Bayou + weaker Consistency

"Strong"

Distribution
Replication

reliability

(but perf. too)

"Data" perspective

no longer true

"one copy"
reads
writes

prime reason: weaker models?

(performance, availability)

partition

C₁

R₁

R₂

C₂

R₃

no majority
One approach: (quorum-based)

\[\implies \text{CAP theorem} \]

"Pick two"

\[\text{Consistency} \]

Consistency

\[\text{Availability} \]

 apparitions

byyou: early, important

\[\implies \text{What is Ew/wc?} \]

\[\implies \text{When can it be} \]

\[\implies \text{Could weaken durability} \]

\[\implies \text{Resolution of conflicts} \]

\[\implies \text{Often automatic} \]

\[\implies \text{Left to application} \]
Weaker consistency systems:
- Google Drive
- Dropbox

General:
- Version vectors
 - Vector clocks
 - File/object versions

Conflict resolution:
- Bayou approach
 - Dep. checks, merge proc.
granularity affects:
 \(\Rightarrow \) what conflicts are detected
 \(\Rightarrow \) amount of resolution

Dep Check: (app-specific constraint)

nice vs. "traditional" optimisitic?
Specific \(\Leftrightarrow \) (generic)
DB \(\Rightarrow \) exact state

Merge Procedure:
how hard is it to write this code?
(replication: make this harder)

\(\Rightarrow \) order
(determinism:)

 \(\downarrow \) how could this
anti-entropy: ordered
randomized
update

closed

primary: per dataset

convergence: from commit

use time (not commit)

why not? must see commit

versions

new alloc: must succeed