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Abstract

Replication of data in a distributed system is a way to enhance the performance
of applications that access the data. A system where data is replicated can provide
better fault tolerance capabilities as well as improved response time. However, such
improvement is achieved at the expense of having to manage replication by implementing
replica control protocols. Such protocols are required to insure that data consistency is
maintained in the face of system failures. In this article we describe the issues involved
in maintaining the consistency of a replicated database system. We next describe three
basic techniques for managing replicated data and discuss the relative merits of each
technique. This is followed by a survey of extensions to the basic approaches. A

discussion of future directions in research on data replication concludes our presentation.
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1 Introduction

Distributed computing systems have become common place in all types of organizations.
Computers (or nodes) in such systems collectively have large amounts of computational and
storage resources. These resources can be exploited to build highly available systems. For
example, by replicating a file at nodes that have independent failure modes, a user can be
allowed to access the data in the file even when some of the nodes that store copies of the
file have failed. Although increased availability is a major benefit of data replication, it also
provides the opportunity to share the load generated by user requests between the nodes
that have copies. An access to a file requires reading of data from disk, processing and
possibly writing the data back to the disk (when it is modified). If data is not replicated,
all user requests that access a file must wait at a single node for the data to be read or
written. When the data is replicated, load generated by the requests can be shared by

nodes having the copies and hence the response time for the requests can be improved.

Data replication increases the probability that there is an operational (i.e., not failed)
node that has a copy of the data when a request is made but it may not be sufficient to
just locate one such node and read or write the copy stored at that node. Such a copy may
be outdated because the node storing it may have failed when the data was last updated.
Thus, it is necessary to use algorithms that implement rules for accessing the copies so that
correctness is ensured (See section 2). These rules may disallow access to data even when
its copies exist at operational nodes when it is not possible to determine if the copies at the

operational nodes are up-to-date.

The algorithms that control access to replicated data are called replica control protocols.
A replica refers to a single copy of the data in a system that employs replication. A large
number of replica control protocols have been developed. In this paper, we present many
of these protocols, explain their workings, and relate them by showing that most of the
replica control protocols belong to a small number of protocol families. We also discuss
both the performance enhancements made possible by the replica control protocols as well
as the costs that are incurred when they are used. The two main performance measures we
are concerned with are data availability and response time. Data availability is defined as
the probability that there are enough functioning (or available) resources in the distributed

system (nodes storing data and communication network) so that an arriving request can



be satisfied. The response time is defined as the time required for an access request to
complete. Thus, response time not only depends on the failure characteristics of the system

but also on the load and the I/O, processing and communication capacities in the system.

In section 2, we precisely define the correctness requirements that must be met when
data is replicated. Section 3 introduces the concept of replica control. We have categorized
the protocols into three basic types and their operation is described in detail in Sections
4, 5 and 6. Section 7 presents a number of methods that are improvements of the basic
protocols described in earlier sections. We conclude the paper with a description of possible

future directions in Section 8.

2 Correctness Criteria

In a replicated data system, although there exist multiple copies of a data item that can
be accessed by users, it is desirable to maintain the view that there is logically a single
copy of the data item. A replica control protocol is a synchronization layer imposed by a
distributed system to hide the fact that data is replicated and to present to the users the
illusion that there is only a single copy of the data. It provides for a set of rules to regulate
reading and writing of the replicas, and to determine the actual value of the data. This
allows replication of data to be transparent to users. Thus, users are not burdened with
the task of implementing procedures that control access to the replicas and can exploit the
benefits of high availability and improved response time without being aware of the fact
that the data is replicated. Since there are correctness requirements that must be satisfied
by a set of data items even when there is a single copy of each item, the same correctness
requirements must also be met when the data is replicated. Thus, correctness requirements
for a replicated data system are defined using correctness requirements of data when it is

not replicated.

Much of the work in replicated data systems has been done in the context of distributed
databases. Access requests to data in a database are modeled as transactions. A transaction
consists of a number of related operations which read and possibly update the state of the
database. When a single transaction is executed by the system at a time, its execution

transforms the database from one consistent state into another consistent state. Thus,



serial execution of a set of transactions (i.e. one at a time) by a database that is initially
in a consistent state preserves the correctness of the database and leaves it in a consistent

state.

Transactions can be executed concurrently to improve performance and system utiliza-
tion. When transactions do not access common data items, they do not interfere with each
other and the effect of executing them concurrently is equivalent to a serial execution in
an arbitrary order. However, when transactions read and write common data items, they
must synchronize access to the shared items. Otherwise, the database state may become

inconsistent and the execution of the transactions may be incorrect.

Consider for example the transactions 77 and 75 where T and Ty deposit $10 and $20,
respectively, to an account with an initial balance of $z. The transactions first read the
value of z, increase it by the proper amount and write the result back to . Suppose initially
x = $100, then the execution orders T1T5 and 7577 will result in # = $130. Both execution
orderings produce the same final result. However, in an uncontrolled concurrent execution
of T and T3, the read and write operations can be interleaved in the following manner:
Ty @ R(z = $100), Ty : R(z = $100), 71 : W(z = $110) and Ty : W(z = $120). The final
value of x is $120 which does not conform with the effect produced by any serial execution
of T1 and T,. Data inconsistency may result from concurrent executions of transactions

that use common data items.

An accepted notion of correctness for concurrently executing transactions is serializabil-
ity. An interleaved execution of transactions T4, 15, ..., T, is serializable if the effect of
the execution is the same as some serial execution of the transactions. Thus, the execution
of the transactions Ty and T, given above is not serializable because the effect of the execu-
tion is not the same as any possible serial execution of 77 and T5. Synchronization schemes
such as two-phase locking, timestamp ordering and optimistic concurrency control [BHGS87],
ensure that the effect of concurrent execution of transactions is equivalent to some serial
order, i.e., the execution is serializable. Serializability can be ensured by a synchronization
protocol if it guarantees that if a data item is modified by the operations of a transaction

T, it should not be read or written by operations of other transactions until 7' completes.

Since the goal of a replicated database system is to improve data availability and en-

hance response time for transactions, such a system must also allow concurrent execution



of transactions but the consistency of the data should not be compromised. In other words,
the system must ensure single-copy serializability which means that transactions execute as
if there is a single copy of the database and the transactions appear to execute in some serial
order. The replica control protocols that we discuss in the following sections all satisfy this

correctness requirement for replicated data.

3 Replica Control Protocols

In order to understand the subtleties involved in designing a replica control protocol, con-
sider the following naive protocol for accessing the replicated data item z in the system
shown in Figure 1:

“Read from and write to the local replica”

Transactions Ty and Tp executing concurrently at nodes C' and D, respectively, each wish

to read z, add one to the value read and write the result back. If the above protocol is used,
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Figure 1: A distributed system with two replicas of z.

the final value of z is only one larger than the original value at nodes ' and D and it is
not changed at other nodes. The result would be the same even if T and Tp are executed
serially (e.g., at different times). The problem with this protocol is that it does not make
the replicas behave as a single copy and fails to maintain data consistency because any

future transaction will read an incorrect value.



A simple extension of the above protocol is the following;:
“Read from local replica and write to all replicas”

If all replicas are not available for updating (e.g., because of node failure), the transaction is
aborted and restarted at a later time. This is the read one/write all replica control method.
This method will obviously maintain the consistency of the data, but it has a serious
drawback. Although the data is highly available for reading, the performance of write
operations will degrade (compared to the previous naive protocol) because the likelihood

that all replicas are available for updating is relatively low.

In general, all replicas need not be updated by a write operation. Consider for example

the following protocol:
“Read and write operations access a majority of replicas”

Since a write operation installs the new value in a majority of replicas and any two majority
groups of replicas have at least one copy in common, a read majority group is guaranteed to
have a replica that contains the current value. However, all replicas in the read group may
not be up-to-date. In order to distinguish the current value of the data, a version number is
added for identification. The version number is incremented each time the data is updated
so that the current value is always associated with the highest version number. The value
returned by a read operation is the one that is associated with the highest version number
in the majority read group. Using this protocol a write operation does not need to update
all replicas and yet read operations can determine the last value written. Furthermore,
read and write operations and two write operations on the same data item will not execute
concurrently because they must access a common replica. The node that manages the
common replica enforces proper synchronization so that the replica is modified by a single
transaction at a time. This protocol that requires operations to access a majority of replicas
is a special case of the quorum consensus method which will be discussed in detail in Section

5.

Conceptually, the value of the replicated data item z is a function f of the values
< X1,81 >, < Tg, S8 >, ..., < &N,SN >, where x; is the value stored at replica ¢ and s;
is some supplementary information (e.g., version number) that may be stored along with

xq, for 1+ = 1,2,..., N. The replica control protocol used will determine the function f



(see Figure 2). The values of some replicas may not be known because the nodes storing
them can fail. Also, some replicas may contain outdated values. In general, all values
< X1,81 >, < Tg, 89 >, ..., < TN,SN > are not required for f to determine the value of z.
For example, the function f for the read one/write all protocol is f(< @1, >, < 22,81 >
ey < TN,SN >) = x;, for any i = 1,2,..., N. Since all replicas are updated by a write
operation, all replicas have the current value. In the read majority /write majority protocol,
fl< 1,81 >,< 22,82 >,...,< an,sny >) is the value of z; that is associated with the
highest version number found in a majority group of replicas. The function f returns an

undefined value if there is an insufficient number of replicas available.
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Figure 2: Determining the value of x from replicas zy, x5, ..., zxN.

In the subsequent sections we present a number of protocols found in the literature. We

first present the basic protocols: primary copy, quorum consensus and available copies.

4 Primary Copy Method

The primary copy method was described in [Sto79] and it was used in the Ingres database
system for maintaining replicated data. The database is partitioned into data items called
fragments and data items can be replicated at different nodes. The locations of all replicas
are known and in addition, the nodes are arranged in a known order. Each node maintains
an up-list of nodes that it can communicate with. This list may not accurately reflect the
actual state of the system because of message delays. The replica maintained by the node

that is lowest in ordering in the up-list is by definition the primary copy of the data item.



A transaction usually accesses a subset of all data items. When a data item is written, a
write request is sent to the node that holds the primary copy. The changes are subsequently
propagated to the other replicas (see Figure 3). A read request can also be sent to the

primary copy, but it can be performed more efficiently on a local copy if certain conditions
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are met.

Figure 3: The primary copy method

In the primary copy method, a transaction can read from its local replica only if it
accesses a single data item. This is because a transaction that accesses multiple items can
find that the replicas stored locally do not conform with the current value, i.e., the state
is inconsistent. This will happen when multiple items are updated by a transaction and
the changes have not yet been propagated to all replicas. Consider for example an account
database of a bank that is partitioned in data items with one hundred accounts per item.
Accounts numbers 101 and 202 are stored in data items x and y respectively (see Figure
4). The primary copies of  and y are stored on nodes A and B respectively, and copies of
both data items are also stored at node C'. A transaction executing at node C transfers $10
from account 101 to account 202, and makes the changes to the primary copy of z and y at
nodes A and B. The changes are then propagated to the other replicas. Due to difference
in propagation delay, the changes made to z and y do not arrive at node C at the same
time. Suppose the change for y is incorporated first, then the replicas of z and y at node C'
will reflect an inconsistent database state ($10 has been deposited in account 202 without

having been taken out of account 101).

When a node fails, it will not respond to request messages sent to it and an operational
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Figure 4: Propagation delay in the primary copy method

node can detect its failure through a timeout mechanism. A node that fails to receive a
reply from node z will remove z from its up-list. If node x was maintaining the primary

copy, the next node in the up-list becomes the new maintainer.

Link failures can cause network partitioning. The nodes that are in the same partition
as node ¢ that maintains the primary copy will continue to recognize it as the one holding
the primary copy, but nodes that are separated from ¢ will think that 7 has failed and choose
a different primary copy node. There are now multiple primary copies and each one accepts
different update requests. The content of the database will become inconsistent as update
operations in different partitions will not be aware of each other’s execution. To avoid this
situation, the primary copy is allowed to exist only if a majority of all replicas of the item
are accessible within the partition. Since there can only be at most one partition with a
majority of replicas, this guarantees that two or more primary copies do not exist at the
same time. If the network cannot partition, the primary copy scheme can allow read and

write operation to access the data if at least one replica is available.

4.1 Performance Issues

The primary copy method was designed with the idea that the database was fragmented in
such a way that most accesses made to the data originate from users at the node having
the primary copy. Thus, local read and write requests can be satisfied by the primary copy

without having to involve remote nodes in their processing. Although the changes must be



propagated to the other replicas, the local transaction can finish as soon as the changes are

made to the primary copy.

The primary copy becomes a bottleneck in a large system because read requests from
transactions at nodes that do not store a replica and all write requests are sent to it.
Although read requests can be processed in parallel by nodes with replicas, the processing

of write requests is done by a single node.

5 Quorum Consensus

In quorum consensus protocols, an operation can be allowed to proceed to completion if
it can get permission from a group of nodes. A minimal group of nodes that can allow
an operation to proceed is called a quorum group and the collection of all such groups is
called a quorum set. An operation (e.g., read or write) can only proceed if it can obtain
permission from nodes that have all members of a quorum group. The system requirements
determine which groups are in the quorum set. For instance, operations requiring mutual
exclusive access can be executed when permission is obtained from a group consisting of a

majority of nodes.

The concept of quorum consensus is simple and lends itself to a wide range of applica-
tions. In the maintenance of replicated data, quorum sets are used to determine if operations
for accessing the replicas can be executed. Generally, the type of operations allowed are
read and write, and consequently two quorum sets are defined, R and W, for read and
write operations respectively. Read operations can be executed concurrently with other

read operations but write operations must be performed in a mutually exclusive manner.

Quorum sets are used not only to synchronize conflicting operations, but also to present
the single copy view to the users of the replicated data system. Due to this, the following

conditions must be satisfied:

e The quorum groups that allow read and write operations to execute must have at least
one common node that has a replica and such a node should not allow the replica
to be accessed by concurrent operations that are conflicting. This ensures that read

operations will return the value installed by the last write operation and any write



operation concurrent with the read operations is properly synchronized.

e The quorum groups that allow write operations must have a common member. This

will ensure write operations are not executed concurrently.

Quorum sets

R = {{AB},{AC}, {B,C}, {D}}
W= {{AB,D}, {AC,D}, {B,C,D}}

vi=1 vit=1 vi=1 vi=1
X= X= x=4 X=
Read Write

Figure 5: Example of a read and write quorum set pair

Figure 5 shows a pair of read and write quorum sets R and W that are used to regulate
reading and writing of the replicated data item z. Initially the version number and value
are v# = 1 and x = 4, respectively, at all replicas. Notice in Figure 5 that any group in R
and any group in W, and any two groups in W intersect. If a read and a write operation
use read and write quorum group {A4,B} and {B,C,D} respectively (see Figure 5), node B

will detect the conflict and will allow only one of them to proceed. If the write operation is
wi=1 V=2 Vi=2 Vi#=2
x=4 x=5 x=5 X=5

Read
Figure 6: Reading in quorum consensus protocol

allowed to proceed before the read operation and it updates the value 2 = 5 at the replicas

10



in its quorum group {B,C,D}, then a subsequent read operation can detect the update
using the version number. For instance, the read operation in Figure 6 that uses {A,B} as
the quorum group will find that the replica at node B has the highest version number and

will return the value associated with that version number as the value of z.

5.1 Voting

In general, a quorum set is specified by listing its quorum groups. However, the number of

groups in a quorum set can be exponential. For instance, the number of majority groups

o

in N. An simple way to represent a quorum set is the use of weighted voting [Gif79]. In this

formed with N nodes is . The order of this binomial expression is exponential

method, each node ¢ is assigned a positive integral number of votes v;, for ¢ = 1,2,..., N,
and a quorum ¢ is defined. A group of nodes GG is a quorum group if the nodes in G
collectively have at least ¢ votes and removing any node from G results in a group with less
than ¢ votes. Quorum sets that can be defined by the use of a vote and quorum assignment
are called wvote assignable. Consider for example the vote assignment to four nodes where
nodes A, B, C'and D receive vote 1, 1, 1 and 2, respectively. We denote this vote assignment
by the vector v = (1,1,1,2). Let the quorum assignment ¢ be 2 and consider the group
{A,B}. The number of votes assigned to nodes in the group is ¢ (¢ = 2) and removal of
either A or B will result in a group with less than ¢ votes. Hence, {A,B} is a quorum group
of ¢ votes. The collection of all quorum groups of ¢ votes is {{4,B}, {A4,C}, {B,C'},{D}}
which is the quorum set defined by the vote and quorum assignment (v,¢). Let r and w
be the read and write quorums, respectively. The read and write quorum groups R and W
in Figure 5 can be defined using vote assignment v and the read and write quorums r = 2
and w = 4, respectively. In fact, a pair of vote and quorum assignment (v,q) uniquely
defines a quorum set, but the same quorum set can be defined by many vote and quorum
combinations. For instance, the quorum set {{A4,B}, {A,C'}, {B,C}, {D}} can also be
defined using v' = (2,2,2,3) and ¢’ = 3.

The synchronization requirements that each read and write quorum group and two

different write quorum groups must have non-empty intersections are satisfied if:

e The sum of r and w is greater than L, where I, = Zf\il v;.

11



e 2w is greater than L.

The first condition will guarantee that a read quorum group will intersect with any write
quorum group because the total votes in two non-intersecting groups are at most I where
r+w > L. Similarly, the second condition guarantees non-empty intersection of two write

groups.

Voting is highly flexible and can be adapted for many types of systems. Consider a
system with three replicas of data item 2z using voting based replica control protocol and all
replicas are assigned one vote each. In systems where most operations are read, the quorum
assignment used should be (r = 1, w = 3), i.e., read one/write all. In contrast, systems that
require high write availability should use (r = 2, w = 2), the read majority /write majority
setting. Thus read and write quorums can be chosen so that high data availability can be

provided for both types of operations.

Weighted voting is not as powerful as the general quorum consensus method. In [GB85],
it was demonstrated that there exist quorum sets that cannot be defined using voting. For
instance, it is shown in [GB85] that the quorum set @) = {{A4,B}, {A,C,D}, {A,C,E},
{A,D.F}, {AE,F}, {B,C,F}, {B,D,F}} cannot be defined by any vote assignment.

5.2 Multi-Dimensional Voting

The multi-dimensional voting (MD-voting) technique, presented in [AAC91], can be used
to represent all quorum sets. In MD-voting, the vote value v; assigned to a node and
the quorum are wvectors of non-negative integers. The number of dimensions is denoted by
k and the votes assigned in the various dimensions are independent of each other. The
quorum assignment ¢, is a k-dimensional vector (¢1,92,...,qx) where ¢; is the quorum
requirement in dimension j, for j = 1,2,..., k. The vote vectors are added per dimension
and compared to the quorum in the corresponding dimension. In addition, a number £,
1 < ¢ < Ek, is defined which is the number of dimensions of vote assignments for which
the quorum must be satisfied. We denote MD-voting with quorum requirement in ¢ of &
dimensions as MD({, k)-voting and the term SD-voting (single dimensional voting) refers to
the standard weighted voting method described in [Gif79]. In fact, MD(1,1)-voting is the

same as SD-voting.

12



An MD(/, k) vote and quorum assignment defines a unique quorum set in a similar
manner as standard voting. A group of nodes G is a quorum group in MD({, k)-voting if the
total votes of the nodes in G collectively satisfy quorum requirements in at least £ dimensions
and removing any node from G results in a group that satisfies quorum requirements in
strictly less than £ dimensions. The same quorum set can be defined by different vote and
quorum assignment with possibly different & and ¢. The non-vote assignable quorum set
() given previously can can be defined by MD(1,4)-voting using the MD vote and quorum

assignments given in Figure 7.

and q=

N N O N
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Il
N D = O
=
=
S NN = O
[ ) L I ) §

o O =W

Figure 7: An MD(1,4)-vote and quorum assignment for @) = {{4,B}, {4,C,D}, {A,C,E},
{A7D7F}7 {A7E7F}7 {B7C7F}7 {B7‘D7E}}'

5.3 Performance Issues

The main drawback of quorum consensus schemes is the relatively high overhead incurred
in the execution of the read operations. Reading requires participation of nodes in a read
quorum group which usually consists of more than one node. In contrast, reading using the
primary copy method requires access only to one replica. This is also the case in the available
copies method that will be discussed in the next section. Using quorum consensus, read and
write operations can only succeed when a sufficiently large number of replicas are available.
In contrast, the primary copies method may be able to operate as long as one replica is
available for updating. To achieve the same level of data availability, the system must use
a higher degree of replication in quorum consensus methods. A major benefit of quorum
consensus based schemes is that arbitrary communication link failures including those that
partition the network require no special attention. In case of network partitioning, write
operations can be processed by at most one partition. In contrast, the primary copy scheme

relies on the majority quorum consensus method for determining if a primary copy can be
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established.

The system behavior depends on the pair of read and write quorum sets used. For
instance, a system using the read one/write all quorum will have good performance for read
operations but write operations will incur high cost and experience low data availability. At
the other end of the spectrum, using the read majority/write majority quorum will provide
high data availability for both types of operations but also incur a high cost of reading.
The optimum read and write quorum setting depends on the mix of transactions and the
performance measure in question. It was found in [AA89] that when the read one/write all
quorum is used, data availability will decrease after a certain level of replication. This is due
to the fact that write operations must update all replicas and the likelihood of the successful
completion of a write operation decreases when the number of replicas is increased. This is
not the case with the read majority /write majority quorum because data availability always

increases for both read and write operations when the degree of replication is increased.

Determining the best read and write quorum set pair or vote and quorum assignment
for a given performance measure is difficult due to the complex relation between system
behavior and the quorum sets. However, when the quorum sets are fixed, the performance
can be easily determined through analytical methods or simulation techniques. The best
quorum set pair can be found through a search in the complete set of all quorum sets. In
[GB85], an enumeration method is presented that generates a subset of the quorum sets
used for synchronizing operations that require mutual exclusion. Each group of the quorum
set must intersect with every group in the set to guarantee mutual exclusion and such sets
are called coteries. In [CAAS89], an enumeration algorithm was presented to obtain all read

and write quorum sets that are defined by SD-voting.

6 Available Copies

6.1 The Basic Method

The easiest way to handle node failures is to ignore them. In the basic available copies
method, updates are applied to replicas at nodes that are operational and a read operation

can use any available replica. It was shown in [BHG87] that this basic method does not
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guarantee data consistency. Consider a system that replicates the value of z at node A
and B, and y at nodes C' and D. A transaction 77 first reads  and then writes y and a
transaction T, first reads y and then writes z. Figure 8 shows a sequence of events that
will cause data inconsistency. Transaction 77 and 75 read z at node A and y at node D,
respectively. After the read operations are completed the nodes A and D fail. Then T} and
T5 proceed to update all available copies of y and =z, respectively. Since nodes A and D
have failed, 77 and T3 will only update the copies at nodes B and C'. Neither transaction is
aware of the read operation of the other and the execution will lead to data inconsistency.

The result is not a one-copy serializable execution.
X X y y
JojoRNoNo

Tl : R(X) T2 : R(y)
failed failed

L RoRoK ;
gL ROVORL

TP W) Ty: W)

Figure 8: An incorrect execution using a naive read one/write all available copies protocol

This problem is caused by the failures of nodes A and D where transactions 73 and
Ty have read the values of z and y, respectively. If nodes A and D had not failed, both
transactions Ty and T3 would not be able to update y and x, respectively (read locks are
placed on behalf of the transactions when they read data at a node). Due to node failures,
transactions 77 and Ty can no longer synchronize themselves because their read locks are

lost.

The correct available copies scheme [BHG87] operates as follows. Read operations can

be directed to any node holding the latest value of the data and write operations will

15



only succeed if at least one replica records the update. A transaction can only terminate
successfully when it is able to execute the following validation process which consists of two

steps:

1. missing writes validation: the transaction makes sure that all replicas that did not

receive its updates are still unavailable.

2. access validation: the transaction makes sure that all replicas that it read from and

wrote to are still available.

6.2 The Directory-Oriented Available Copies Method

The simple available copies scheme does not allow dynamic assignment of replicas to nodes
and requires that transactions attempt to update replicas at all nodes (even when some
nodes have failed). The directory-oriented available copies method [BHG87] uses directory
information to direct operations to only replicas on nodes that are believed to be operational.

This scheme can also be used to dynamically add and remove replicas.

For each data item , there is a directory listing d(«) of the nodes that have replicas.
The directory d(x) can itself be replicated and stored at different nodes. The directory for
z at node U, dy(x), also contains a list of directory copies for & that node U believes are

available. Directories are updated by two special transactions:

¢ Include(z 4 ), for creating a new replica of z at node A, and

o Exclude(z 4), for destroying the replica at A.

To process a read operation of z, the system first reads a copy of the directory, say
dy(z) and uses the information to find an available copy. A write operation must update
all replicas that are listed in the directory entry. Due to node failures, some copies may not
be available for updating and the transaction is aborted. The system then runs an Exclude

transaction to update the directories and the transaction is restarted.
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6.3 Performance Issues

An attractive feature of the available copies method is the fact that read operations only
need to access one copy of the data. Also, the available copies method provides very high
data availability. Both read and write operations can be performed as long as there is one
operational node with a replica. However, the available copies scheme is not tolerant to
network partition failures. When the network can partition, the available copies method
presented above will fail to preserve data consistency. For example, when the system in
Figure 8 is separated in the way given in Figure 9, transactions that read and write 2 and
y in the two partitions will not be able to synchronize with each other. To handle network
partitions the available copies method must be extended to ensure that write operations

can be executed only in one partition.

Figure 9: A partitioned network.

7 Extensions and Hybrid Schemes

The basic replica control protocols reviewed in the previous sections can be extended with
additional provisions to further enhance the data availability provided by them or to improve
other performance measures. Similarly, two of the basic schemes can be combined to exploit
the advantages of both. In particular, the weighted voting method has proven to be very
robust and versatile, and many dynamic voting methods have been derived [Her87, ETS86,
JM90]. The voting method is also used to augment the available copies scheme to achieve

the capability to tolerate network failures. In this section, we review selected protocols.
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7.1 Dynamic Quorum Adjustment

Dynamic methods can enhance performance by adjusting the rules of a replica control
protocol according to the current state of the system. In systems where read operations are
predominant, the dynamic quorum adjustment method [Her87] can improve performance
by allowing the system to operate with a read quorum set consisting of groups with a
small number of nodes. The corresponding write quorum set will have large groups and
write operations can complete only when a large number of nodes are operational. Due to
failures, a transaction may not be able find a write quorum and the protocol can switch to
another, more favorable, pair of read and write quorum sets. The new write quorum set will
have smaller groups but the groups in the corresponding read quorum set are larger. This
technique is called quorum inflation. A complementary technique called quorum deflation,
is used to reduce the size of read quorum groups when nodes recover. Hence, the size of
read and write quorum groups increases and decreases, respectively, when the number of

failures increases.

Let (B = {{A}, (B}, {C}), Wi = {({A.B.CY}) and (Rs = {{A, B}, {A,C}, {B,C}).
Wy = {{A, B}, {4,C}, {B,C}}) be two pairs of read and write quorum sets. Notice
that a group in W5 is a subset of a group in Wjy. Thus, a group of nodes that constitute
a write quorum group in Wi is also a write quorum group in Wy and therefore W5 is a
more favorable quorum set for writing. Correspondingly, the read quorum set Ry will be
less favorable for reading because it will contain larger quorum groups than R;. If one of
the nodes fails (making the data unavailable for writing using Wj), the quorum inflation
technique, which increases the size of read quorum groups while decreasing the size of write
groups, is used to switch the system from the quorum set (Rq, W1) to (R2, W3) in case of a

failure.

In the dynamic quorum adjustment method, the system can operate at a number of
levels and each level has associated read and write quorum sets (in the above example, two
levels are shown). Transactions are also assigned a level number and the ones operating at
the same level synchronize with each other using the read and write quorum sets defined
for the level. Transactions operating at different levels are synchronized by additional
read/write rules that ensure lower level transactions are completed before higher level ones.

A transaction restarts by choosing a higher level number.
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7.2  Virtual Partition

The dynamic scheme presented in [ET86] allows a node to make use of its view about the
state of the system (information about operational nodes) and adjust the replica control
protocol accordingly. The view maintained by each node ¢ is a set that contains nodes with
which 7 can communicate. The view need not accurately reflect connectivity of the nodes.
Each view is associated with a unique view identifier and two nodes are in the same view
if they have the same view identifier. Provisions are made to allow nodes to change their

views according to changes in the system.

Each replica of a data item z is assigned one vote and read and write accessibility
thresholds r[z] and w[z] are defined. The data item z is read and write accessible by nodes
in a view only if r[z] and w[z] votes, respectively, are available at nodes in the same view.

The accessibility thresholds r[z] and w[z] satisfy the following relations:

where N[z] is the total number of replicas of # in the system. These requirements are
similar to those used in the basic quorum consensus protocol to ensure intersection of a
read and a write quorum group, and two write quorum groups. However, r[z] and w[xz] are

not the read and write quorums.

When a view v is established, the nodes in the view determine if the data is read and
write accessible. In the case that the data is accessible, a read and a write quorum r,[x]
and w,[z] are chosen which may be different from r[z] and [w[z]. The quorums r,[z] and

wy[x] must satisfy the following constraints:

rola] + wylz] > N[z

wy[x]

These constraints ensure that a write quorum group in a view v intersects with:

o All read quorum groups in the same view, thus read operations will be able to deter-

mine the current value.
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o All write quorum groups intersect with each other, thus write operations cannot exe-

cute concurrently in two different views.

r(x] =3, wix] =3

ry[Xl =1, w,J[x] =5

)
)
()
)
()

Figure 10: Virtual partition scheme: no failures operation.

For example, consider a five node system using r[z] = 3 and w[z] = 3. Figure 10 shows
the system in the no failures state where all nodes have the same view v, and the read and
write quorums are 7,[z] = 1 and w,[z] = 5 to provide high performance for read operations.
Alternately, the system can also use the quorum assignments (r,[z] = 2, w,[z] = 4) or
(rplz] = 3, wy[z] = 3) in view v. Suppose nodes D and F are separated from the other
nodes as shown in Figure 11, the nodes A, B and ' will change their views to v’. The
data is read and write accessible in the {A,B,C'} partition and in this case, the only read
and write quorum assignment allowed are rp[z] = 3 and wy[z] = 3. Thus, in a failure
state, the system has fewer choices for quorum settings. The use of quorum assignment in
conjunction with accessibility thresholds allows the system to use a favorable pair of read
and write quorum sets when it is in a no failure state to improve performance. In failure
states, the system can switch to use other, less favorable, quorum assignments and the data

remains available.

r[x] =3,w[x] =3
ry[X] =3, wy[x] =3 X inaccessible

=
®
©
=
“

Figure 11: Virtual partition scheme: failure operation.
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7.3 Dynamic voting

The basic dynamic voting method [JM90] assigns one vote to each replica and maintains in
addition to a version number, the update node cardinality U which is number of replicas
updated by the last transaction that updated the data item. The version number is used
to determine both the current value and the update node cardinality. Reading and writing
use the majority quorum with respect to the current update cardinality, and an update
is performed on replicas at all operational nodes. The operation of the dynamic voting
method is best illustrated by an example. Consider the system in Figure 12 where the data
item z is replicated at five nodes. Initially, all nodes contain the same information. The
version number v#, update node cardinality U and the value of z are equal to 1, 5 and 4,
respectively.

vi=1 vi=1 vi=1 V=1 vi=1

u=5 u=5 u=5 u=5 u=5
x=4 x=4 x=4 x=4 x=4

Figure 12: Dynamic voting: no failures operation.

A transaction T that wants to access the data item z first determines that the last
update operation has written to 5 replicas and that the current version number is 1. If T
can obtain permission from 3 (a majority of 5) nodes with replicas that contain the current

version number 1, it is allowed to proceed. Otherwise, 77 must wait or abort.

Assume nodes D and F fail and a transaction 75 wants to increment = by one. Ty will
also determine from information at nodes A, B and C that U = 5 and v# = 1. Since the
group {A,B,C'} is a majority group with respect to the current update cardinality U, T5
can access the data 2 = 4, add one to & and update the replicas at node A, B and . The
resulting state is given in Figure 13 and notice that the update node cardinality recorded

18 3.

Suppose node A also fails and another transaction T5 wants to increment x by one. T3
now determines that v# = 2, U = 3 and « = 5. Since the current update node cardinality
U = 3, the group of operational nodes {B, C'} is a valid majority quorum. Notice that

{B, C'} is not a majority group in the initial state where the update node cardinality is 5.
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V=2 V=2 V=2 vi=1 vi=1

U=3 u=3 u=3 u=5 u=5
x=5 x=5 x=5 x=4 x=4

Figure 13: Dynamic voting: failure operation.

Transaction T5 can also be allowed to access & and record the updates at nodes B and C.

The update node cardinality is now equal to 2 and the resulting state is given in Figure 14.

ViH=2 ViH=3 ViH=3 Vit=1 Vi=1

uU=3 U=2 U=2 U=5 U=5
x=5 x=6 x=6 x=4 x=4

Figure 14: Dynamic voting: failure operation, continued.

The dynamic voting method can thus allow the system to adapt its quorum requirement
to changes in the system state. Notice that in Figure 14, a minority of the replicas contain
the most recent value. It is thus possible that a majority of the replicas are operational
and none of which are holding the current value. For example, if nodes B and C fail, and
node A, D and F recover simultaneously, we will have the state given in Figure 15 where a
majority of the nodes with replicas are operational but none of which has the current value
of 2. The dynamic voting protocol will disallow access to out of date value. A transaction
T4 that wants to access @ will that v# = 2 and U = 3, but only one node (namely A) has
the most recent value. Nodes D and F which have out of date version numbers cannot be
included in the quorum. 74 will not be able to obtain a valid quorum and must wait or
abort.

V=2 V=3 V=3 vi=1 vi=1

U=3 U=2 U=2 U=5 U=5
x=5 x=6 x=6 x=4 x=4

Figure 15: Dynamic voting: failure operation, continued.

The hybrid dynamic voting [JM90] method operates in a similar manner as the basic
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dynamic voting scheme. It uses the basic dynamic voting method when the update node
cardinality is at least three nodes. When less than three nodes with replicas are operational,
the hybrid scheme will use the static majority voting as the replica control method. It was
shown in [JM90] that the hybrid scheme provides better data availability than the basic

dynamic voting protocol.

7.4 Voting with witnesses

The replicas in the basic weighted voting scheme store a version number and the value of
the data item. The voting with witnesses method [Par86] replaces some of the replicas by
witnesses, which are copies that only contain the version number but no data. The witnesses
are assigned votes and will cast them when they receive voting requests from transactions.
They provide the transactions with their version numbers which are used to identify the
current value of the data item. Although the witnesses do not maintain data, they can
testify about the validity of the value provided by some other replica. Due to the fact that
witnesses do not contain the data item itself, the read and write operations on witnesses

are implemented as follows:

e When a witness is a member of a read quorum, it provides the requester with its

version number. It cannot provide the value of the data item.

e In the case that a witness is a member a write quorum, it records the version number

provided in the write request. The value of the data is ignored.

Consider a system in Figure 16 with two full replicas of z and one witness where initially
all version numbers are one and ¢ = 4. The state of a full replica and a witness can be
represented by the tuple (version number, value) and (version number, —), respectively.
The state of the system in Figure 16 can be represented by the triplet of tuples ((1,4), (1,4),
(1, —)) where the first, second and third tuples represent the state of the item stored at
nodes A, B and C, respectively. A replica and witness are assigned one vote each and the
replica control method used is read majority /write majority. Thus, a majority can be two

full replicas, or one full replica and one witness.

If a transaction T updates z = 5 using the replica at node B and the witness at node '

as the write quorum group, the state of the system becomes ((1,4), (2,5), (2, —)). Notice
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T: Write(x = 5)

Figure 16: Voting with witnesses using two full replicas and one witness.

that the value is not stored at C' but its version number reflects the fact that the replica
at node A does not contain the current value. When a read operation uses nodes A and C
as quorum group, the version number returned by the witness will testify that the value at
node A is out of date. It is thus possible for a read operation to obtain permission from a
read quorum group and not find the current value of the data. An analysis in [Par86] showed
that the data availability in a system with two full replicas and one witness is slightly lower
than a system with three full replicas. The voting with witnesses scheme can effectively

raise the data availability without having to replicate the data item.

7.5 Voting with Ghosts

A system that uses the voting with ghosts method [vRT87] is assumed to consist of a number
of network segments and the nodes located in the same segment cannot be separated from
one another. A network segment can fail and the nodes in that segment will not be able
to communicate. This model can be used to represent the operation of Ethernet segments
interconnected through gateways where gateway failures can partition the network but

nodes on the same segment can communicate as long as the segment is operational.

The voting with ghosts protocol uses weighted voting as its basic replica control scheme
and extends it with the notion of ghosts to increase the availability of write operations. A
ghost is a process without any storage space and its task is to testify to the fact that a

node with a replica has failed. The ghost for a failed node holding a replica is started on
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the same segment of the network where the failed node is located. Hence, when a ghost
responds to a request, a transaction can safely assume that the network is not partitioned

and the node with the replica has failed.

Like a witness in [Par86], a ghost is assigned votes and it is equal to the number that
was given to the replica at the failed node. Unlike a witness, a ghost does not participate
in a read quorum. This difference is caused by the fact that a ghost does not maintain any
information on the data item while a witness can know the latest version number. A ghost
can be a member of a write quorum group and like a witness, it will ignore the value in the
write operation. Furthermore, the version number in the write operation will be ignored as

well. The ghost will only return its vote in response to a write request.

failed /\
X i F X % X % ghost process
gateway

Figure 17: Voting with ghosts.

Consider a system with N replicas of a data item z where all replicas are assigned one
vote each. Assume the read quorum is one, then the corresponding write quorum must be
N and a failure of any node with a replica will make the system unavailable for writing
using the basic voting scheme. In voting with ghosts, the failure of a node with a replica
will trigger the creation of a ghost process and it will reply on behalf of the failed node.
The ghost will not respond to read requests so that a read operation will only be processed
by a node holding a replica of . When a write request is sent to all node with replicas, the
ghost will respond on behalf of the failed node and the transaction will be able to obtain a
write quorum and complete the write operation. Note that all available replicas are part of
a write quorum and will be updated. When a node recovers from failure, it must obtain the
latest value of the data before it can participate in a read quorum. Thus, a subsequent read
operation will obtain the current value. In fact, the voting with ghosts protocol using the
read one/write all quorum assignment, and the basic available copies method operate in a
similar manner when the network cannot partition. Both methods will read from one replica

and update all available replicas. But the voting with ghosts method is not restricted to
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the use of the read one/write all assignment and can use an arbitrary vote and/or quorum

assignment.

7.6 Regeneration

The regeneration scheme [PNP88] attempts to maintain exactly N available replicas at all
times. The scheme was implemented in the Eden distributed system at the University of
Washington. When a node storing a replica fails, the system will try to boost the availability
of the data by regenerating a new replica on another operational node. Directories that
store the location of the replicas are modified accordingly to direct transactions to read and
write the newly generated copies. The replicas stored at failed nodes will not be accessible
through directories and effectively become garbage when the nodes recover from failures. A

garbage collection subsystem is used to reclaim the space occupied by such replicas.

The basic regeneration scheme is read one/write N. Read operations will succeed as
long as there is at least one available replica. Write operations only succeed if N replicas
can be written. When there are fewer than NV replicas available for update, the system will
regenerate a number of replicas to supplement to a total of N replicas. Write operations
will fail if the system cannot regenerate replicas (due to shortage of disk space). The basic
regeneration method is similar to the directory-oriented available copies method but uses
a policy to include additional replicas when the system detects that fewer than N replicas

are available.

An extension to the basic regeneration scheme is to use the available copies scheme when
the system has exhausted the disk space for regenerating replicas. Aslong as the system has
space available, write operations will update exactly IV replicas. In the event that no more
space is available, write operations will only update the available copies. Read operations

will access one replica in either cases.

8 Future Directions

High speed networking and the falling costs of hardware will make it possible to share

resources in distributed systems that span hundreds or thousands of nodes. Although the

26



reliability of the nodes and network components may be high in these systems, the need for
data replication will still exist to ensure that data can be found locally or close to the nodes
where requests for it are made so network latency costs can be avoided. Many of the replica
control protocols presented in this paper have not been evaluated for such environments
and it may be that they do not perform well. The following are some of the issues that
must be addressed in the design and evaluation of replica control protocols suitable for large

distributed systems.

¢ The major goal of many of the replica control protocols has been to maximize the
availability of data. However, when nodes are highly reliable, a very high level of data
availability can be achieved with a small degree of replication [AA89]. Clearly, the
small number of nodes that store replicas can become bottlenecks in a large distributed
system. Thus, a high degree of replication may be desirable to ensure that a replica
can be found close to the node where a request arrives and also the load generated by
the requests is shared between a large number of nodes. More work needs to be done
to develop replica control protocols that exploit the load sharing benefits of replicated

data.

¢ The communication and processing overhead of replica control protocols is high be-
cause they ensure single-copy serializability. Although this type of correctness may be
necessary in some applications, there exist many application domains where a weaker
correctness condition is acceptable. An example of such a domain may be file systems
where users can tolerate occasional inconsistencies to get high data availability at low
cost. It is necessary to develop precise characterizations of weaker consistency of data

and exploit the weakening in developing efficient replica control protocols.

e There is strong evidence that the network environment has a considerable impact on
the effective use of replication. An understanding of the interaction of replication and
the networking environment remains to be achieved. For example, a replica control
protocol based on voting can use broadcast or multicast communication to reach the
nodes that have been assigned votes. Such protocols may not be suitable in networks
where broadcast or multicast communication is expensive or not feasible. It may be
possible to attain better performance by using a replica control protocol that exploits

the mechanisms of the underlying network. It may also be that replication can be
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used to overcome the effect of poor quality communication links.

¢ The performance of a large number of protocols has been studied either analytically or
using simulation studies. Unfortunately, there are few actual implementations of these
protocols in real systems. It is necessary to build these protocols and experimentally
evaluate their performance for realistic application domains. Perhaps the lack of
experimental research is the reason for the limited impact that data replication has

had in the design and implementation of distributed systems.

Data replication in distributed systems is still an active research area and many of the
above issues should be resolved in the coming years. The results of this research and the
results that exist today hold the promise for exploiting the potential of distributed systems
in building highly available and powerful systems.
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