checksum mismatches per corrupt disk
some variation across the models. As enterprise class
disks age, the probability of developing the first check-Figure 5 shows the cumulative distribution function of
sum mismatch decreases after about 6-9 months and thelne number of checksum mismatches observed per cor-
stabilizes. rupt disk, i.e. the Y-axis shows the fraction of corrupt
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disks that have fewer than or equal to X number of cor- Finally, itis interesting to note that nearline disk model
rupt blocks. The figure can be represented’aX’;; < ‘E-1’is particularly aberrant — around 30% of its corrupt
z| X7 > 1) forz ={1, 2, 3, 4, 5, 10, 20, 50, 100, 200, disks develop more than 1000 checksum mismatches.
500, 100Q. We are currently investigating this anomaly.

Observation 6 The number of checksum mismatches o
per corrupt disk varies greatly across disks. Most cor-4-3-2 Dependence between disks in same system

rupt disks develop only a few mismatches each. Howevegpservation 9 The probability of a disk developing a
a few disks develop a large number of mismatches.  checksum mismatch is not independent of that of other

Figure 5 shows that a significant fraction of corruptdISkS in the same storage system.

disks (more than a third of all corrupt nearline disks  \yhjle most systems with checksum mismatches have
and more than a fifth of corrupt enterprise disks) de-\y one corrupt disk, we do find a considerable number
velop only one checksum mismatch. On the other handyt instances where multiple disks develop checksum mis-
a small fraction of disks develop several thousand checki,5iches within the same storage system. In fact, one of
sum mismaiches. The large variability in the number ofy,o gystems in the study that used nearline disks had 92
mismatches per drive is also reflected in the great differy;gys develop checksum mismatches. Taking the max-
ence between the mean and median: while the median iS,,m number of disks in the systems in the study into

only 3 mismatches per drive, the meanis 78. ~  cgnsjderation, the probability of 92 disks developing er-
A more detailed analysis reveals that the dlstrlbuuonsrors independently is less than — 12, much less than
exhibit heavy tails. A large fraction of the total number |, _ 05, the approximate fraction of systems represented

of checksum mismatches qbserved in our study is experiby one system. This dependence is perhaps indicative
enced by a very small fraction of the corrupt disks. More ot 4 common corruption-causing component, such as a

precisely, 1% of the corrupt disks (the top 1% corruptgneif controller or adapter. We are aware of such compo-
disks with the largest number of mismatches) producg,qnts causing corruptions.

more than half of all mismatches recorded in the data.

Observation 7 On average, corrupt enterprise class 4.3.3 Spatial Locality

disks develop many more checksum mismatches than cor- ) ) o
rupt nearline disks. We measure spatial locality by examining whether each

corrupt block has another corrupt block (@ighbo)

Figure 5(a) (line ‘NL) and Figure 5(b) (line ‘ES’) within progressively larger regionslogality radiug
show that within17 months 50% of corrupt disks (i.e., around it on the same disk. For example, if in a disk,
the median) develop about 2 checksum mismatches faslocks numbered 100, 200 and 500 have checksum mis-
nearline disks, but almost 10 for enterprise class disksmatches, then blocks 100 and 200 have one neighbor at a
The trend also extends to a higher percentage of corrupbcality radius of 100, and all blocks (100, 200, and 500)
disks. For example, 80% of nearline corrupt disks havehave at least one neighbor at a locality radius of 300.
fewer than 20 mismatches, whereas 80% of enterprise Figure 6 shows the percentage of corrupt blocks that
class disks have fewer than 100 mismatches. Given thafave at least one neighbor within different locality radii.
very few enterprise class disks develop checksum misSince a larger number of checksum mismatches will sig-
matches in the first place, in the interest of reliability andnificantly skew the numbers, we consider only disks with
availability, it might make sense to replace the enterprise to 10 mismatches. The figure can be represented as
class disk when the first mismatch is detected. P(X] > 1]2 < X; < 10). X" is the number of corrupt
blocks in block numbers a —r, a+r > around corrupt
block a (but excludinga itself). The values for radius
r are{1, 10, 100, ..., 100M blocks, and) < ¢t < 41

We find that the conditional probability of develop- months. The figure also includes a liRandonthat sig-
ing further checksum mismatches, given that a disk hasifies the line that would be obtained if the checksum
at least one mismatch, is higher than the probability ofmismatches were randomly distributed across the block
developing the first mismatch. For example, while theaddress space. This line can be used as a comparison
probability that a nearline disk will develop one or more point against the other lines. Note that this line ig)at
checksum mismatches iy months is only 0.0066, the for most of the graph, signifying that there is no spatial
conditional probability of developing more than 1 mis- locality for a random distribution.
match given that the disk already has one mismatch is For the actual data for the different disk models, we
as high as 0.61(minus0.4, the probability of exactly 1  see that most disk models are much higher on the graph
block developing a checksum mismatch in Figure 5).  thanRandomwhen the x-axis value i$; for more than

Observation 8 Checksum mismatches within the same
disk are not independent.
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Figure 7:Inter-arrival times. The graphs show the cumulative distribution of the inteival times of checksum mismatches
per minute. The fraction of mismatches per model is plotgadrnst time. The arrival times are binned by minute.

50% of the corrupt blocks in nearline disks and moredeveloping checksum mismatches. However, it is im-
than 40% of the corrupt blocks in enterprise class disksportant to note that even when the consecutive mismatch
the immediate neighboring block also has a checksuntases are disregarded, the distribution of the mismatches
mismatch (on disks with between 2 and 10 mismatches)still has spatial locality.

These percentages indicate very high spatial locality.

Observation 10 Checksum mismatches have very high Given t_he strong c_orrelatlon b_e_tw_een che_cksum mis-
matches in consecutive blocks, it is interesting to exam-

spatial locality. Much of the observed locality is due to . ; . .
) ; i . ne the run length of consecutive mismatches, i.e., how
consecutive disk blocks developing corruption. Beyond X . .

: ) . many consecutive blocks have mismatches. We find that,
consecutive blocks, the mismatches show very little spa- ; . .
. . among drives with at least 2 checksum mismatches(and

tial locality. .
no upper bound on mismatches), on average 3.4 consec-
We see from the figures that, while the lines for theutive blocks are affected. In some cases, the length of
disk models start at a very high value when the x-axisconsecutive runs can be much higher than the average.
value is 1, they are almost flat for most of the graph,About 3% of drives with at least 2 mismatches see one
moving steeply upwards to 1 only towards the end (x-or more runs of 100 consecutive blocks with mismatches.
axis values more thate + 06). This behavior shows that 0.7% of drives with at least 2 mismatches see one or more

most of the spatial locality is due to consecutive blocksruns of 1000 consecutive mismatches.



4.3.4 Temporal Locality ¥
Figure 7 shows the fraction of checksum mismatches that 08
arrive (are detected) within minutes of a previous mis-
match. The figure can be representedRsY; ., > S o6
E+1|X: = kA Xp>k + 1) fork > 1,0 < t < T < 41 B
months, and < x < 1e 4+ 06 minutes. 2047
go
Observation 11 Most checksum mismatches are de-
tected within one minute of a previous detection of a mis- 0.2
match. i s

The figure shows that the temporal locality for detect- Lag (months) 15

ing checksum mismatches is extremely high. This be- | .

havior may be an artifact of the manner in which the de-Figure 8: Temporal Autocorrelation. The graph shows
tection takes place (by scrubbing) and the fact that man)‘:he autocorrelation function for the number of checksum mis

mismatches are spatially local and are therefore likely tgnatches per 2-week time windows. This representation of the
data allows us to study temporal locality of mismatches at

.be discovered t_ogether. Further analysis shows that th'lsarger time-scales without being affected by the time oédet
is not necessarily the case. tion.

Observation 12 Checksum mismatches exhibit tempo- _ _
ral locality over larger time windows and beyond the ef- checksum mismatches with system resets, latent sector
fect of detection time as well. errors, and not-ready-conditions.

In order to remove the impact of detection time, we ex-Observation 13 Checksum mismatches correlate with

amine temporal locality over larger time windows. For System resets.

each drive, we first determine the number of checksum Th dit | bability of ¢ t at
mismatches experienced in each 2-week time window € conditional probability ot a System reset at some

that the drive was in the field and then compute the aupOint of time, given that one of the disks in the system

tocorrelation function (ACF) on the resulting time series. has a checksum mismatch, is about 3.7 times the uncon-

The autocorrelation function (ACF) measures the Corre_d|t|o?a:hprobath|I|ty of fa systﬁ_mhreslet. IAfter a system
lation of a random variable with itself at different time '©S€ [N€ SySlem periorms higher-level recovery opera-

lagsl. The ACF can be used to determine whether theions; for example, a thorough file system integrity check

number of mismatches in one two-week period of ourmay be run.

time-series is correlated with the number of mismatchegypservation 14 There is a weak positive correlation be-
observed! 2-week periods later. The autocorrelation yyeen checksum mismatches and latent sector errors.
coefficient can range between 1 (high positive correla-

tion) and -1 (high negative correlation). A value of zero The probability of a disk developing latent sector er-
would indicate no correlation, supporting independenceors, P(Y; > 1), is 0.137 for nearline disks and 0.026 for
of checksum mismatches. enterprise class disk&(is the number of latent sector
Figure 8 shows the resulting ACF. The graph present®rrors,0 < ¢ < 41 months). The conditional probabil-
the average ACF across all drives in the study that werdy P(Y; > 1|X; > 1) = 0.195 for nearline disks and
in the field for at least 7 months and experienced check- 0.0556 for enterprise class disks. Thus, the conditional
sum mismatches in at least two different 2-week win-probability of a latent sector error, given that a disk has
dows. Since the results are nearly indistinguishable fochecksum mismatch, is about 1.4 times the unconditional
nearline and enterprise class drives, individual resuéis a probability of a latent sector error in the case of nearline
not given. If checksum mismatches in different 2-weekdisks and about 2.2 times the unconditional probability
periods were independent (no temporal locality on bi-for enterprise class disks. These values indicate a weak
weekly and larger time-scales) the graph would be closgositive correlation between the two disk errors.
to zero at all lags. Instead we observe strong autocorre- In order to test the statistical significance of this corre-
lation even for large lags in the range of up to 10 monthslation we performed a chi-square test for independence.
We find that we can with high confidence reject the hy-
pothesis that checksum mismatches and latent sector er-
rors are independent, both in the case of nearline disks
Our system logs data on various other system and disknd enterprise class disks (confidence level of more than
errors as well. We attempted to establish correlations fo£9.999%). Interestingly, the results vary if we repeat the

4.4 Correlations with other error types



chi-square test separately for each individual disk model - ;

. . . econstruction £zzz2
(including only models that had at least 15 corrupt disks). FS Read
. . . . . rite
We can reject independence with high certainty (at least Non-FS Read ==

. . crub m—
95% confidence) for only four out of seven nearline mod-
els (B-1, C-1, D-1, E-2) and two out of seven enterprise

class models (I-1, n-3).

-

Observation 15 There is a weak correlation between
checksum mismatches and not-ready-conditions.

Fraction of CMs discovered

The probability of a disk developing not-ready-
conditions,P(Z; > 1), is 0.18 for nearline and 0.03 for
enterprise class disks?(Z; > 1|X; > 1) is 0.304 for
nearline and 0.0155 for enterprise class disks. Thus, the z
conditional probability of a not-ready-condition, given Disk Model
that a disk has checksum mismatch, is about 1.7 timegjq, e 9: Request type analysis. The distribution of re-
the unconditional probability of a not-ready-conditionin g ests that discover checksum mismatches across the teques
the case of nearline disks and about 0.5 times the Urtypes scrub, non-file sytstem read (say, disk copy), write (o
conditional probability for enterprise class disks. Thesepartial RAID stripe), file system read, and RAID reconstruc-
values indicate mixed behavior — a weak positive corre+ion.

lation for nearline disks and a weak negative correlatiorbossime that these checksum mismatches may not have
for enterprise class d'SkS; . o been discovered in the absence of data scrubbing, po-
In order to test the statistical significance of the Corre'tentially exposing the system to double failures and data
lation between not-ready-conditions and checksum misy <5 \we do not know the precise cause for the dispar-
matches, we again perform a chi-square test for indepeny, i, hercentages between nearline and enterprise class
dence. We. find that for both r_learllne and enterprlse.d_|skaisks; one possibility this data suggests is that systems
we can reject the hypothesis that not-ready conditionsiin nearline disks perform many more disk copy opera-

and random corruptions are independent with more thag, ¢ (Non-FS Real] thus increasing the percentage for
96% confidence. We repeat the same test separately for . request type

each disk model (including only models that had at least
15 corrupt disks). In the case of nearline disks, we carfPbservation 17 RAID reconstruction encounters a non-
reject the independence hypothesis for all models, exceptegligible number of checksum mismatches.

ever, in the case of enterprise class disks, we cannot rgaconstruction discovers about 8% of the checksum mis-
ject the independece hypothesis for any of the individualatches in nearline disks. For some models more
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models at a significant confidence level. than 20RAID reconstruction. This observation implies
that (a) data scrubbing should be performed more ag-
4.5 Discovery gressively, and (b) systems should consider protection

) S against double disk failures [1, 4, 5, 9, 10, 12].
Figure 9 shows the distribution of requests that detect

checksum mismatches into different request types. Ther . .
are five types of requests that discover checksum misgf'6 Comparison with Latent Sector Errors

matches: (i) Reads by the file systef@S(Readl (i)  |n this subsection, we compare the characteristics of
Partial RAID stripe writes by the RAID layeMWrite)  checksum mismatches, with the characteristics of latent
(iii) Reads for disk copy operation8ion-FS Reall(iv)  sector errors, identified in a recent study [2].

Reads for data scrubbing¢rul), and (v) Reads per-  Taple 2 compares the behavior of checksum mis-

formed during RAID reconstructiorReconstructiop matches and latent sector errors. Some of the interesting

Observation 16 Data scrubbing discovers a large per- similarities and differences are as follows.

centage of the checksum mismatches for many of the digl{equency The probability of developing checksum
models. mismatches is about an order of magnitude smaller than

that for latent sector errors. However, given that cus-
We see that on the average data scrubbing discovetsmers use a few million disk drives, it is important to
about 49% of checksum mismatches in nearline diskiandle both kinds of errors. Also, since latent sector er-
(NL in the figure), and 73% of the checksum mismatchegors are more likely to be detected, it is more likely that
in enterprise class disks (ES in the figure). It is quitean undetected checksum mismatch will lead to data loss.



Characteristic

Latent sector errors

Checksum mismatches

Nearline Enterprise Nearline Enterprise
% disks affected per year (avg) 9.5% 1.4% 0.466% 0.042%
As disk age increases, increases remains constanf remains fairly decreases, then
P(1st error) constant stabilizes
As disk size increases, increases increases unclear unclear
P(1st error)
No. of errors per disk with about 50 about 50 about 100 about 100
errors (80 percentile)
Are errors independent ? No No No No
Spatial locality at 10 MB at 10 MB at 4KB at 4KB
Temporal locality very high very high very high very high

Known Correlations

not-ready-conditions

recovered errors|

system resets,

not-ready-conditions

system resets,
not-ready-conditions

Table 2:Checksum mismatches vs. Latent sector errorsThis table compares our findings on checksum mismatches with
characteristics of latent sector errors identified by a neicgtudy, for both nearline and enterprise class disk modgeladdition to
listed correlations, latent sector errors and checksunmmaitches share a weak positive correlation with each other.
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Figure 10:Identity Discrepancies. The figures show the fraction of disks with at least one ithediscrepancy within7
months of shipping to the field for (a) nearline disk modetsl ¢b) enterprise class disk models.
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months of shipping to the field for (a) nearline disk modetsl ) enterprise class disk models.



Disk model: The nearline disk model E-2 has the high- Figure 11 presents the fraction of disks of each
est percentage of disks developing latent sector errorglisk model that caused parity inconsistencies within

but the lowest percentage of disks developing checksummonths since ship date. The fraction is 4.4 times lower
mismatches within the set of nearline disk models. than that for checksum mismatches in the case of near-
Impact of disk class For both latent sector errors and line disks and about 3.5 times lower than that for check-
checksum mismatches, enterprise class disks are lessim mismatches for enterprise class disks.

likely to develop an error than nearline disks. Surpris- These results assume that the parity disk is at fault. We
ingly, however, in both cases, enterprise class disks debelieve that counting the number of incorrect parity disks
velop a higher number of errors than nearline disks, onceeflect the actual number of error disks since: (i) entire
an error has developed. shelves of disks are typically of the same age and same
Spatial locality: Both latent sector errors and checksum model, (i) the incidence of these inconsistencies is quite
mismatches show high spatial locality. Interestingly, thelow; hence, it is unlikely that multiple different disks in
difference in the locality radii that capture a large franti  the same RAID group would be at fault.

of errors — about 10 MB for latent sector errors versus
consecutive blocks for checksum mismatches — provide
an insight into how the two errors could be caused ver
differently. Latent sector errors may be caused by me-

dia scratches that could go across tracks as opposed d1 . . tect inst dat
consecutive sectors (hence a larger locality radius) whil&NC 1€verages our Experience in protecting against data
orruption to develop insights into how storage systems

consecutive blocks may have checksum mismatches Sint:

ply because the corruption(s) occurred when they werg" be deS|gn_ed o deal V\."th corruption. First, we de-
written together or around the same time. scribe unexplained corruption phenomena and anecdotal

insight into the causes of corruption, and then we dis-
) cuss the lessons learned from our experience. Finally,
5 Other Data Corruptions we list some questions that could be looked at in future

data analysis.
This section presents our results on the frequency of oc-

currence for two corruption classes: identity discrepan-
cies, and parity inconsistencies. These corruption cﬂasseﬁ'l Anecdotes
are described in Section 2.3.

Experience

is section uses results from our analysis of corruption

6.1.1 Some block numbers are worse

From analysis, we find that specific block numbers could
be much more likely to experience corruption than other
These errors were detected in a tadéb disks out of  block numbers. This behavior was observed for the disk
the 1.53 million disks. Figure 10 presents the fraction model ‘E-1’. Figure 12 presents for each block number,
of disks of each disk model that developed identity dis-the number of disk drives of disk model ‘E-1’ that de-
crepancies in7 months. We see that the fraction is more veloped a checksum mismatch at that block number. We
than an order of magnitude lower than that for checksunsee in the figure that many disks develop corruption for
mismatches for both nearline and enterprise class disksa specific set of block numbers. We also verified that
Since the fraction of disks that develop identity dis- (i) other disk models did not develop multiple check-
crepancies is very low, the system recommends replacesum mismatches for the same set of block numbers (ii)
ment of the disk once the first identity discrepancy is dethe disks that developed mismatches at the same block
tected. It is important to note, that even though the numnumbers belong to different storage systems, and (iii) our
ber of identity discrepancies are small, silent data corsoftware stack has no specific data structure that is placed
ruption would have occurred if not for the validation of at the block numbers of interest.
the stored contextual file system information. These observations indicate that hardware or firmware
bugs that affect specific sets of block humbers might
exist. Therefore, RAID system designers may be well-
advised to usstaggeredstripes such that the blocks that
These errors are detected by data scrubbing. In the alferm a stripe (providing the required redundancy) are
sence of a second parity disk, one cannot identify whichplaced at different block numbers on different disks.
disk is at fault. Therefore, in order to prevent potential We also observed a large number of block-specific er-
data loss on disk failure, the system fixes the inconsisrors on other drive models. In at least one of these in-
tency by rewriting parity. This scenario provides further stances, the block contained a heavily read and written
motivation for double-parity protection schemes. file system metadata structure — a structure akin to the

5.1 Identity Discrepancies

5.2 Parity Inconsistencies



as many as 4% of drives develop checksum mismatches
120 1 during thel7 months examined. Similarly, even though
they are rare, identity discrepancies and parity inconsis-
100 1 1 tencies do occur. Protection offered by checksums and
block identity information is therefore well-worth the ex-
tra space needed to store them.
¢ A significant number (8% on average) of corruptions

60 b . . .
* are detected during RAID reconstruction, creating the
w0l | possibility of data loss. In this case, protection against
' double disk failures [1, 4, 5, 9, 10, 12] is necessary to
prevent data loss. More aggressive scrubbing can speed
the detection of errors, reducing the likelihood of an error
during a reconstruction.

e Although, the probability of developing a corruption
is lower for enterprise class drives, once they develop a
Figure 12: Distribution of errors across block num-  corruption, many more are likely to follow. Therefore,
bers. For each disk block number, the number of disks ofreplacing an enterprise class drive on the first detection
disk model E-1 that develop checksum mismatches at that blocof a corruption might make sense (drive replacement cost
number is shown. The units on the x-axis have been omitted iFnay not be a huge factor since the probability of first
order to anonymize the disk size of disk model E-1. corruption is low).
e Some block numbers are much more likely to be af-
cted by corruption than others, potentially due to hard-
ware or firmware bugs that affect specific sets of block
numbers. RAID system designers might be well advised
to usestaggeredstripes such that the blocks that form the

We have observed instances of the SATA/EC adapte?tripe are not stqred at the same or nearby block number.
causing data corruption in the case of disk models A-1, ® Strong spatial locality suggests that redundant data
D-1 and D-2. Thus, it is very likely that the numbers for Structures should be stored distant from each other.
these disk models in Section 4 are influenced by faulty ® The high degree of spatial and temporal locality also
shelf controllers. Such behavior may also point to whyP€gs the question of whether many corruptions occur at
different disks in the same system may not have indethe exact same time, perhaps when all blocks are written

pendent failure behavior with respect to data corruptiorS Part of the same disk request. This hypothesis suggests
(Observation 9). that important or redundant data structures that are used

for recovering data on corruption should be written as
part of different write requests spaced over time.

e Strong spatial and temporal locality (over long time
One of the disk drive models in the study had a bug speperiods) also suggests that it might be worth investigating
cific to flushing the disk’s write cache. Upon reception how the locality can be leveraged for smarter scrubbing,
of a cache flush command, the disk drive sometimes re€.g. trigger a scrub before it's next scheduled time, when
turned success without committing the data to stable storProbability of corruption is high cgelectivescrubbing of
age on the disk medium. If, for any reason, the disk wagin area of the drive that's likely to be affected.
then power-cycled the data just written was lost. How- e Failure prediction algorithms in systems should take
ever, thanks to block identity protection (and RAID), the into account the correlation of corruption with other er-
storage system did not lose data. rors such as latent sector errors, increasing the probabil-

ity of one error when an instance of the other is found.
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superblock. This suggests the importance of replicatinq
important metadata structures [15, 20]. €

6.1.2 Other component failures

6.1.3 Cache flush bug

6.2 Lessons Learned

6.3 Future Work
We present some of the lessons learned from the analy-

sis for corruption-proof storage system design. Some ofuture data analysis studies could focus on questions on
these lessons are specific to RAIDs, while others can bdata corruption and its causes that our current study does
applied to file systems as well. not answer. We discuss some such questions below.

e Albeit not as common as latent sector errors, data (i) Our study looks at corruption numbers across dif-
corruption does happen; we observed more thidn000  ferent disk models. We find that the numbers vary sig-
cases of checksum mismatches. For some drive modetfsficantly across disk models, suggesting that disks (and



their adapters) may directly or indirectly cause corrup-and verifying it on read. However, the majority of file
tion most of the time. However, disks are only one of systems today still rely on disk drives to report internal
the storage stack components that could potentially causerrors. Two of the more recent file systems to use check-
corruption. A recent study shows that other storage subsums to detect corrupted data include Sun’s ZFS [21] and
system components do have a significant impact on storGoogle’s GFS [8]. ZFS uses 64-bit checksums to val-
age failures [11]). A future study could focus on corrup-idate the data path. A checksum is stored with every
tion numbers across different models or versions of allblock pointer and is validated by the file system layer.
hardware and software components. Such a study maly a checksum error is encountered and a mirrored copy
also help pinpoint the exact sources of data corruption. is available, the mirrored copy is used to correct the
(i) The impact of workload on the prevalence of datadata. GFS also uses checksums to protect data integrity.
corruption is unclear, especially due to the lack of fine-GFS distributes data across chunk servers that break the
grained disk-level workload information. Future stud- chunksinto 64KB data blocks, each protected by a 32-bit
ies may focus on obtaining this information along with checksum. On a checksum mismatch, the correct data is
recording disk corruption occurrences. retrieved from a replica. Both file systems use some form
of periodic scrubbing to validate data.

7 Related Work

_ , _ 8 Conclusion
There are very few studies of disk errors. Most disk fault
studies examine either drive failures [14, 16, 17, 18] Of\e have analyzed data corruption instances detected in
latent sector errors [2]. Of the large scale drive failure; 53 mjllion disks used in our production storage sys-
studies, Schroeder and Gibson [16] analyze data fromems, We classified these instances into three classes:
about 100,000 disks over a five year time period. Theychecksum mismatches, identity discrepancies, and par-
find that failure rate increases over time, and error ratesy inconsistencies. We find that only a small fraction of
are not constant with disk age. Pinheiro et al. [14] anayjisks develop checksum mismatches. An even smaller
lyze data associated with over 100,000 disks over a ningaction are due to identity discrepancies or parity in-
month period. They use this data to analyze the correlagonsistencies. Even with the small number of errors ob-
tion of disk failures to environmental factors and usageserved it is still critical to detect and recover from these
patterns. They find that the annualized failure rate is sigurrors since data loss is rarely tolerated in enterprise-
nificantly higher for drives after the first year. Jiang et ¢jass and archival storage systems.
al. [11] study various aspects of storage subsystem fail- e have identified various characteristics of check-
ures. For example, they determine that subsystem coms,m mismatches, including (i) the probability of devel-
ponents other than disks cause a significant fraction ofing the first checksum mismatch is almost an order of
observed failures. Shah and Elerath [7, 17, 18] havgnagnitude higher for nearline disks than for enterprise
performed a number of studies on the reliability of disk ;|55 disks, (i) checksum mismatches are not indepen-
drives. They find from these studies that there are manyant and the number of mismatches per disk follows a
factors, including disk drive vintage, which influence the heayy-tailed distribution, and (iii) checksum mismatches
failure rate of disks and that there is a large variation be|5q show high spatial and temporal locality, encouraging

tween disk models and families. _ . system designers to develop schemes that spread redun-
There is a large body of work regarding techniques forgant gata with respect to both the on-disk location and
detecting and recovering from data corruption. Sivathanyime at which they are written.

et. al [19] survey data integrity techniques within storage

al Ly e We have obtained insights for corruption-proof stor-
systems, and classify integrity violation types and detecy g gesign from the statistical and anecdotal evidence we

tion and correction schemes. Prabhakaran et al. [15] d&;aye collected. We believe that such insights are essen-
velop a taxonomy to classify file system failures. They;io; for designing highly reliable storage systems.
find that many of the file systems tested do not detect

nor recover from most disk corruption errors. Many of

the file systems tested use some form of disk block typeAcknowledgments

checking (e.g., a magic-number for metadata), however

lost or misdirected writes still cause corruption if the This material is based upon work supported by the Na-

block’s new type matched its previous type. tional Science Foundation under the following grants:
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concept, especially in communication systems. The Tanby generous donations from Network Appliance.
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checksums at the host, writing it to disk with the datahelp in gathering data. Members of the RAID group



including Atul Goel, Tomislav Grcanac, Rajesh Sun-[11]
daram, Jim Taylor, and Tom Theaker provided insightful
comments on the analysis. David Ford, Stephen Harp-
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Emami, Aziz Htite, Hung Lu, and Sandeep Shah helped
understand characteristics of disks and systems in thgs]
study, and mine Autosupport data. Finally, we would
like to thank our shepherd Alma Riska and the anony-
mous reviewers for their detailed comments that heIpecHM]
improve the paper.

Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSHK15]
or other institutions.

References

[1] G. A. Alvarez, W. A. Burkhard, and F. Cristian. Toleragiul- [16]
tiple Failures in RAID Architectures with Optimal Storageda
Uniform Declustering. IrProceedings of the 24th Annual Inter-
national Symposium on Computer Architecture (ISCA, ddges
62-72, Denver, Colorado, June 1997. [17]

L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and

J. Schindler. An Analysis of Latent Sector Errors in DiskJ@s.

In Proceedings of the International Conference on Measure-
ments and Modeling of Computer Systems (SIGMETRICS’07)[18]
San Diego, California, June 2007.

W. Bartlett and L. Spainhower. Commercial Fault Toler@anA
Tale of Two Systems.|IEEE Transactions on Dependable and
Secure ComputingdlL(1):87-96, Jan. 2004.

M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An
Optimal Scheme for Tolerating Double Disk Failures in RAID
Architectures. InProceedings of the 21st Annual International
Symposium on Computer Architecture (ISCA ;98ages 245—
254, Chicago, lllinois, Apr. 1994.

P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleimari,ebng,
and S. Sankar. Row-diagonal parity for double disk failuve ¢
rection. InProceedings of the 3rd USENIX Symposium on File
and Storage Technologies (FAST '0gages 1-14, San Francisco,
California, Apr. 2004.

M. H. Darden. Data Integrity: The Dell—EMC Dis-
tinction. http://www.dell.com/content/topics/glokegpx/power/
en/ps2q02darden?c=us&cs=555&I=en&s=hiz, May 2002.

J. G. Elerath and S. Shah. Server Class Disk Drives: Holiv Re
able Are They. InThe Proceedings of the 50th Annual Reliability
and Maintainability Symposiunpages 151-156, Los Angeles,
California, Jan. 2004.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. IrProceedings of the 19th ACM Symposium on Operat-
ing Systems Principles (SOSP '0pages 29-43, Bolton Landing
(Lake George), New York, October 2003.

J. L. Hafner. WEAVER Codes: Highly Fault Tolerant Erasur
Codes for Storage Systems. Pmoceedings of the 4th USENIX
Symposium on File and Storage Technologies (FAST, '8&h
Francisco, California, Dec. 2005.

J. L. Hafner, V. W. Deenadhayalan, K. Rao, and J. A. TanMa-

trix Methods for Lost Data Reconstruction in Erasure Codas.
Proceedings of the 4th USENIX Symposium on File and Storage
Technologies (FAST '05pan Francisco, California, Dec. 2005.

(2]

(3]

(19]
(4]

(20]

(5]

(21]

(6] [22]

(7]

(23]

(8]

El

[10]

W. Jiang, C. Hu, A. Kanevsky, and Y. Zhou. Is Disk the Dom-
inant Contributor for Storage Subsystem Failures? A Compre
hensive Study of Failure Characteristics. Rroceedings of the

6th USENIX Symposium on File and Storage Technologies (FAST
'08), San Jose, California, Feb. 2008.

] C.-I. Park. Efficient Placement of Parity and Data to€fate

Two Disk Failures in Disk Array System#EEE Transactions on
Parallel and Distributed System6(11):1177—-1184, Nov. 1995.

D. Patterson, G. Gibson, and R. Katz. A Case for Redunélan
rays of Inexpensive Disks (RAID). IRroceedings of the 1988
ACM SIGMOD Conference on the Management of Data (SIG-
MOD ’88), pages 109-116, Chicago, lllinois, June 1988.

E. Pinheiro, W. D. Weber, and L. A. Barroso. Failure Tdsin a
Large Disk Drive Population. Ifroceedings of the 5th USENIX
Symposium on File and Storage Technologies (FAST, '8@h
Jose, California, Feb. 2007.

V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, HGS-
nawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. IRON
File Systems. IfProceedings of the 20th ACM Symposium on Op-
erating Systems Principles (SOSP '08dges 206—-220, Brighton,
United Kingdom, Oct. 2005.

B. Schroeder and G. A. Gibson. Disk Failures in the Reafl#/
What Does an MTTF of 1,000,000 Hours Mean to You? In
Proceedings of the 5th USENIX Symposium on File and Storage
Technologies (FAST '07%an Jose, California, Feb. 2007.

S. Shah and J. G. Elerath. Disk Drive Vintage and its &ffen
Reliability. In The Proceedings of the 50th Annual Reliability
and Maintainability Symposiunrpages 163-167, Los Angeles,
California, Jan. 2004.

S. Shah and J. G. Elerath. Reliability Analyses of Disk/® Fail-
ure Mechanisms. Ifthe Proceedings of the 51st Annual Reliabil-
ity and Maintainability Symposiunpages 226-231, Alexandria,
Virginia, Jan. 2005.

G. Sivathanu, C. P. Wright, and E. Zadok. Ensuring datiegrity
in storage: Techniques and applications. Pioceedings of the
ACM Workshop on Storage Security and Survivability (Ste&g#)
'05), pages 26-36, Fairfax, Virginia, November 2005.

M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau RnH.
Arpaci-Dusseau. Improving storage system availabilityhvid-
GRAID. In Proceedings of the 3rd USENIX Symposium on File
and Storage Technologies (FAST 'Ofpges 15-30, San Fran-
cisco, California, Apr. 2004.

Sun Microsystems. ZFS: The last word in file systems.
www.sun.com/2004-0914/feature/, 2006.

R. Sundaram. The Private Lives of Disk Drives.
http://www.netapp.com/go/techontap/matl/sample/
0206totresiliency.html, Feb. 2006.

Information Technology: SCSI Primary Commands (SPHC-2
Technical Report T10 Project 1236-D Revision 5, Sept. 1998.



