
Your Storage is
Broken

Lessons from Studying  
Databases and Key-Value Stores

Remzi H. Arpaci-Dusseau
Andrea C. Arpaci-Dusseau

Many Students
University of Wisconsin-Madison

Major Problem for
a Storage System:
Complexity

Complexity is Everything

Internal complexity:  
Each system alone is complex
• Local file system has ~100k LOC
• Similar complexity in distributed FS, firmware, etc.
• What does system actually do?

Cross-system Complexity:  
Connecting large systems multiplies complexity
• Deceptive APIs, hard-to-verify guarantees

An Example

Goal:
Update a Local File  

(and tolerate crashes)

Should be simple, right?

Application on
Local File System

Initial state of file /f:
/f -> “a bar”

Application on
Local File System

Initial state of file /f:
/f -> “a bar” (pretend each char is block)

Application on
Local File System

Initial state of file /f:
/f -> “a bar”

Protocol:
pwrite(file=/f, offset=2, data=“foo”)

(pretend each char is block)

Application on
Local File System

Initial state of file /f:
/f -> “a bar”

Protocol:
pwrite(file=/f, offset=2, data=“foo”)

Final state of file:
/f -> “a foo”

(pretend each char is block)

What Is Atomic?

But pwrite() isn’t atomic!
• Many intermediate states are possible

“a boo”
“a far”
“a for”
“a bor”
etc.

Use Logging!

Application protocol
• Create log file
• Make copy of old data in log
• Modify file with new data
• Delete log file

If crash occurs, recover old data from log

Update Protocol #2

create(/log)
write(/log, “2,3,bar”)

pwrite(/f, 2, “foo”)

unlink(/log)

Works on Linux ext3 (journal=data)

Update Protocol #2

create(/log)
write(/log, “2,3,bar”)

pwrite(/f, 2, “foo”)

unlink(/log)

Works on Linux ext3 (journal=data)
Doesn’t work in ext3 (journal=ordered)

Why?  
Writes may

be reordered!

Update Protocol #3

create(/log)
write(/log, “2,3,bar”)
fsync(/log)
pwrite(/f, 2, “foo”)
fsync(/f)
unlink(/log)

Works in ext3 (data, ordered)
Doesn’t work in ext3 (writeback)!

Why?  
inode+data write
are not atomic

(may find garbage
at end of log)

Update Protocol #4

create(/log)
write(/log, “2,3,checksum,bar”)
fsync(/log)
pwrite(/f, 2, “foo”)
fsync(/f)
unlink(/log)

Works in ext3 (data, ordered, writeback)!

Update Protocol #4

create(/log)
write(/log, “2,3,checksum,bar”)
fsync(/log)
pwrite(/f, 2, “foo”)
fsync(/f)
unlink(/log)

Works in ext3 (data, ordered, writeback)!
Well, except dir fsync() is missing …

Why?  
directory entry
for /log not 
made durable

Update Protocol #5

create(/log)
write(/log, “2,3,checksum,bar”)
fsync(/log)
fsync(/)
pwrite(/f, 2, “foo”)
fsync(/f)
unlink(/log)

Update Protocol #5
create(/log)
write(/log, “2,3,checksum,bar”)
fsync(/log)
fsync(/)
pwrite(/f, 2, “foo”)
fsync(/f)
unlink(/log)

Each file system may be different;
Each application protocol is interesting

This Talk

Tool 1: BOB to study of FS persistence properties
• Automated tool to determine properties
• Surprise: File systems vary widely 

Tool 2: ALICE to study application update protocols
• Automated tool to find crash vulnerabilities
• Surprise: Even battle-tested apps are buggy
  

Systems #1: Optimistic File System (OptFS)
• Achieves performance and correctness for many apps
 

Concluding thoughts and “one more thing”

File System
Persistence Properties

Background: File Systems

The File System API: Simple, right?
• Just open(), read(), write(), close(), etc. ?

But, there are some subtleties

Examples
• Does rename() complete in all-or-none fashion?
• Does write(A) reach disk before write(B)?
• How to ensure newly-created file is persisted?

Persistence Properties

Persistence properties of a file system:  
Which post-crash on-disk states are possible?

Assertion:
• Different file systems have different properties 

(making life difficult for layer above)

Two Broad Properties

Atomicity
• Does update happen all at once, or in pieces?
• Example: write(block), rename(), etc.  

Ordering
• Does A before B in program order imply  

A before B in persisted order?
• e.g., write(), write() ordering maintained?

Block Order Breaker (BOB)
How to discover properties of file system?

New tool: Block Order Breaker (BOB)
• Run workloads: Input for file system
• Trace block I/O: Monitor writes to disk
• Emulate thousands of possible

crashes: Create possible on-disk states by
applying subsets/reordering of I/Os to file-
system image

• Determine outcomes: Examine image after
FS recovery; find where properties don’t hold

Disk

FS

App

BOB Results

All file system operations grouped into …
• File overwrite
• File append
• Directory operations (rename, create, link, etc.)

Vary size of operations where needed
• Single sector
• Single block
• Multiple blocks

Results
ext2 ext2 

sync
ext3
wb

ext3
ord

ext3
data

ext4
wb

ext4
ord

ext4
nda

ext4
data btrfs xfs xfs

ws

1-sector overwrite
1-sector append X X X
1-block overwrite X X X X X X X X X
1-block append X X X X

N-block write/append X X X X X X X X X X X X
N-block prefix append X X X X

Directory operation X X

Overwrite - Any X X X X X X X X
[Append, rename] - Any X X X
O_TRUNC append - Any X X X

Append - Append X X X
Append - Any op (samefile) X X X X X X

Dir op - Any op X X

A
to

m
ic

it
y

O
rd

er
in

g

Results
ext2 ext2 

sync
ext3
wb

ext3
ord

ext3
data

ext4
wb

ext4
ord

ext4
nda

ext4
data btrfs xfs xfs

ws

1-sector overwrite
1-sector append X X X
1-block overwrite X X X X X X X X X
1-block append X X X X

N-block write/append X X X X X X X X X X X X
N-block prefix append X X X X

Directory operation X X

Overwrite - Any X X X X X X X X
[Append, rename] - Any X X X
O_TRUNC append - Any X X X

Append - Append X X X
Append - Any op (samefile) X X X X X X

Dir op - Any op X X

A
to

m
ic

it
y

O
rd

er
in

g

Results
ext2 ext2 

sync
ext3
wb

ext3
ord

ext3
data

ext4
wb

ext4
ord

ext4
nda

ext4
data btrfs xfs xfs

ws

1-sector overwrite
1-sector append X X X
1-block overwrite X X X X X X X X X
1-block append X X X X

N-block write/append X X X X X X X X X X X X
N-block prefix append X X X X

Directory operation X X

Overwrite - Any X X X X X X X X
[Append, rename] - Any X X X
O_TRUNC append - Any X X X

Append - Append X X X
Append - Any op (samefile) X X X X X X

Dir op - Any op X X

A
to

m
ic

it
y

O
rd

er
in

g

Results
ext2 ext2 

sync
ext3
wb

ext3
ord

ext3
data

ext4
wb

ext4
ord

ext4
nda

ext4
data btrfs xfs xfs

ws

1-sector overwrite
1-sector append X X X
1-block overwrite X X X X X X X X X
1-block append X X X X

N-block write/append X X X X X X X X X X X X
N-block prefix append X X X X

Directory operation X X

Overwrite - Any X X X X X X X X
[Append, rename] - Any X X X
O_TRUNC append - Any X X X

Append - Append X X X
Append - Any op (samefile) X X X X X X

Dir op - Any op X X

A
to

m
ic

it
y

O
rd

er
in

g

Results
ext2 ext2 

sync
ext3
wb

ext3
ord

ext3
data

ext4
wb

ext4
ord

ext4
nda

ext4
data btrfs xfs xfs

ws

1-sector overwrite
1-sector append X X X
1-block overwrite X X X X X X X X X
1-block append X X X X

N-block write/append X X X X X X X X X X X X
N-block prefix append X X X X

Directory operation X X

Overwrite - Any X X X X X X X X
[Append, rename] - Any X X X
O_TRUNC append - Any X X X

Append - Append X X X
Append - Any op (samefile) X X X X X X

Dir op - Any op X X

A
to

m
ic

it
y

O
rd

er
in

g

Results
ext2 ext2 

sync
ext3
wb

ext3
ord

ext3
data

ext4
wb

ext4
ord

ext4
nda

ext4
data btrfs xfs xfs

ws

1-sector overwrite
1-sector append X X X
1-block overwrite X X X X X X X X X
1-block append X X X X

N-block write/append X X X X X X X X X X X X
N-block prefix append X X X X

Directory operation X X

Overwrite - Any X X X X X X X X
[Append, rename] - Any X X X
O_TRUNC append - Any X X X

Append - Append X X X
Append - Any op (samefile) X X X X X X

Dir op - Any op X X

A
to

m
ic

it
y

O
rd

er
in

g

BOB Summary
Persistence properties vary widely
• Different file system means different behavior
• How to write portable, correct applications?
 
Can sometimes rely on atomicity, order
• But have to be careful

BOB is a first step towards understanding

Question: What does it mean for applications?

Application
Crash Vulnerabilities

ALICE Goals

Each application has an update protocol:
the series of system calls it invokes to  
update persistent file-system state

Goals
• Determine update protocol
• Given persistence properties of file system,  

determine correctness of update protocol

Example

// a data logging protocol from BDB
creat(log)
trunc(log)
append(log)

What’s missing?
• Truncate must be atomic
• Need fdatasync() at end 

Can we discover these things automatically?

Application-Level
Crash Explorer (ALICE)

How ALICE works
• Run workload
• Obtain system-call trace
• Transform into micro-operations 

(i.e., minimal atomic updates of file system state)
• Emulate thousands of crashes: 

Apply persistence model (how FS behaves)  
to determine possible post-crash states

• Run workload checker to determine if data
store is consistent and has correct contents

Disk

FS

App

From syscalls to μops

System calls: Large variety
• write(), pwrite(), writev(), pwritev(), mmap’d writes
• Also: creat(), link(), unlink(), rename(), etc.

Map into simple set of micro-operations:
• write-block atomic write of given size
• change-file-size atomic inc/dec of file size
• create-dentry atomic creation of dir entry
• delete-dentry atomic deletion of dir entry

Persistence Model
Persistence model
• Determines how file system restricts 

atomicity and ordering of operations
• Example (atomicity):  

Write(4KB) turns into 8 512-byte atomic writes;
emulate all possible crashed states

Focus: Minimal abstract file system
• Provides weakest file-system guarantees possible
• Uncover application correctness issues

Also can model other modern file systems
• ext3, ext4, btrfs, etc.

Workload Checker
After generating post-crash states,
must determine if something “bad” happened

Workload checker serves this role

One needed per application
• Must run app-specific recovery
• Must determine health of app data store

Can be somewhat complex:  
100s of lines of code per application

Applications
KV Stores
• LevelDB, GDBM, LMDB  

Relational DBs
• SQLite, PostgresQL, HSQLDB  

Version Control Systems
• Git, Mercurial  

Distributed Systems
• HDFS, ZooKeeper  

Virtualization Software
• VMWare Player

ALICE: Results

Protocol Diagrams
Output of ALICE: Protocol Diagrams

Blue:
sync() operation

[Red brackets]
Required atomicity

}

Arrows:
Required ordering

Atomicity Ordering Durability
LevelDB 1.1 1 4 3
LevelDB 1.15 1 3

LMDB 1
GDBM 1 2 2

HSQLDB 1 6 3
SQLite 1

PostgreSQL 1
Git 1 7 1

Mercurial 5 6 2
VMWare 1
HDFS 2

ZooKeeper 1 1 2

Vulnerabilities Found

Some Highlights

Examples
• Surprising reliance on atomicity across sys calls
• Many cases where ordering assumed
• Append atomicity needed (garbage not tolerated)
• Small-write atomicity sometimes needed
• fsync() assumed to create file name durably

Some serious consequences too
• Data loss and silent corruption in worst cases
• “Cannot open database” in others

Reaction from Devs

Us: There seems to be a bug in your app

From academics:
“In my class, students who allow garbage to
reside in a file will receive a failing grade.”

Us: There seems to be a bug in your app
Developer: That’s not POSIX!

Us: Some applications assume garbage can never end
up in the end of a file after append; we show it can,
given modern file systems.
Professor: In my class, students who allow garbage
to reside in a file will receive a failing grade.

Reaction

On Real File Systems?
Results: On abstract minimal FS
• Similar to ext2 (few guarantees)
• ~60 vulnerabilities found across all apps

How do applications do on real file systems?

Vulnerabilities
ext3 (writeback) 19
ext3 (ordered) 11
ext3 (data) 9
ext4 (ordered) 13
btrfs 31

ALICE Summary
Correctness issues found in all applications
• Some more problematic than others

All types of issues found
• Atomicity, ordering, and durability problems
• Many vulnerabilities manifest on current FSes

Beyond this work
• ALICE for distributed systems: PACE
• Crash behavior of scalable distributed  

file systems, key-value stores, and databases

Part 2: Build
Performance AND Correctness

Ordering Required

File Systems need to order writes
• Journaling (ext3, ext4, XFS, NTFS)
• Copy-on-write (ZFS, btrfs, WAFL)
• Soft updates (BSD)

Applications need to order writes too
• Using fsync()

How To Order Writes
Within File System?

Modern devices (e.g., disks) have caches

Writes generally issued asynchronously
• Persistence order ≠ issue order

Use cache-flush command to ensure ordering
• To guarantee blkwrite(A) before blkwrite(B), issue

blkwrite(A), flush, blkwrite(B)

How To Order Writes
Within Application?

As seen, ordering required by many  
application-level update protocols

Use fsync() to ensure ordering
• To guarantee write(A) before write(B),
 issue write(A), fsync(), write(B)

The Problem

File systems conflate ordering and durability
• Internal to file system with cache flush
• External to applications with fsync()

Systems and applications are either…
• Too slow: Call fsync() or flush too often
• Incorrect: Don’t call fsync() or flush enough

Optimistic File System

OptFS separates ordering and durability
• Internally: Avoids cache flushes in journaling protocol
• Externally: Provides osync() to applications 

(avoid force-to-disk to guarantee ordering)

Both file system and applications benefit
• Higher performance (~10x)
• Delivers prefix consistency: 

older (but consistent) data available after crash

Details: How
Journaling Works

Example: File Append

Workload:
Application appends block to single file

Must update file-system structures atomically
• Bitmap Mark new block as allocated
• Inode Point to new block
• Data block Contain data of append

inode bit  
map

dataT
b

T
e

Ordered Journaling
Protocol: Write...

• Data

Jo
ur

na
l (

Lo
g)

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit  
map

dataT
b

T
e

Memory

Disk

inode bit  
map• Transaction Begin + Metadata

• Transaction Commit

• Checkpoint inode, bitmap

Ordering Required

Data
TxBegin  
Contents TxEnd Checkpt

Ordering (Precise)

Data

TxBegin  
Contents

TxEnd Checkpt

Ensuring Correctness

As stated before, cache flushes used to 
ensure ordering in protocol

Flush ensures all dirty data in disk cache  
is persisted before indicating completion

What is the cost of frequent flushing?

Graphically (w/ Flushes)

Data

TxBegin  
Contents

TxEnd Checkpt

Flush Flush

Durability: Expensive

Workload
• varmail
System
• Linux ext4
Varying
• Cache flush on/off 

Result: Must avoid flushing
• How to do so and realize journaling?

0

1000

2000

3000

4000

5000

Flush No Flush

IO
PS

Optimistic
Crash Consistency

Optimistic Approach
Realize: Most of the time, system doesn’t crash

Use checksums (+other techniques) to avoid flushes
• Assumes slightly different disk interface
• Other techniques needed too - but not discussed 

(delayed block reuse and selective data journaling)

New file system interfaces too: no fsync()
• osync(): just for ordering

• dsync(): if you must have durability

Prefix Consistency
System call sequence
write(fd, A);

 osync(fd);
 write(fd, B);

Prefix consistency - disk could contain:
• Nothing
• Just A
• A and B
• … but never B without A

Classic fsync() guarantees same thing…
• … but immediately forces first write to disk (slow)

Building OptFS

Transaction Checksums
Key idea: Use checksums to replace ordering 
 
 
 

How to avoid ordering? Transactional checksums
• Compute checksum over journal
• Can write journal metadata and commit together
• Upon crash: redo iff checksum matches contents
• Idea from IRON File Systems [SOSP ’05]  

(later deployed in Linux ext4)

Data

TxBegin  
Contents

TxEnd Checkpt

Data Checksums
Another problem: Data blocks  
 

 
Solution: Data checksums
• Add checksums of pointed-to data in log
When used?
• If no crash: no problem (common case)
• If crash: checksum mismatch means discard data

Data

TxBegin  
Contents

TxEnd Checkpt

One More Problem
Must separate journaling from checkpointing
 
 
 

 
How to know when logging is complete?
• Goal: Trying to avoid expensive cache flush

New: Async Durability Notification (ADN)
• After writes are persisted, OS notified by drive
• Simple way to know that protocol can proceed

Data

TxBegin  
Contents

TxEnd Checkpt

inode bit  
map

dataT
b

T
e

Optimistic Journaling
Protocol: Write...

• Data

Jo
ur

na
l (

Lo
g)

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode
bit  

map
dataT

b
T
e

Memory

Disk

inode bit  
map• Transaction Begin + Metadata

• Transaction Commit

• After ADN: Checkpoint inode, bitmap

AD

Optimistic Journaling

Data

TxBegin  
Contents Checkpt

TxEnd

ADN (not flush)

Journal  
and Data Checkpt

OptFS Streamlines
Multiple Transactions

Logging across multiple transactions happens first
Journal + Data of T1
Journal + Data of T2
Journal + Data of T3
…

Only much later does checkpointing take place
Checkpoint of T1
Checkpoint of T2
Checkpoint of T3
…

Optimistic
Analysis

Empirical Evaluation
Workload
• SQLite table updates

Use new primitive osync()
• write(A), osync(), write(B) and 

similar constructs used where possible  

Evaluate
• Does OptFS provide prefix consistency?
• How much does OptFS improve performance?

SQLite Analysis
ext4  

(fast/risky)
ext4

(slow/safe) OptFS

Crashpoints 100 100 100
Inconsistent 73 0 0
Consistent[old] 8 50 76
Consistent[new] 19 50 24

Time/op ~15 ms ~150 ms ~15 ms

OptFS: Fast and crash consistent
• 10x faster than slow/safe ext4
• Prefix consistency: Always consistent (but old?)

OptFS Summary

OptFS: Separate durability from ordering
• Internally: Avoid flushes
• Externally: Allow via osync()

Result: Performance and consistency
• Faster than classic ext4
• Does so while providing prefix consistency
• Idea already in use elsewhere (e.g., Blizzard)

Concluding Thoughts 
and one more thing

Conclusions
Lack of clarity around crash consistency

First steps: Tools to analyze
• BOB: Find persistence properties of file systems
• ALICE: Find update protocols + vulnerabilities
• Current: distributed version of ALICE
• Others following up: Washington, Columbia, MIT

OptFS: Don’t conflate durability and ordering
• Achieve high performance and prefix consistency
• Current: StreamFS to guarantee order of all writes

But more is needed
• Tools, systems, standards, new devices
• Study across layers: apps to storage to devices

Acknowledgements

Research “led” by Professors
• Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau 

Real work (in this talk) done by
• Vijay Chidambaran, (@Texas), Thanu S. Pillai (Google),

Ram Alagappan, Aishwarya Ganesan,  
Samer Al-Kiswany (@ Waterloo)  

Papers: “Iron File Systems” (SOSP ’05), “Optimistic Crash Consistency” (SOSP ’13),  
“All File Systems Are Not Created Equal: On the Complexity of Crafting Crash-Consistent Applications” (OSDI ’14)

And One More Thing…

The Case for FOBs
Lots of talk about free online classes (MOOCs)
• But what about materials?
• Books can be expensive … 

Our goal: Free Online textBooks (FOBs)

Many reasons to make books freely
available
• Share your knowledge with largest group possible
• Material easily found (Google) and linked to (Wikipedia)

• Self-printing sites a reality (lulu.com)
• Books usually written for reasons other than $$$

FOB #1: OSTEP

Operating Systems: Three Easy Pieces
• All chapters free online: www.ostep.org

•Material developed over 16 years @ Wisconsin
• First class notes in raw text files
• then added text figures
• then typeset
• then added better pictures
• then added homeworks
• then made printed copy available…

Hardcover: Print on
Demand for ~$35

OSTEP:
Chapter Downloads

D
ow

nl
oa

ds

0

500,000

1,000,000

1,500,000

2,000,000

Year

2008 2009 2010 2011 2012 2013 2014

FOB Conclusions
Stop charging for books!
• Too expensive, just funds publishers, not authors 
 

Our goal: Free Online textBooks (FOBs)
• Share your knowledge with largest group possible 
 

Current effort: Free operating systems book
• Operating Systems: Three Easy Pieces [www.ostep.org]

• Millions of chapter downloads … and hopes 
of writing a few more books in this style, as 
well as convincing others to do so!

