
Getting Advice  
(CS739 Fall ‘16 Midterm)

“No enemy is worse than bad advice” —Sophocles

The papers we read are forms of advice: lessons on what to do, and what not to do, when 
building or measuring systems. Your job on this exam: examine each piece of advice and decide 
whether it is good or bad advice, as well as a few other things. Read each question carefully 
and answer the best you can.

Good luck! And remember this OS-inspired advice: answer questions in EASIEST-QUESTION-
FIRST (EQF) discipline. Following this advice will maximize the number of questions you finish 
before your time is up.
 

Name:  

Student ID: 

R. U. Havinfun

123 456 7890



1. A person named J. Hamilton gives a lot of advice in his paper “On Designing and Deploying 
Internet Services.” One piece of advice he gives is this: “Support a big red switch.” What is the 
big red switch, and is having one in your system good advice or bad? 

From the paper: “The concept of a big red switch is to keep the vital processing 
progressing while shedding or delaying some non-critical workload.”

Answers on whether this is good or bad were both accepted, depending on the 
reasoning. 

2. Jeff Dean gives a lot of advice about how to build systems, including numbers “everyone 
should know” (such as cache miss latency, mutex lock/unlock time, etc.) Why does he give the 
advice that everyone should know these numbers? Why are such numbers useful to system 
builders?

From the slides: “Back of the envelope helps identify most promising [design variation]”

Most good answers focused on this aid to designers as the key thing.

3. The RPC paper gives advice, of a sort, to send large packets by sending a smaller piece, 
waiting for an acknowledgement, then the next smaller piece, then waiting for an ack, etc. Is this 
good advice? When does this advice make sense, and when doesn’t it?

Sending a large packet one piece at a time is slow, increasing latency and lowering 
bandwidth. The authors do this because it is (a) easier to implement and (b) they think 
their workload doesn’t need to worry about large packets. The advice makes sense if (b) 
holds true.



4. U-Net advocates (strongly) a position that networking be moved (mostly) to user level, yet 
despite this advice, some pieces of the U-net system remain in the kernel. Which pieces of 
networking functionality are placed in the kernel with U-net, and why?

Key parts relate to security and some other setup (non data path) tasks. From the paper: 
“ The operating system service will assist in route discovery, switch-path setup and 
other (signalling) tasks that are specific for the network technology used.”

The kernel can also multiplex many (slower) connections onto a single physical one, but 
this is not the main point and clearly doesn’t help with performance (but rather is for 
completeness of functionality).

5. Gray says the key to high availability (HA) is to “modularize the system”. Why does he give us 
this advice, and what does it mean? Can you have HA without such modularization?

As the paper states: “VonNeumann's model had redundancy without modularity. In 
contrast, modern computer systems are constructed in a modular fashion a failure within 
a module only affects that module. In addition each module is constructed to be fail-fast 
-- the module either functions properly or stops. Combining redundancy with modularity 
allows one to use a redundancy of two rather than 20,000.”

So yes, you can have HA without it, but at high cost.

6. The Ding paper on “simple testing” shows the following diagram. What advice would you give 
system designers, based on this diagram? (put most important advice first)

- Unit test everything.
- Check error handling carefully and implement it throughout.
- Use tools where possible to find other simple problems (e.g., TODO that isn’t DONE).
- etc.



7. Schroeder concludes, in her study of disk failure, that disk failures do not take on a bathtub-
like curve. What is a better depiction of the failure-rate curve she discovers? (draw this) Given 
this new curve, what advice would you give to large-scale storage system designers?

Graph misses the first part of the bathtub (and to some extent the middle) and goes up.

Advice could be in many forms. One example: 
- Expect failures earlier and at an increasing rate with age
- Perhaps consider replication strategies across drives that take age into account
- Perhaps consider data migration strategies so as to minimize vulnerability in case of 

old drive failure

8. The ALICE paper discusses application-level protocols, and gives this piece of advice for 
Linux: when needed, make sure to call fsync() on the file of interest as well as on the parent 
directory. Why is this advice necessary? Does one need to always follow this advice to build a 
correct data-management application (such as the ones mentioned in the paper)?

From the paper: “An fsync() on a file does not guarantee that the file’s directory entry is 
also persisted.”

May lose a file because directory isn’t flushed with crash at inopportune moment.

Always necessary? No. If your protocol doesn’t create new files, no problem. Also, if you 
only run on file systems that persist the directory entry on fsync() you are also OK.

9. In Sun’s network file system, the basic protocol works particularly well for idempotent 
operations, so perhaps the advice here is to “always make operations idempotent”. Despite this 
advice, not all NFS operations are idempotent. What types of operations are idempotent, and 
which are not? What kind of problems arise when non-idempotent operations are executed?

Good answers talked about mkdir() or create() or related protocol parts that, when 
repeated, lead to a different answer than when just executed once (e.g., re-creating a file 
that exists leads to an error).

The problem is thus user confusion.

Solution (which some provided but not strictly needed) is a replay cache of some kind as 
discussed in the HA NFS paper.



10. The two-phase commit algorithm we discussed in class advises that some logging steps 
need not be forced to disk immediately. Describe at least one such case, and explain why it is a 
good idea to follow this advice.

Many possibilities. From paper, the PrN protocol coordinator: “To commit a transaction, a 
PrN coordinator does two log writes, the commit record (forced) and the transaction end 
record (not forced).” Worst case here is a crash that has the coordinator ask cohorts for 
ACKs, which is no big deal because it is rare.

It’s a good idea for performance; non-forced means you can delay and batch writes to 
disk. Forced means you have to wait and that is slow.

11. Remus describes an approach to high availability using “speculation”. They say that this 
form of speculation is needed to make their VMM-based HA system operate well. Why do they 
give this advice? First, describe what they mean by speculation, and then describe why it makes 
Remus work well.

Remus works by having the primary work on many requests concurrently and only take 
snapshots occasionally. While the primary works on these requests, it avoids 
externalizing their results. Then, Remus takes a snapshot of the system (memory + disk 
state) and ships it to the backup, at which point it is safely replicated in backup memory 
and thus the primary can release outputs and allow clients to see the results of their 
requests.

This does NOT improve latency; in fact, it increases it! But it does improve throughput as 
compared to an approach that does one request at a time. Thus, Remus’s approach 
allows the batching of requests and increase of throughput.

12. The WiscKey paper advocates for the separation of keys and values in an LSM-based key-
value store. When is this a good piece of advice, and when is it bad?

Good answers focused on the paper and its main results. WiscKey works well under 
write workloads (pretty much all), as well as most read workloads where value sizes are 
large. WiscKey has trouble under range read workloads where the data was inserted in 
random order. 

Less “good” answers focused on what would happen when you run on hard drives, 
which is just speculation.



13. The Flash paper advises the use of “helper processes” in some cases. When are such 
processes needed? Is it ever a bad idea to use helper processes?

Some operations, such as a synchronous disk I/O, “block” and thus stop a process from 
running until an I/O is complete. A helper process (or pool of processes) can help avoid 
blocking in an event-driven server by taking on such requests itself, and then later 
notifying the main process when the request has completed. Not blocking is critical for 
event based systems; if the main event loop blocks, NOTHING gets done until the 
blocking is complete.

It can be a bad idea for a number of reasons. For example, if asynchronous I/O APIs 
exist, the overhead of moving data back and forth between main event thread and the 
backup processes might be (much) more costly. 

14. In both papers on latent-sector errors and disk corruptions, Bairavasundaram et al. note that 
such failures are not independent. What advice would you give designers of RAID storage 
arrays (or other replicated storage systems) assuming this is indeed the case?

To types of non-independence of these localized failures: spatial and temporal. Spatial 
may be easier to deal with: for example, be careful of placing important data near other 
important data within the same disk (e.g., a block and its parent); you could also extend 
this across disks to deal with weird cases. 

Temporal is harder to deal with: what should a designer do to react to faults that happen 
close in time on one disk? Not sure if there is a good answer, but it might be a good idea 
to quickly react when one such fault is detected, so as to prevent further damage. If a 
single fault is a good predictor of soon upcoming faults, removing the bad disk and then 
repairing data to a new one might be a good idea.

15. A wise old systems person has been overheard giving the following piece of advice: “Always 
use vector clocks instead of Lamport clocks - they are strictly better!” Show a case where they 
indeed are better, and then decide if one should always follow this advice (and explain why).

Vector clocks can preserve more information than Lamport clocks and thus in some 
cases are more useful (look to the VC paper for examples). However, they can be costly, 
as per-node state does not scale well. Thus, if you can avoid using a full VC, you likely 
should.



16. In HA-NFS, the authors advise the reader to use different approaches in handling server, 
disk, and network failure. What was their specific advice on failure handling for these different 
types of failure? What do you think of this approach?

Server failure: Dual port the disks and use heartbeats for failure detection. If one server 
fails, the other can take over and serve its requests.

Disk failure: Optionally use disk mirroring (note: dual porting is not the solution here!)

Network failure: Redundancy of network interfaces and links to the servers are useful 
here.

Overall, pick each resource and provide a different type of redundancy for it, based on 
what is most appropriate - an interesting strategy. Most people liked it. Some didn’t, 
usually for reasons that were unclear (too costly?).

17. The Flash failure paper from CMU by Meza et al. suggests that “throttling” may help 
decrease SSD failure rates. What is throttling, and why might it be useful? 

From the paper: “One hypothesis is that temperature-sensitive SSDs with increasing 
error rates, such as Platforms A and B, may not employ as aggressive temperature 
reduction techniques as other platforms. While we cannot directly measure the actions 
the SSD controllers take in response to temperature events, we examined an event that 
can be correlated with temperature reduction: whether or not an SSD has throttled its 
operation in order to reduce its power consumption.”

That was the basic idea.


