
Safe and Effective Fine-grained TCP Retransmissions for
Datacenter Communication

Vijay Vasudevan1, Amar Phanishayee1, Hiral Shah1, Elie Krevat1,
David G. Andersen1, Gregory R. Ganger1, Garth A. Gibson1,2, Brian Mueller2

1Carnegie Mellon University, 2Panasas Inc.

ABSTRACT
This paper presents a practical solution to a problem facing
high-fan-in, high-bandwidth synchronized TCP workloads
in datacenter Ethernets—the TCP incast problem. In these
networks, receivers can experience a drastic reduction in
application throughput when simultaneously requesting data
from many servers using TCP. Inbound data overfills small
switch buffers, leading to TCP timeouts lasting hundreds of
milliseconds. For many datacenter workloads that have a
barrier synchronization requirement (e.g., filesystem reads
and parallel data-intensive queries), throughput is reduced by
up to 90%. For latency-sensitive applications, TCP timeouts
in the datacenter impose delays of hundreds of milliseconds
in networks with round-trip-times in microseconds.

Our practical solution uses high-resolution timers to enable
microsecond-granularity TCP timeouts. We demonstrate
that this technique is effective in avoiding TCP incast collapse
in simulation and in real-world experiments. We show that
eliminating the minimum retransmission timeout bound is
safe for all environments, including the wide-area.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—TCP/IP ; C.2.6 [Computer-Communication
Networks]: Internetworking

General Terms
Performance, Experimentation, Measurement

Keywords
Datacenter Networks, Incast, Performance, Throughput

1. INTRODUCTION
In its 35 year history, TCP has been repeatedly challenged

to adapt to new environments and technology. Researchers
have proved adroit in enabling TCP to function well in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’09, August 17–21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$5.00.

gigabit networks [27], long/fat networks [18, 8], satellite
and wireless environments [22, 5], among others. In this
paper, we examine and improve performance in an area that,
surprisingly, also proves challenging to TCP: very low delay,
high throughput, datacenter networks of dozens to thousands
of machines.

The problem we study is TCP incast collapse [25], where
application throughput drastically reduces when multiple
senders communicate with a single receiver in high band-
width, low delay networks using TCP. Highly bursty, fast
data transmissions overfill Ethernet switch buffers, causing in-
tense packet loss that leads to TCP timeouts. These timeouts
last hundreds of milliseconds on a network whose round-trip-
time (RTT) is in the 10s or 100s of microseconds. Protocols
that have some form of synchronization requirement, such as
filesystem reads and writes or highly parallel data-intensive
queries found in large memcached clusters [12], block wait-
ing for timed-out connections to finish before issuing new
requests. These timeouts and the resulting delay can reduce
application throughput by 90% (Section 3) or more [25, 28].
Coarse-grained TCP timeouts can also harm performance
for latency-sensitive datacenter applications (Section 2.2).

In this paper, we present and evaluate a set of system
extensions to enable microsecond-granularity retransmission
timeouts (RTO). The challenges in doing so are threefold:
First, we show that the solution is practical by modifying
the Linux TCP implementation to use high-resolution kernel
timers. Second, we show that these modifications are effec-
tive, preventing TCP incast collapse in a real cluster for up
to 47 concurrent senders (Section 5). As shown in Section 4,
microsecond granularity timeouts are necessary—simply re-
ducing RTOmin in today’s TCP implementations without
also improving the timing granularity does not prevent TCP
incast collapse, particularly in future settings. In simulation,
our changes to TCP prevent incast collapse for up to 2048
concurrent senders on 10-gigabit links. Last, we show that
the solution is safe, examining the effects of an aggressively
reduced RTO in the wide-area, showing that its benefits to
recovery in datacenters do not affect performance for bulk
flows in the wide-area.

The motivation for solving this problem is the increas-
ing interest in using Ethernet and TCP for communication
and bulk storage transfer applications in the fastest, largest
datacenters. Provided that TCP adequately supports high
bandwidth, low latency, synchronized and parallel applica-
tions, there is a strong desire to “wire-once” and reuse the
mature, well-understood transport protocols that are so fa-
miliar in lower bandwidth networks.

Scenario RTT
WAN 100ms

Datacenter <1ms
SAN <0.1ms

OS TCP RTOmin

Linux 200ms
BSD 200ms

Solaris 400ms

Table 1: Typical round-trip-times and minimum
TCP retransmission bounds.

2. BACKGROUND
Cost pressures increasingly drive datacenters to adopt com-

modity components, and often low-cost implementations of
such. An increasing number of clusters are being built with
off-the-shelf rackmount servers interconnected by Ethernet
switches. While the adage “you get what you pay for” still
holds true, entry-level gigabit Ethernet switches today oper-
ate at full data rates, switching upwards of 50 million packets
per second—at a cost of about $10 per port. Commodity
10Gbps Ethernet is now cost-competitive with specialized
interconnects such as Infiniband and FibreChannel, and ben-
efits from wide “brand recognition”. To reduce cost, however,
lower-cost switches often sacrifice expensive, power-hungry
SRAM packet buffers, the effect of which we explore through-
out this work.

The desire for commodity parts extends to transport pro-
tocols. TCP provides a “kitchen sink” of protocol features,
including reliability via retransmission, congestion and flow
control, and in-order packet delivery to the receiver. Not all
applications need all of these features [20, 31], and some bene-
fit from more rich transport abstractions [14], but TCP is ma-
ture and well-understood by developers, and has become the
transport protocol of choice even in many high-performance
environments.

Without link-level flow control, TCP is solely responsi-
ble for coping with and avoiding packet loss in the (often
small) Ethernet switch egress buffers. Unfortunately, the
workload we examine has three features that challenge (and
nearly cripple) performance: a highly parallel, synchronized
request workload; buffers much smaller than the bandwidth-
delay product of the network; and high-fan-in communication
resulting in TCP flows with windows of only a few packets.

2.1 TCP Incast Collapse
Barrier-synchronized request workloads are becoming in-

creasingly common in today’s commodity clusters. Examples
include parallel reads/writes in cluster filesystems such as
Lustre [6], Panasas [34], or NFSv4.1 [33]; search queries sent
to dozens of nodes, with results returned to be sorted1; or
parallel databases that harness multiple back-end nodes to
process parts of queries. We define the request to be “barrier
synchronized” when the client cannot make forward progress
until the responses from every server for the current request
have been received—these applications often cannot present
partial results or issue an unbounded number of requests.

In a cluster file system, for example, a client application
requests a data block striped across several storage servers,
issuing the next data block request only when all servers
have responded with their portion. This workload can result

1In fact, engineers at Facebook recently rewrote the middle-
tier caching software they use—memcached [23]—to use UDP
so that they could “implement application-level flow control
for ... gets of hundreds of keys in parallel” [12]

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40 45

G
o
o
d
p
u
t
(M

b
p
s
)

Number of Servers

Num Servers vs Goodput
 (Fixed Block = 1MB, buffer = 64KB (est.), Switch = S50)

200ms RTOmin

Figure 1: TCP incast collapse is observed for a syn-
chronized reads application running on a 48-node
cluster

in packets overfilling the buffers on the client’s port on the
switch, resulting in many losses. Under severe packet loss,
TCP can experience a timeout that lasts a minimum of 200ms,
determined by the TCP minimum retransmission timeout
(RTOmin). While the default values operating systems use
today may suffice for the wide-area, datacenters and SANs
have round-trip-times that are orders of magnitude below
the RTOmin defaults (Table 1).

When a server involved in a barrier-synchronized request
experiences a timeout, other servers can finish sending their
responses, but the client must wait a minimum of 200ms
before receiving the remaining parts of the response, during
which the client’s link may be completely idle. The resulting
throughput seen by the application may be as low as 1-10%
of the client’s bandwidth capacity.

Figure 1 shows the throughput of our test synchronized-
read application (Section 3.2) as we increase the number
of nodes it reads from, using an unmodified Linux TCP
stack. This application performs synchronized reads of 1MB
blocks of data; that is, each of N servers responds to a block
read request with 1 MB / N bytes at the same time. Even
using a high-performance switch (with its default settings),
the throughput drops drastically as the number of servers
increases, achieving only 3% of the network capacity when it
tries to stripe the blocks across all 47 servers.

To summarize, the preconditions for TCP incast collapse
are as follows:

1. High-bandwidth, low-latency networks with small switch
buffers;

2. Clients that issue barrier-synchronized requests in par-
allel: the client does not issue new requests until all
responses from the current request have been returned;

3. Servers that return a relatively small amount of data
per request

If precondition 2 does not hold, then a timed out flow
does not stall the client from making forward progress on
other flows and hence will continue to saturate the client’s
link. If precondition 3 does not hold and at least one flow is
active at any time, the active flows will have enough data to
send to saturate the link for 200ms—until the stalled flows
retransmit and continue.

2.2 Latency-sensitive Applications
While the focus of this work is on the throughput collapse

observed for synchronized reads and writes, the imbalance be-
tween the TCP RTOmin and datacenter latencies can result
in poor performance for applications sensitive to millisecond
delays in query response time. In an interactive search query
where a client requests data from dozens of servers in parallel,
any flow that experiences a timeout will be delayed by 200ms.
If the client cannot make forward progress (i.e., present re-
sults to the user) until all results are received, the entire
request will be stalled for a minimum of 200ms, resulting in
poor query latency.

To demonstrate this, we performed the following experi-
ment: we started ten bulk-data transfer TCP flows from ten
clients to one server. We then had another client issue small
request packets for 1KB of data from the server, waiting for
the response before sending the next request. Approximately
1% of these requests experienced a TCP timeout, delaying
the response by at least 200ms. Even without incast commu-
nication patterns, a latency-sensitive application can observe
TCP timeouts due to congested queues caused by cross-traffic.
The fine-grained TCP retransmission techniques we use to
prevent TCP incast collapse will also benefit these more
responsive latency-sensitive applications.

2.3 Prior Work
The TCP incast problem was first termed “Incast” and

described by Nagle et al. [25] in the context of parallel
filesystems. Nagle et al. coped with TCP incast collapse
in the parallel filesystem with application-specific mecha-
nisms. Specifically, Panasas [25] limits the number of servers
simultaneously sending to one client to about 10 by judicious
choice of the file striping policies. They also cap the adver-
tised window size by reducing the default size of per-flow
TCP receive buffers on the client to avoid incast collapse on
switches with small buffers. For switches with large buffers,
Panasas provides a mount option to increase the client’s re-
ceive buffer size. In contrast, this work provides a TCP-level
solution for switches with small buffers and many more than
10 simultaneous senders that does not require implementing
application-specific mechanisms. Also, our solution does not
require re-implementing the many features of TCP within a
UDP framework, perhaps as was the case with Facebook [12].

Prior work characterizing TCP incast collapse ended on
a somewhat down note, finding that TCP improvements—
NewReno, SACK [22], RED [13], ECN [30], Limited Trans-
mit [1], and modifications to Slow Start— sometimes in-
creased throughput, but did not substantially prevent TCP
incast collapse because the majority of timeouts were caused
by full window losses [28]. This work found three partial
solutions: First, larger switch buffers could delay the onset of
incast collapse (doubling the buffer size doubled the number
of servers that could be contacted), but at substantial dollar
cost. Second, Ethernet flow control was effective when the
machines were on a single switch, but was dangerous across
inter-switch trunks because of head-of-line blocking. Finally,
reducing TCP’s minimum RTO, in simulation, appeared to
allow nodes to maintain high throughput with several times
as many nodes—but was left unexplored because of practical
implementation concerns with microsecond timeouts. In this
paper, we address the practicality, effectiveness and safety of
very short timeouts in depth.

3. EVALUATING THROUGHPUT WITH
FINE-GRAINED RTO

How low must the RTO be to retain high throughput under
TCP incast collapse conditions, and to how many servers
does this solution scale? We explore this question using
real-world measurements and ns-2 simulations [26], finding
that to be maximally effective, the timers must operate on a
granularity close to the RTT of the network—hundreds of
microseconds or less.

3.1 Jacobson RTO Estimation
The standard RTO estimator [17] tracks a smoothed es-

timate of the round-trip time, and sets the timeout to this
RTT estimate plus four times the linear deviation—roughly
speaking, a value that lies outside four standard deviations
from the mean:

RTO = SRTT + (4× RTTVAR) (1)

Two factors set lower bounds on the value that the RTO
can achieve: an explicit configuration parameter, RTOmin,
and the implicit effects of the granularity with which RTT is
measured and with which the kernel sets and checks timers.
As noted earlier, common values for RTOmin are 200ms, and
most implementations track RTTs and timers at a granularity
of 1ms or larger.

Because RTT estimates are difficult to collect during loss
and timeouts, a second safety mechanism controls timeout
behavior—exponential backoff:

timeout = RTO× 2backoff (2)

After each timeout, the retransmit timer value is doubled,
helping to ensure that a single RTO set too low cannot cause
a long-lasting chain of retransmissions. Whenever an ACK
is received, the backoff parameter is reset to zero.

3.2 Evaluation Workload
Test application: Striped requests. The test client

issues a request for a block of data that is striped across
N servers (the “stripe width”). Each server responds with
blocksize

N
bytes of data. Only after it receives the full re-

sponse from every server will the client issue requests for
the subsequent data block. This design mimics the request
patterns found in several cluster filesystems and parallel
workloads. Observe that as the number of servers increases,
the amount of data requested from each server decreases. We
run each experiment for 200 data block transfers to observe
steady-state performance (confidence intervals are within
5%), calculating the goodput (application throughput) over
the entire duration of the transfer.

Different systems have their own “natural” block sizes.
We select the block size (1MB) based upon read sizes com-
mon in several distributed filesystems, such as GFS [15] and
PanFS [34], which observe workloads that read on the order
of a few kilobytes to a few megabytes at a time. Our prior
work suggests that the block size shifts the onset of incast
(doubling the block size doubles the number of servers be-
fore experiencing incast collapse), but does not substantially
change the system’s behavior [28]. The mechanisms we de-
velop mitigate TCP incast collapse for any choice of block
sizes and buffer sizes.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

20
0u 1m 5m 10
m

50
m

10
0m

20
0m

G
oo

dp
ut

 (M
bp

s)

RTOmin (seconds)

RTOmin vs Goodput
 (Block size = 1MB, buffer = 32KB)

4
8

16
32
64

128

servers

Figure 2: Reducing the RTOmin in simulation to mi-
croseconds from the current default value of 200ms
improves goodput.

3.3 In Simulation
We simulate one client and multiple servers connected

through a single switch where round-trip-times under low
load are 100µs. Each node has a 1Gbps capacity link, and we
configure the switch buffers with 32KB of output buffer space
per port, a size chosen based on statistics from commodity
1Gbps Ethernet switches. Because ns-2 is an event-based
simulation, the timer granularity is infinite, hence we investi-
gate the effect of RTOmin to understand how low the RTO
needs to be to avoid TCP incast collapse. Additionally, we
add a small random timer scheduling delay of up to 20µs to
account for real-world scheduling variance.

Figure 2 plots goodput as a function of the RTOmin for
stripe widths between 4–128 servers. Goodput, using the
default 200ms RTOmin, drops by nearly an order of magni-
tude with 8 concurrent senders, and by nearly two orders of
magnitude when data is striped across 64 and 128 servers.

Reducing the RTOmin to 1ms is effective for 8–16 concur-
rent senders, fully utilizing the client’s link, but begins to
suffer when data is striped across more servers: 128 concur-
rent senders utilize only 50% of the available link bandwidth
even with a 1ms RTOmin. For 64 and 128 servers and low
RTOmin, each flow does not have enough data to send to
individually saturate the link, given the inherent inefficiency
of synchronizing 64 or 128 streams each sending very little.

3.4 In Real Clusters
We study TCP incast collapse on two clusters; one sixteen-

node cluster using an HP Procurve 2848 switch, and one
48-node cluster using a Force10 S50 switch. In these clusters,
every node has 1 Gbps links and a client-to-server RTT of
approximately 100µs. All nodes run Linux kernel 2.6.28. We
run the same synchronized read workload as in simulation.

For these experiments, we modified the Linux 2.6.28 ker-
nel to use microsecond-accurate timers with microsecond-
granularity RTT estimation (Section 5) to accurately set the
RTOmin to a desired value. Without these modifications,
the TCP RTO can be reduced only to 5ms.

Figure 3 plots the application throughput as a function
of the RTOmin for 4, 8, and 16 concurrent senders. For
all configurations, goodput drops with increasing RTOmin

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

20
0u 1m 5m 10
m

50
m

10
0m

20
0m

G
oo

dp
ut

 (M
bp

s)

RTOmin (seconds)

RTOmin vs Goodput
 (Block size = 1MB, buffer = 32KB (estimate))

4
8

16

servers

Figure 3: Experiments on a real cluster validate the
simulation result that reducing the RTOmin to mi-
croseconds improves goodput.

above 1ms. For 8 and 16 concurrent senders, the default
RTOmin of 200ms results in nearly 2 orders of magnitude
drop in throughput.

The real world results deviate from the simulation results in
a few minor ways. First, the maximum achieved throughput
in simulation nears 1Gbps, whereas the maximum achieved
in the real world is 900Mbps. Simulation throughput is
always higher because simulated nodes are infinitely fast,
whereas real-world nodes are subject to myriad delaying
influences, including OS scheduling and Ethernet or switch
timing differences.

Second, real world results show negligible difference be-
tween 8 and 16 servers, while the differences are more pro-
nounced in simulation. We attribute this to variances in the
buffering between simulation and the real world. Simula-
tion statically assigns switch buffer sizes on a per-port basis,
whereas many real-world switches dynamically allocate mem-
ory from a shared buffer pool. Even with dynamic allocation,
however, switch buffers are often not large enough to prevent
TCP incast collapse in real world cluster environments.

Third, the real world results show identical performance
for RTOmin values of 200µs and 1ms, whereas there are
slight differences in simulation. Timeouts in real-world ex-
periments are longer than in simulation because of increased
latency and RTT variance in the real-world. Figure 4 shows
the distribution of round-trip-times during an incast work-
load in the real world. While the baseline RTTs can be
between 50-100µs, increased congestion causes RTTs to rise
to 400µs on average with spikes as high as 850µs. Hence,
the higher RTTs combined with increased RTT variance
causes the RTO estimator to set timeouts of 1–3ms, and an
RTOmin below 1ms will not lead to shorter retransmission
times. Hence, where we specify a RTOmin of 200µs, we are
effectively eliminating the RTOmin, allowing RTO to be as
low as calculated by equation (1).

Despite these differences, the real world results show the
need to reduce the RTO to at least 1ms to avoid through-
put degradation at scales of up to 16 servers. In the next
section, we explain why providing microsecond-granularity
retransmissions will be required for future, faster datacenter
networks.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

#
 o

f
O

c
c
u
rr

e
n
c
e
s

RTT in Microseconds

RTT Distribution in SAN

Figure 4: During an incast experiment on a cluster
RTTs increase by 4 times the baseline RTT (100µs)
on average with spikes as high as 800µs. This pro-
duces RTO values in the range of 1-3ms, resulting
in an RTOmin of 1ms being as effective as 200µs in
today’s networks.

4. NEXT-GENERATION DATACENTERS
TCP incast collapse poses more problems for the next

generation of datacenters with 10Gbps networks and thou-
sands of machines. 10Gbps networks have smaller RTTs
than 1Gbps networks; port-to-port latency can be as low
as 10µs. For example, we plot the distribution of RTTs
from live traces of an active storage node at Los Alamos
National Laboratory in Figure 5: 20% of RTTs are below
100µs even when accounting for kernel scheduling, showing
that networks and systems today operate in very low-latency
environments. Because 10Gbps Ethernet provides higher
bandwidth, servers can send their portion of a data block
more quickly, requiring smaller RTO values to avoid idle link
time. In this section, we show the need for fine-grained TCP
retransmissions for 10Gbps low latency datacenters.

4.1 Scaling to Thousands
We analyze the impact of TCP incast collapse and the

reduced RTO solution for 10Gbps Ethernet networks in sim-
ulation as we scale the number of concurrent senders into the
thousands. We reduce baseline RTTs from 100µs to 20µs and
temporarily eliminate the 20µs timer scheduling variance,
and increase link capacity to 10Gbps, setting per-port buffer
size to 32KB based on our real-world experiments in 10Gbps
cluster environments.

We increase the blocksize to 80MB to ensure each flow
can individually saturate a 10Gbps link, varying the number
of servers from 32 to 2048. Figure 6 shows that having an
artificial bound of either 1ms or 200µs results in low goodput
in a network whose RTTs are 20µs. This underscores the
requirement that retransmission timeouts should be on the
same timescale as network latency to avoid incast collapse—
simply changing a constant in today’s TCP implementations
will not suffice.

Eliminating a lower bound on RTO performs well for up
to 512 concurrent senders, but for 1024 servers and beyond,
even the aggressively low RTO configuration sees up to a
50% reduction in goodput caused by significant periods of

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200 400 600 800 1000

#
 o

f
O

c
c
u
rr

e
n
c
e
s

RTT in Microseconds (binsize = 20us)

RTT Distribution at Los Alamos National Lab Storage Node

Figure 5: The distribution of RTTs from an active
storage node at Los Alamos National Lab shows an
appreciable number of RTTs in the 10s of microsec-
onds.

link idle time. These idle periods are caused by repeated,
simultaneous, successive timeouts. Recall that after every
timeout, the RTO value is doubled until an ACK is received.
This has been historically safe because the exponential back-
off quickly and conservatively estimates the duration to wait
until congestion abates. For incast communication, however,
the exponentially increasing delay can overshoot some por-
tion of time the link is actually idle, leading to sub-optimal
goodput. Because only one flow must overshoot to delay the
entire transfer, the probability of overshooting increases with
increased number of flows.

Figure 7 shows a client’s instantaneous link utilization
and the retransmission events for one of the flows that ex-
perienced repeated retransmission losses during an incast
simulation on a 1Gbps network. This flow timed out and
retransmitted a packet at the same time that other timed
out flows also retransmitted. While some of these flows got
through and saturated the link for a brief period of time, the
flow shown here timed out and doubled its timeout value
(until the maximum factor of 64 * RTO) following each failed
retransmission. Often the link became available shortly after
the retransmission event, but the retransmission timer was
set to fire far beyond this time. When a retransmission was
successful, the block transfer completed and the next block
transfer began, but only after large periods of link idle time
that reduced goodput.

In summary, decreased goodput for a large number of flows
can be attributed to many flows timing out simultaneously,
backing off deterministically, and retransmitting at precisely
the same time. While some of the flows are successful on this
retransmission, a majority of flows lose their retransmitted
packet and backoff by another factor of two, sometimes far
beyond when the link becomes idle.

4.2 Desynchronizing Retransmissions
By adding some randomness to the RTO, the retransmis-

sions can be desynchronized so that fewer flows experience
repeated timeouts when RTOmin is removed. We examine
the retransmission synchronization effect in simulation, mea-
suring the goodput for several different settings. In Figure 8,

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 32 64 128 256 512 1024 2048

G
o
o
d
p
u
t
(M

b
p
s
)

Number of Servers

Average Goodput VS # Servers
 (Block size = 80MB, buffer = 32KB, rtt = 20us)

No RTOmin
200us RTOmin

1ms RTOmin

Figure 6: In simulation, flows experience reduced
goodput when retransmissions do not fire at the
same granularity as RTTs. Fine-grained timers can
observe suboptimal goodput for a large number of
servers if retransmissions are tightly synchronized.

we vary the inaccuracy of scheduling to better understand
how synchronized the retransmissions must be to observe
repeated retransmission timeouts. When retransmissions are
sent precisely when the retransmission timer fires, goodput
drops significantly for a large number of concurrent senders.
Adding up to 5µs of random delay helps to desynchronize
some of the retransmissions in simulation. But perhaps this
is a simulation artifact as real world scheduling is not without
variance.

To better understand scheduling variance for retransmis-
sions on real systems, we measured the accuracy of executing
usleep(50) calls that use the high-precision timer subsystem
we use in Section 5, finding that the sleep durations were clus-
tered within 2–3µs, suggesting that real-world scheduling may
be accurate enough to require desynchronizing retransmis-
sions. Should TCP offload be enabled for faster, low-latency
10Gbps Ethernet cards, packet scheduling variance might be
even lower. Given that round-trip-times in Figure 5 can be
under 20µs, today’s systems are capable of such accurate
packet scheduling.

Figure 8 shows that explicitly adding an adaptive random-
ized RTO component to the scheduled timeout as follows:

timeout = (RTO + (rand(0.5)× RTO))× 2backoff (3)

performs well regardless of the number of concurrent senders
because it explicitly desynchronizes the retransmissions of
flows that experience repeated timeouts, and does not heavily
penalize flows that experience a few timeouts.

While we advocate an RTO calculation that adds a ran-
domized component for datacenters, we have not evaluated its
impact for wide-area flows, where adding a delay of up to 50%
of the calculated RTO will increase latency—synchronized
retransmissions are less likely to occur in the wide-area be-
cause flows have different RTTs and hence varying RTOs.
Also, despite our efforts to add scheduling variance in the
simulation experiments, real-world variances may be large
enough to avoid having to explicitly randomize the RTO
in practice. However, with a large number of concurrent

 0

 200

 400

 600

 800

 1000

 0.35 0.4 0.45 0.5 0.55 0.6

M
bp

s

time (seconds)

Repeated Retransmissions, Backoff and Idle-time

Instanteous Link Utilization
Flow 503 Failed Retransmission

Flow 503 Successful Retransmission

Figure 7: Some flows experience repeated retrans-
mission failures due to synchronized retransmission
behavior, delaying transmission far beyond when the
link is idle.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 32 64 128 256 512 1024 2048

G
o
o
d
p
u
t
(M

b
p
s
)

Number of Servers

Average Goodput VS # Servers
 (Block size = 80MB, buffer = 32KB, rtt = 20us)

No RTOmin
w/2us Random Delay
w/5us Random Delay

w/Adaptive Delay

Figure 8: In simulation, introducing a randomized
component to the RTO desynchronizes retransmis-
sions following timeouts and avoids goodput degra-
dation for a large number of flows.

senders, the number of flows that retransmit within a fixed
period of congestion on retransmission will eventually be
high enough that the repeated retransmission loss behavior
shown in simulation may occur in the real-world.

In summary, we emphasize that for future low-latency data-
center networks, extremely fine-grained TCP retransmissions
must be provided to avoid TCP incast collapse. Next, we
discuss our implementation and evaluation of microsecond
granularity TCP timeouts in the Linux operating system.

5. IMPLEMENTING FINE-GRAINED
RETRANSMISSIONS

TCP implementations typically use a coarse-grained pe-
riodic timer that provides timeout support with very low
overhead. Providing tighter TCP timeouts requires not only
reducing or eliminating RTOmin, but also supporting fine-
grained RTT measurements and kernel timers.

The TCP clock granularity in most popular operating

systems is on the order of milliseconds, as defined by a global
counter updated by the kernel at a frequency “HZ”, where HZ

is typically 100, 250, or 1000. Linux, for example, updates
its “jiffy” timer 250 times per second, yielding a TCP clock
granularity of 4ms, with a configuration option to update
1000 times per second for a 1ms granularity. More frequent
updates, as would be needed to achieve finer granularity
timeouts, would impose a system-wide clock maintenance
overhead considered unacceptable by most.

Unfortunately, setting the RTOmin to 1 jiffy (the lowest
possible value) does not achieve RTO values of 1ms because
of the clock granularity. TCP measures RTTs in 1ms gran-
ularity at best, so both the smoothed RTT estimate and
RTT variance have a 1 jiffy (1ms) lower bound. Since the
standard RTO estimator sums the RTT estimate with 4x
the RTT variance, the lowest possible RTO value is 5 jiffies.
We experimentally validated this result by setting the clock
granularity to 1ms, setting RTOmin to 1ms, and observing
that TCP timeouts were a minimum of 5ms.

At a minimum possible RTOmin of 5ms in standard TCP
implementations, Figures 9 and 10 show that throughput
collapse is significantly improved for small numbers of servers.
This simple change is a good first step for use in the field
today. However, application throughput is reduced by 35%
or more with just 16 concurrent senders. Next, we describe
how to achieve microsecond granularity RTO values in the
real world.

5.1 Linux high-resolution timers: hrtimers
High resolution timers were introduced into Linux kernel

version 2.6.18 and are still under active development [16].
They form the basis of the posix-timer and itimer user-
level timers, nanosleep, and a few other in-kernel operations,
including the update of the jiffies value.

The Generic Time of Day (GTOD) framework provides
the kernel and other applications with nanosecond resolu-
tion timekeeping using the CPU cycle counter on all modern
processors—our modifications use this framework to provide
fine-grained measurements of round-trip-times. The hrtimer
implementation interfaces with the High Precision Event
Timer (HPET) hardware also available on modern chipsets
to achieve microsecond resolution event notification in the
kernel. Specifically, the HPET is a programmable hardware
timer that consists of a free-running upcounter and several
comparators and registers, which modern operating systems
can set. When scheduling an event, the kernel sets a register
value to achieve a desired interrupt interval, and the com-
parator will signal a hardware interrupt when the upcounter
matches the register value. For example, the kernel may
request the HPET to interrupt once every 1ms to update the
jiffy counter, or it may set a timer for 50µs in the future for
a usleep(50) system call.

Implementing TCP timeouts using the hrtimer subsystem
could lead to increased interrupt overhead only if timeouts
are frequent; flows that experience few losses do not incur
hrtimer-based interrupts because the retransmission timer
and HPET entry are reset for every ACK received. Our
preliminary evaluations using our implementation of TCP
timers using the hrtimer system have shown no noticeable
overhead: while serving as a sender in an incast workload, the
speed of a kernel build was about the same for both hrtimer
and normal TCP implementations. We also argue that during
incast workloads, a small overhead may be acceptable, as

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2 4 6 8 10 12 14 16

G
o
o
d
p
u
t
(M

b
p
s
)

Number of Servers

Num Servers vs Goodput
 (Fixed Block = 1MB, buffer = 32KB (est.), Switch = Procurve)

No RTOmin
5ms RTOmin (Jiffy)

200ms RTOmin (default)

Figure 9: On a 16 node cluster, our high-resolution
TCP timer modifications help eliminate incast col-
lapse. The jiffy-based implementation has a 5ms
lower bound on RTO, and achieves only 65%
throughput.

it removes the idle periods that prevent the server from
doing useful work to begin with, but we leave an extensive
evaluation of overhead for future work.

5.2 Modifications to the TCP Stack
The Linux TCP implementation requires three changes

to support microsecond timeouts using hrtimers: microsec-
ond resolution time accounting to track RTTs with greater
precision, redefinition of TCP constants, and replacement of
low-resolution timers with hrtimers.

By default, the jiffy counter is used for tracking time.
To provide microsecond granularity accounting, we use the
GTOD framework to access the 64-bit nanosecond resolution
hardware clock wherever the jiffies time is traditionally used.

With the TCP timestamp option enabled, RTT estimates
are calculated based on the difference between the timestamp
option in an earlier packet and the corresponding ACK. We
convert the time from nanoseconds to microseconds and store
the value in the TCP timestamp option.2 This change can
be accomplished entirely on the sender—receivers already
echo back the value in the TCP timestamp option.

All timer constants previously defined with respect to the
jiffy timer are converted to absolute values (e.g., 1ms instead
of 1 jiffy). Last, the TCP implementation must make use of
the hrtimer interface: we replace the standard timer objects
in the socket structure with the hrtimer structure, ensuring
that all subsequent calls to set, reset, or clear these timers
use the appropriate hrtimer functions.

We note that the changes required to TCP were relatively
minimal and non-invasive. The successful implementation
of fine-grained retransmissions in TCP took two weeks for
a graduate student with little experience in kernel hacking
or prior exposure to Linux TCP source code. We are also
making a patch available for testing.3

2The lower wrap-around time – 232 microseconds or 4294
seconds – is still far greater than the maximum IP segment
lifetime (120-255 seconds)
3See http://www.pdl.cmu.edu/Incast/ for details

http://www.pdl.cmu.edu/Incast/

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40 45

G
o
o
d
p
u
t
(M

b
p
s
)

Number of Servers

Num Servers vs Goodput
 (Fixed Block = 1MB, buffer = 64KB (est.), Switch = S50)

No RTOmin
5ms RTOmin (Jiffy)

200ms RTOmin (default)

Figure 10: For a 48-node cluster, providing TCP re-
transmissions in microseconds eliminates incast col-
lapse for up to 47 servers.

5.3 hrtimer Results
Figure 9 presents the achieved goodput as we increase

the number of servers N using various RTOmin values on a
Procurve 2848 switch. As before, the client issues requests
for 1MB data blocks striped over N servers, issuing the
next request once the previous data block has been received.
Using the default 200ms RTOmin, throughput plummets
beyond 8 concurrent senders. For a 5ms jiffy-based RTOmin,
throughput begins to drop at 8 servers to about 70% of link
capacity and slowly decreases thereafter. Last, our TCP
hrtimer implementation allowing microsecond RTO values
achieves the maximum achievable goodput for 16 concurrent
senders.

We verify these results on a second cluster consisting of 1
client and 47 servers connected to a single 48-port Force10
S50 switch (Figure 10). The microsecond RTO kernel is
again able to saturate throughput up to 47 servers. The 5ms
RTOmin jiffy-based configuration obtained 70-80% through-
put, with an observable drop above 40 concurrent senders.

Overall, we find that enabling microsecond RTO values
in TCP successfully avoids TCP incast collapse in two real-
world clusters for as many as 47 concurrent servers, and that
microsecond resolution is necessary to achieve full perfor-
mance.

6. IMPLICATIONS OF FINE-GRAINED
TCP RETRANSMISSIONS

Eliminating RTOmin and enabling TCP retransmissions in
microseconds helps avoid TCP incast collapse. But proposing
fine-grained retransmissions requires addressing the issue of
safety and generality: is an aggressive timeout appropriate for
use in general (i.e., in the wide area), or should it be limited to
the datacenter? Does it risk increased congestion or decreased
throughput because of spurious (incorrect) timeouts? In this
section, we discuss the implications of this change on wide-
area bulk transfers and on delayed acknowledgments.

6.1 Is it safe to eliminate RTOmin?
There are two possible complications of permitting much

smaller RTO values: spurious (incorrect) timeouts when the

network RTT suddenly jumps, and breaking the relationship
between the delayed acknowledgement timer and the RTO
values.

Spurious retransmissions: The most prominent study
of TCP retransmission by Allman and Paxson showed that a
high (by the standards of datacenter RTTs) RTOmin helped
avoid spurious retransmission in wide-area TCP transfers [2],
regardless of how good an estimator one used based on his-
torical RTT information. Intuition for why this is the case
comes from prior [24, 10] and subsequent [35] studies of Inter-
net delay changes. While most of the time, end-to-end delay
can be modeled as random samples from some distribution
(and therefore, can be predicted by the RTO estimator in
equation (1)), end-to-end delay consistently observes both
occasional, unpredictable delay spikes, as well as shifts in
the distribution. Such changes can be due to the sudden
introduction of cross-traffic, routing changes, or failures. As
a result, wide-area “packet delays [are] not mathematically
[or] operationally steady” [35], which confirms the Allman
and Paxson observation that RTO estimation involves a fun-
damental tradeoff between rapid retransmission and spurious
retransmissions.

Delayed Acknowledgements: The TCP delayed ACK
mechanism attempts to reduce the amount of ACK traffic by
having a receiver acknowledge only every other packet [7]. If
a single packet is received with none following, the receiver
will wait up to the delayed ACK timeout threshold before
sending an ACK.

Prior work showed that in cluster based systems with three
to five servers and with barrier-synchronized request work-
loads, the delayed ACK mechanism can act as a miniature
timeout, resulting in reduced, but not catastrophically low,
throughput during certain loss patterns [28].

The figure on the right shows how the combination of small

1
2

2

3

ACK 1

ACK 1
ACK 1

4

1
2

ACK 1

ACK 1

3
4

5

ACK 1

ACK 1

windows and delayed
ACKs can result in lower
throughput and slower
loss recovery. With de-
layed ACK disabled, the
ACK for packet 1 is sent
immediately after it is
received, enabling the
sender to grow its TCP
window and triggering
data-driven recovery for
packet 2. With delayed
ACKs enabled, the first ACK is sent 40ms later, delaying
this recovery process.

While this delay is not as high as a full 200ms RTO, the
default delayed ACK minimum (40ms in Linux) is still large
compared to the RTTs in datacenters and results in low
throughput for three to five concurrent senders. Beyond five
senders, high packet loss results in 200ms retransmission
timeouts which mask the impact of delayed ACK-induced
link idle time.

Microsecond retransmission timeouts, however, have a
different interaction with the delayed ACK mechanism. The
receiver’s delayed ACK timer should always fire before the
sender’s retransmission timer fires to prevent the sender
from timing out waiting for an ACK that is merely delayed.
Modern systems protect against this by setting the delayed
ACK timer to a value (40ms) that is safely under the RTOmin

(200ms).

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

%
 s

a
m

p
le

s
 (

w
it
h

 R
T

T
 <

=
 x

)

RTT (ms)

200ms RTOmin (Default)
200us RTOmin

Figure 11: A comparison of RTT distributions of
flows collected over 3 days on the two configurations
show that both servers saw a similar distribution of
both short and long-RTT flows.

As depicted to the right, a host with microsecond-granularity

1

ACK 1

ACK 1

1
1

retransmissions would
periodically experience
an unnecessary time-
out when communicat-
ing with unmodified
hosts where the RTO is
below 40ms (e.g., in the
datacenter and for short
flows in the wide-area),
because the sender incor-
rectly assumes that a loss has occurred.

Given these consequences, there are good reasons to ask
whether eliminating RTOmin—basing timeouts solely upon
the Jacobson estimator and exponential backoff—will harm
wide-area performance and datacenter environments with
clients using delayed ACK. In practice, these two potential
consequences are mitigated by newer TCP features and by the
limited circumstances in which they occur, as we explore in
the next two sections. We find that eliminating the RTOmin

has little impact on bulk data transfer performance for wide-
area flows, and that in the datacenter, delayed ACK causes
only a small, though noticeable drop in throughput when
the RTOmin is set below the delayed ACK threshold.

6.2 In the Wide Area
Aggressively lowering both the RTO and RTOmin shows

practical benefits for datacenters. In this section, we inves-
tigate if reducing the RTOmin value to microseconds and
using finer granularity timers is safe for wide area transfers.
We find that the impact of spurious timeouts on long, bulk
data flows is very low – within the margins of error – al-
lowing RTO to go into the microseconds without impairing
wide-area performance.

The major potential effect of a spurious timeout is a loss of
performance: a flow that experiences a timeout will reduce
its slow-start threshold (ssthresh) by half, its window to one
and attempt to rediscover link capacity. It is important to
understand that spurious timeouts do not endanger network
stability through increased congestion [2]. Spurious timeouts

 0

 20

 40

 60

 80

 100

 1 10 100

%
 s

a
m

p
le

s
 (

w
it
h

 K
b

p
s
 <

=
 x

)

Throughout (Kbps)

200ms RTOmin (Default)
200us RTOmin

Figure 12: The two configurations observed an iden-
tical throughput distribution for flows. Only flows
with throughput over 100 bits/s were considered.

occur not when the network path drops packets, but rather
when the path observes a sudden, higher delay. Because a
TCP sender backs-off on the amount of data it injects into
the network following this timeout, the effect of a shorter
RTO on increased congestion is likely small. Therefore, we
analyze the performance of TCP flows over the wide-area for
bulk data transfers.

Fortunately, algorithms to undo the effects of spurious
timeouts have been both proposed [2, 21, 32] and, in the
case of F-RTO [32], adopted in the latest Linux implemen-
tations. The default F-RTO settings conservatively halve
the congestion window when a spurious timeout is detected
but remain in congestion avoidance mode, thus avoiding the
slow-start phase. Therefore, the impact of spurious timeouts
on throughput are now significantly smaller than they were
10 years ago.

6.2.1 Experimental Setup and Results
We deployed two servers that differ only in their imple-

mentation of the RTO values and granularity, one using the
default Linux 2.6.28 kernel with a 200ms RTOmin, and the
other using our modified hrtimer-enabled TCP stack with a
200µs RTOmin. We downloaded 12 torrent files consisting
of various Linux distributions and began seeding all content
from both machines on the same popular swarms for three
days. Each server uploaded over 30GB of data, and observed
around 70,000 flows (with non-zero throughput) over the
course of three days. We ran tcpdump on each machine to
collect all uploaded traffic packet headers for later analysis.

The TCP RTO value is determined by the estimated RTT
value of each flow. Other factors being equal, TCP through-
put tends to decrease with increased RTT. To compare RTO
and throughput for the 2 servers, we first investigate if they
see similar flows with respect to RTT values. Figure 11 shows
the per-flow average RTT distribution for both hosts over
the three day measurement period. The RTT distributions
are nearly identical, suggesting that each machine saw a
similar distribution of both short- and long-RTT flows. The
per-packet RTT distribution for both flows is also identical.

Figure 12 shows the per-flow throughput distributions for
both hosts, filtering out flows with throughput less than

 0

 20

 40

 60

 80

 100

 1 10 100

%
 s

a
m

p
le

s
 (

w
it
h

 K
b

p
s
 <

=
 x

)

Throughout (Kbps)

200ms RTOmin (over 200ms RTT)
200ms RTOmin (sub 200ms RTT)
200us RTOmin (over 200ms RTT)
200us RTOmin (sub 200ms RTT)

Figure 13: The throughput distribution for short
and long RTT flows shows negligible difference
across configurations.

100bps, which are typically flows sending small control pack-
ets. The throughput distributions are also nearly identical—
the host with RTOmin = 200µs did not perform worse on
the whole than the host with RTOmin = 200ms.

We split the throughput distributions based on whether the
flow’s RTT was above or below 200ms. For flows above 200ms,
we use the variance in the two distributions as a control
parameter: any variance seen above 200ms are a result of
measurement noise, because the RTOmin is no longer a factor.
Figure 13 shows that the difference between the distribution
for flows below 200ms is within this measurement noise.

This data suggests that reducing the RTOmin to 200µs in
practice does not affect the performance of bulk-data TCP
flows on the wide-area.

6.3 Interaction with Delayed ACK
For servers using a reduced RTO in a datacenter envi-

ronment, the server’s retransmission timer may expire long
before an unmodified client’s 40ms delayed ACK timer fires.
As a result, the server will timeout and resend the unacked
packet, cutting ssthresh in half and rediscovering link ca-
pacity using slow-start. Because the client acknowledges
the retransmitted segment immediately, the server does not
observe a coarse-grained 40ms delay, only an unnecessary
timeout.

Once the first-order throughput collapse has been averted
by having the sender use a microsecond-granularity RTO,
Figure 14 shows the performance difference between a client
with delayed ACK disabled, delayed ACK enabled with a
200µs timer, and the default 40ms delayed ACK configura-
tion.

Beyond 8 servers, a client with a 200µs delayed ACK
timer receives 15–30Mbps lower throughput compared to a
client with delayed ACK disabled entirely, whereas the 40ms
delayed ACK client experiences between 100 and 200Mbps
lower throughput caused by frequent timeouts. The 200µs
delayed ACK timeout client delays a server by roughly a
round-trip-time and does not force the server to timeout, so
the performance hit is much smaller.

Delayed ACK can provide benefits where the ACK path is
congested [4], but in the datacenter environment, we believe

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 2 4 6 8 10 12 14 16

G
oo

dp
ut

 (M
bp

s)

Number of Servers

Num Servers vs Goodput (DelayedACK Client)
 (Fixed Block = 1MB, buffer = 32KB (est.), Switch = Procurve)

Delayed ACK Disabled
Delayed ACK 200us

 Delayed ACK 40ms

Figure 14: With RTOmin eliminated, disabling de-
layed ACK on client nodes provides optimal good-
put in a 16-node cluster.

that coarse-grained delayed ACKs should be avoided when
possible; most high-performance applications in the datacen-
ter favor quick response over additional ACK-processing over-
head and are typically equally provisioned for both directions
of traffic. Our evaluations in Section 5 disable delayed ACK
on the client for this reason. While these results show that
for full performance, delayed ACK should be disabled, we
note that unmodified clients still achieve good performance
and avoid incast collapse when the servers only implement
fine-grained retransmissions.

7. RELATED WORK
TCP Improvements: A number of changes over the

years have improved TCP’s ability to respond to loss pat-
terns and perform better in particular environments, many
of which are relevant to the high-performance datacenter
environment we study. NewReno and SACK, for instance,
reduce the number of loss patterns that will cause time-
outs; prior work on the TCP incast problem showed that
NewReno, in particular, improved throughput during moder-
ate amounts of incast traffic, though not when the problem
became severe [28].

TCP mechanisms such as Limited Transmit [1] were specif-
ically designed to help TCP recover from packet loss when
window sizes are small—exactly the problem that occurs
during incast collapse. This solution again helps maintain
throughput under modest congestion, but during severe in-
cast collapse, the most common loss pattern is the loss of
the entire window.

Finally, proposed improvements to TCP such as TCP
Vegas [8] and FAST TCP [19] can limit window growth when
RTTs begin to increase, often combined with more aggressive
window growth algorithms to rapidly fill high bandwidth-
delay links. Unlike the self-interfering oscillatory behavior
on high-BDP links that this prior work seeks to resolve,
incast collapse is triggered by the arrival and rapid ramp-
up of numerous competing flows, and the RTT increases
drastically (or becomes a full window loss) over a single
round-trip. While an RTT-based solution is an interesting
approach to study, it is a matter of considerable future work
to adapt existing techniques for this purpose.

Efficient, fine-grained kernel timers. Where our work
depends on hardware support for high-resolution kernel
timers, earlier work on “soft timers” shows an implemen-
tation path for legacy systems [3]. Soft timers can provide
microsecond-resolution timers for networking without intro-
ducing the overhead of context switches and interrupts. The
hrtimer implementation we make use of draws lessons from
soft timers, using a hardware interrupt to trigger all available
software interrupts.

Understanding RTOmin. The origin of concern about
the safety and generality of reducing RTOmin was presented
by Allman and Paxson [2], where they used trace-based anal-
ysis to show that there existed no optimal RTO estimator,
and to what degree that the TCP granularity and RTOmin

had an impact on spurious retransmissions. Their analysis
showed that a low or non-existent RTOmin greatly increased
the chance of spurious retransmissions and that tweaking
the RTOmin had no obvious sweet-spot for balancing fast
response with spurious timeouts. They showed the increased
benefit of having a fine measurement granularity for respond-
ing to good timeouts because of the ability to respond to
minor changes in RTT. Last, they suggested that the im-
pact of bad timeouts could be mitigated by using the TCP
timestamp option, which later became known as the Eifel
algorithm [21]. F-RTO later showed how to detect spurious
timeouts by detecting whether the following acknowledge-
ments were for segments not retransmitted [32], and this
algorithm is implemented in Linux TCP today.

Psaras and Tsaoussidis revisit the minimum RTO for high-
speed, last-mile wireless links, noting the default RTOmin

is responsible for worse throughput on wireless links and
short flows [29]. They suggest a mechanism for dealing with
delayed ACKs that attempts to predict when a packet’s
ACK is delayed—a per-packet RTOmin. We find that while
delayed ACK can affect performance for low RTOmin, the
benefits of a low RTOmin far outweigh the impact of delayed
ACK on performance.

Concurrent work is studying the possible effects of TCP
incast collapse in other datacenter workloads [9], such as
in MapReduce [11], independently confirming that faster
TCP retransmissions can help improve goodput for these
alternative workloads.

8. CONCLUSION
This paper presented a practical, effective, and safe solution

to eliminate TCP incast collapse in datacenter environments.
Enabling microsecond-granularity TCP timeouts allowed
high-fan-in, barrier synchronized datacenter communication
to scale to 47 nodes in a real cluster evaluation, and random-
ized retransmissions were used to scale to thousands of nodes
in simulation. This implementation of fine-grained TCP
retransmissions should also help latency-sensitive datacenter
applications where timeouts lasting hundreds of milliseconds
can harm response time. Through a wide-area evaluation,
we showed that these modifications remain safe for use in
the wide-area, providing a general and effective improvement
for TCP-based cluster communication.

Acknowledgments
We would like to thank our shepherd Dave Maltz, Dilip
Chhetri, Vyas Sekar, Srinivasan Seshan, and the anonymous
reviewers for their comments and suggestions. We also thank

Andrew Shewmaker, HB Chen, Parks Fields, Gary Grider,
Ben McClelland, and James Nunez at Los Alamos National
Laboratory for help with obtaining packet header traces.

We thank the members and companies of the PDL Consor-
tium (including APC, DataDomain, EMC, Facebook, Google,
Hewlett-Packard, Hitachi, IBM, Intel, LSI, Microsoft, NEC,
NetApp, Oracle, Seagate, Sun, Symantec, and VMware) for
their interest, insights, feedback, and support. We thank
Intel and NetApp for hardware donations that enabled this
work.

This material is based upon research supported in part by
the National Science Foundation via grants CNS-0546551,
CNS-0619525, CNS-0326453, and CCF-0621499, by the Army
Research Office, under agreement number DAAD19-02-1-
0389, by the Department of Energy, under Award Number
DE-FC02-06ER25767, and by Los Alamos National Labora-
tory, under contract number 54515-001-07.

9. REFERENCES
[1] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing

TCP’s Loss Recovery Using Limited Transmit. Internet
Engineering Task Force, Jan. 2001. RFC 3042.

[2] M. Allman and V. Paxson. On estimating end-to-end
network path properties. In Proc. ACM SIGCOMM,
Cambridge, MA, Sept. 1999.

[3] M. Aron and P. Druschel. Soft timers: Efficient
microsecond software timer support for network
processing. ACM Transactions on Computer Systems,
18(3):197–228, 2000.

[4] H. Balakrishnan, V. N. Padmanabhan, and R. Katz.
The effects of asymmetry on TCP performance. In Proc.
ACM MOBICOM, Budapest, Hungary, Sept. 1997.

[5] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and
R. Katz. A comparison of mechanisms for improving
TCP performance over wireless links. In Proc. ACM
SIGCOMM, Stanford, CA, Aug. 1996.

[6] P. J. Braam. File systems for clusters from a protocol
perspective. http://www.lustre.org.

[7] R. T. Braden. Requirements for Internet
Hosts—Communication Layers. Internet Engineering
Task Force, Oct. 1989. RFC 1122.

[8] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson.
TCP vegas: New techniques for congestion detection
and avoidance. In Proc. ACM SIGCOMM, London,
England, Aug. 1994.

[9] Y. Chen, R. Griffith, J. Liu, A. D. Joseph, and R. H.
Katz. Understanding TCP incast throughput collapse
in datacenter networks. In Proc. Workshop: Research
on Enterprise Networking, Barcelona, Spain, Aug. 2009.

[10] k. claffy, G. Polyzos, and H.-W. Braun. Measurement
considerations for assessing unidirectional latencies.
Internetworking: Research and Experience,
3(4):121–132, Sept. 1993.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proc. 6th USENIX
OSDI, San Francisco, CA, Dec. 2004.

[12] Scaling memcached at Facebook. http://www.
facebook.com/note.php?note_id=39391378919.

[13] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1(4), Aug. 1993.

http://www.lustre.org
http://www.facebook.com/note.php?note_id=39391378919
http://www.facebook.com/note.php?note_id=39391378919

[14] B. Ford. Structured streams: A new transport
abstraction. In Proc. ACM SIGCOMM, Kyoto, Japan,
Aug. 2007.

[15] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In Proc. 19th ACM Symposium on
Operating Systems Principles (SOSP), Lake George,
NY, Oct. 2003.

[16] High-resolution timer subsystem.
http://www.tglx.de/hrtimers.html.

[17] V. Jacobson. Congestion avoidance and control. In
Proc. ACM SIGCOMM, pages 314–329, Vancouver,
British Columbia, Canada, Sept. 1998.

[18] V. Jacobson, R. Braden, and D. Borman. TCP
Extensions for High Performance. Internet Engineering
Task Force, May 1992. RFC 1323.

[19] C. Jin, D. X. Wei, and S. H. Low. FAST TCP:
motivation, architecture, algorithms, performance.

[20] E. Kohler, M. Handley, and S. Floyd. Designing DCCP:
Congestion control without reliability. In Proc. ACM
SIGCOMM, Pisa, Italy, Aug. 2006.

[21] R. Ludwig and M. Meyer. The Eifel Detection
Algorithm for TCP. Internet Engineering Task Force,
Apr. 2003. RFC 3522.

[22] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow.
TCP Selective Acknowledgment Options. Internet
Engineering Task Force, 1996. RFC 2018.

[23] A distributed memory object caching system.
http://www.danga.com/memcached/.

[24] A. Mukherjee. On the dynamics and significance of low
frequency components of Internet load. Internetworking:
Research and Experience, 5:163–205, Dec. 1994.

[25] D. Nagle, D. Serenyi, and A. Matthews. The Panasas
ActiveScale Storage Cluster: Delivering scalable high
bandwidth storage. In SC ’04: Proceedings of the 2004
ACM/IEEE Conference on Supercomputing,
Washington, DC, USA, 2004.

[26] ns-2 Network Simulator.
http://www.isi.edu/nsnam/ns/, 2000.

[27] C. Partridge. Gigabit Networking. Addison-Wesley,
Reading, MA, 1994.

[28] A. Phanishayee, E. Krevat, V. Vasudevan, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and S. Seshan.
Measurement and analysis of TCP throughput collapse
in cluster-based storage systems. In Proc. USENIX
Conference on File and Storage Technologies, San Jose,
CA, Feb. 2008.

[29] I. Psaras and V. Tsaoussidis. The TCP minimum RTO
revisited. In IFIP Networking, May 2007.

[30] K. Ramakrishnan and S. Floyd. A Proposal to Add
Explicit Congestion Notification (ECN) to IP. Internet
Engineering Task Force, Jan. 1999. RFC 2481.

[31] S. Raman, H. Balakrishnan, and M. Srinivasan. An
image transport protocol for the Internet. In Proc.
International Conference on Network Protocols, Osaka,
Japan, Nov. 2000.

[32] P. Sarolahti and M. Kojo. Forward RTO-Recovery
(F-RTO): An Algorithm for Detecting Spurious
Retransmission Timeouts with TCP and the Stream
Control Transmission Protocol (SCTP). Internet
Engineering Task Force, Aug. 2005. RFC 4138.

[33] S. Shepler, M. Eisler, and D. Noveck. NFSv4 Minor
Version 1 – Draft Standard.
http://www.ietf.org/internet-drafts/

draft-ietf-nfsv4-minorversion1-29.txt.

[34] B. Welch, M. Unangst, Z. Abbasi, G. Gibson,
B. Mueller, J. Zelenka, and B. Zhou. Scalable
performance of the Panasas parallel file system. In
Proc. USENIX Conference on File and Storage
Technologies, San Jose, CA, Feb. 2008.

[35] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On
the constancy of Internet path properties. In Proc.
ACM SIGCOMM Internet Measurement Workshop,
San Fransisco, CA, Nov. 2001.

http://www.tglx.de/hrtimers.html
http://www.danga.com/memcached/
http://www.isi.edu/nsnam/ns/
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-minorversion1-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-minorversion1-29.txt

	Introduction
	Background
	TCP Incast Collapse
	Latency-sensitive Applications
	Prior Work

	Evaluating Throughput with Fine-Grained RTO
	Jacobson RTO Estimation
	Evaluation Workload
	In Simulation
	In Real Clusters

	Next-generation Datacenters
	Scaling to Thousands
	Desynchronizing Retransmissions

	Implementing Fine-Grained Retransmissions
	Linux high-resolution timers: hrtimers
	Modifications to the TCP Stack
	hrtimer Results

	Implications of Fine-grained TCP Retransmissions
	Is it safe to eliminate RTOmin?
	In the Wide Area
	Experimental Setup and Results

	Interaction with Delayed ACK

	Related Work
	Conclusion
	References

