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Debugging Parallel Programs with Instant Replay

THOMAS J. LEBLANC anp JOHN M., MELLOR-CRUMMEY

Abstract—The debugging cycle is the most common methodol-
ogy for finding and correcting errors in sequential programs.
Cyclic debugging is effective because sequential programs are
usually deterministic. Debugging parallel programs is considera-
bly more difficult becaunse successive executions of the same
program often do not produce the same results. In this paper we
present a general solution for reproducing the execution behavior
of parallel programs, termed Inustant Replay. During program
execution we save the relative order of significant events as they
occur, not the data associated with such events. As a result, our
approach requires less time and space to save the information
needed for program replay than other methods. Qur technique is
not dependent on any particular form of interprocess communi-
cation. It provides for replay of an entire program, rather than
individual processes in isolation. No centralized bottlenecks are
introduced and there is no need for synchronized clocks or a
globally consistent logical time. We describe a prototype imple-
mentation of Instant Replay on the BBN Butterfly™ Parallel
Processor, and discuss how it can be incorporated into the
debugging cycle for parallel programs.

Index Terms—CREW protocols, distributed debungging, execu-
tion replay, parallel programming, program instrumeniation,
shared objects.

I. INTRODUCTION

EBUGGING sequential programs is a well-understood

task that draws on tools and techniques developed over
many years. One early technique was to record snapshots of
the entire program state, often consisting of many pages of
hexadecimal digits, for perusal by the programmer. Debug-
ging was a programmer-intensive operation, since there were
few tools for analyzing the program state. Over time this
approach was replaced by interactive debuggers, which allow
the programmer to examine arbitrary details of the program
state during execution. Debugging became more computation-
intensive, since the computer was used to reproduce execution
sequences with successively greater detail. As a result, the
most common methodology used today to debug sequential
programs is cyclic: the program is executed until an error
manifests itself, the programmer postulates a set of underlying
causes for the error, trace statements or additional breakpoints
are inserted to gather more information about the canses of the
error, and the program is reexecuted. This technique is
effective because sequential programs are usually determinis-
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tic. That is, for a fixed input, each execution of a program will
always follow the same execution path and produce the same
results.

Debugging parallel programs is considerably more difficult
because parallel programs are often not deterministic. ! In our
model parallel programs consist of multiple asynchronous
processes that communicate using some form of message-
passing or shared memory. No assumption may be made
about the relative speed of processes; we can only assume
finite progress by each process. Since parallel programs do not
fully specify all possible execution sequences, the execution
behavior of a parallel program in response to a fixed input may
be indeterminate, with the results depending on a particular
resolution of race conditions existing among processes.
Therefore, cyclic debugging techniques for error isolation are
not guaranteed to work because successive executions of the
same parallel program may not produce the same resulis. We
are left with two options for debugging parallel programs: we
can either take snapshots of the program state during execution
for later examination or we can provide a mechanism that
guarantees reproducible behavior of parallel programs. Only
the latter approach allows reliable use of cyclic debugging
techniques.

The first alternative, in which the programmer analyzes
snapshots of program state taken during execution, recognizes
that multiple executions of parallel programs are indetermi-
nate, therefore, all information necessary to diagnose program
errors must be collected during a single execution. Behavioral
Abstraction (BA) is typical of this approach [2]. BA provides
a mechanism for the hierarchical definition of events in terms
of sequences of primitive events that can occur during
program execution. An event recognition tool moenitors the
stream of primitive events that occur during program execu-
tion and presents the user with an abstract view of the
program’s behavior in terms of a sequence of hierarchically-
defined events. There are two disadvantages to this technique.
First, BA requires that a user exhaustively describe interesting
events which take place during execution in terms of a bottom-
up specification. In creating the specification, the user must
anticipate all interesting events related to an error before
execution; there is no mechanism for gathering additional
information about an error after it is observed. Second, the
amount of information gathered tends to be voluminous. Since
the technique is not cyclic, the user must collect enough

! We are interested in programs that exhibit #rue parailelism or, at the very
least, appear to exhibit parallelism due to preemptive scheduling of processes.
A concurrent program implemented by coroutines running on a single
processor without the possibility of preemption can be debugged as if it were a
sequential program.
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information during execution to diagnose any error that might
arise. Other work based on one-shot execution of parallel
programs has the same limitation i11, 191, [21].

The second alternative for debugging parallel programs is
based on reproducible program execution, which allows cyclic
debugging techniques to be applied. Reproducible program
behavior has been studied in several domains, including
concurrent programs using semaphores and monitors for
communication, sysiems based on nested atomic transactions,
and systems comprised of loosely coupled processes that
communicate via messages.

Carver and Tai have considered repeatable execution for
programs consisting of concurrent processes that interact
through semaphores and monitors [3]. In their approach,
execution of a concurrent program is characterized by a
sequence of P operations (termed a P sequence) on shared
semaphores. The same idea can be used to produce an M
sequence for monitors, which records a series of starts of
monitor procedures. A P sequence is a sequence of ordered
pairs; each pair corresponds to a P operation on a specific
semaphore by a specific process. Thus, a P sequence is a total
order of all synchronization operations that occur in a
program. P sequences can be created by the programmer to
test specific synchronization sequences of a concurrent pro-
gram or can be reproduced during execution to provide
repeatable execution. The disadvantage of this approach is that
it requires that all P operations be serialized, thereby losing
much of the potential for parallelism that exists in a program.
While adequate for single processor systems that simulate
concurrency, this technique would not be useful in a truly
parallel environment. There, the scrialization constraint could
have such an impact on program performance that it would be
impractical to monitor programs during normal execution.
Use of this method would be then relegated to a distinct testing
and debugging phase.

Chiu’s technique for replaying a program’s execution in an
atomic transaction system involves checkpointing each version
of all atomic objects and recording a timestamp for each
atomic action during program execution [5]. A debugger uses
this information to traverse action trees (corresponding to the
nested atomic actions of a program execution) according to a
serialization of their constituent atomic actions. Traversing an
action tree permits viewing the state of atomic objects before
and after each atomic update, as well as replaying execution
through action sequences to isolate program flaws. The major
drawback of this work is that the techniques are restricted 10
computations structured in terms of nested atomic actions. In
addition, these techniques require significant storage overhead
to maintain the necessary checkpoints of atomic objects,
although the checkpoints may be required for recovery actions
anyway.

Methods to reproduce the execution behavior of programs
comprised of loosely coupled processes that communicate
using messages typically require that the contents of each
message be recorded in an event log as it is received [7], [13],
[24]. The programmer can either review the events (messages)
in the log, in an attempt to isolate errors, or the events can be
used as input to replay the execution of a process in isolation,
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A similar event logging approach has also been used to
monitor program performance [16]. There are several disad-
vantages to this approach. First, it has only been used in
loosely coupled systems and there are reasons to believe it
would riot be well-suited to tightly coupled systems. Although
the amount of data exchanged in messages could be very large,
this technique exploits the fact that communication in loosely
coupled systems takes place infrequently, primarily because of
the high cost of communication. The additional time necessary
to copy a message into an event log in local memory does not
seriously affect performance when compared with the time
required to send a message. This assumption does not
necessarily apply to tightly coupled systems, where the cost of
communication is lower, allowing more frequent communica-
tion. Another disadvantage is that the space requirements for
the event log tend to be very large. Again, within the domain
of loosely coupled processes, it is reasonable to assume the
logs will grow slowly enough that they can be buffered in
memory and then stored on external devices without seriously
affecting the performance of the program. The third, and most
important drawback, is that it is difficult to examine the global
effects of process interactions using this technique, since the
replay mechanism only operates on a single process in
isolation. Previous attempts to replay groups of processes
using this scheme require that a network-wide consistent time
be maintained [7].

In this paper we present a general solution for reproducing
the execution behavior of parallel programs, termed Instant
Replay. Our emphasis is on providing repeatable execution of
highly parallel programs in tightly coupled systems, although
our approach naturally extends to loosely coupled systems.
During program execution we save the relative order of
significant events as they occur, not the data associated with
such events. Since we do not require the contents of all process
interactions (e.g., messages) to be saved, our approach
requires less time and space to save the information needed for
program replay than other methods. Our technique guarantees
reproducible program behavior during the debugging cycle by
using the same input from the external environment and by
imposing the same relative order on events during replay that
occurred during the original execution. Unlike previous
techniques, Instant Replay is not dependent on the particular
form of interprocess communication used. In addition, we
provide replay for an entire program, rather than individual
processes in isolation. Finally, we avoid introducing any
global synchronization of events through the use of a fully
distributed protocol; there is no centralized bottleneck and no
need for synchronized clocks or a globally-consistent logical
time. With these properties, Instant Replay is especially useful
for debugging parallel programs on tightly coupled multipro-
cessors, where interprocess communication is cheaper, and
therefore more frequent, than in loosely coupled systems.

In the next section we present Instant Replay, including our
goals, assumptions, and- approach. Section Iil describes a
prototype implementation on the BBN Butterfly, 2 tightly
coupled multiprocessor comprised of 128 MC68000 proces-
sors. In Section IV we discuss how Instant Replay can be
incorporated into the debugging cycle for parallel programs.
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Section V summarizes the advantages of our approach and
describes our plans for future work.

II. InsTaNT REPLAY

When debugging a sequential program, one can usually
guarantee reproducible program execution by supplying the
same input each time the program is executed. Successive
executions with the same input produce the same behavior
because sequential programs tend to be deterministic. The
same is true of the individual processes in a parallel program.?
If each process is supplied the same input values (correspond-
ing to the contents of messages received or the values of
shared memory locations referenced) in the same order during
successive executions, it will produce the same behavior each
time. In particular, each process will produce the same output
values in the same order. Each of those output values may then
serve as an input value for some other process. Therefore, in
order to debug a parallel program, we do not need to store all
input values for each process in an event log, since any input
value corresponding to some output value can be recomputed
during replay. By ensuring that each process sees the same
input values at every step of execution, all processes will
exhibit the same execution behavior during both the monitor-
ing phase and replay. Instant Replay is based on this
observation.

In our approach, all interactions between processes are
modeled as operations on shared objects. A series of modifica-
tions to a shared object is represented as a totally ordered
sequence of versions. Each version has a corresponding
version number, which is unique with respect to a particular
object. During normal program execution (i.e., the monitor-
ing phase) we record a partial order of the accesses to each
object. (It is a partial order because we do not need to impose
an ordering on multiple processes that read a particular version
of a shared object.) This partial order is specified by a
sequence of version numbers for each object. To record the
partial order the system maintains the current version number
for each object and the number of readers for each version of
each object. In addition, each process records the version
number of each shared object it accesses. During program
replay, we allow each process to recompute its output values,
thereby providing input values for other processes. We use the
record of object accesses recorded by each process to ensure
that the same version of input values used by the process
during the monitoring phase is used during replay. As long as
the recorded information is available, the original program
execution can be repeated over and over.

Our goal is to provide a flexible monitoring system,
applicable in both loosely coupled and tightly coupled envi-
ronments, that allows a programmer to replay arbitrary
execution sequences produced by a parallel program. Since we
cannot predict when it may be desirable to replay a particular
execution sequence, it must be practical for the monitoring
mechanisms to be in place during every execution. Therefore,
our mechanisms must have minimal impact on program
performance. Instant Replay provides reproducible behavior

? For now, we assume that processes do not contain nondeterministic
statements. In particular, processes do not alfow asynchronous interrupts,
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of parallel programs with minimal impact on performance by
a) simulating the original external environment during replay,
b) modeling all interprocess events as operations on shared
data, subsuming both shared-memory and message-passing
primitives, ¢) recording only the version number of data
values that are input to each process, not the values themsel-
ves, thereby minimizing the amount of information recorded,
and d) using a distributed data collection mechanism, so that
no central bottleneck is present when a program is being
monitored or replayed. We will explore each of these aspects
in the following sections.

A. Simulating the External Environment

As with any cyclic debugging system, we assume that the
original execution of a program and subsequent replays occur
in equivalent virtual machine environments, Two virtual
machinges A4 and B are said to be equivalent with respect to
program P if program P can exhibit the same behavior
whether executed on virtual machine 4 or B. For practical
reasons, we do not require equivalent physical machine states,
since that would include the contents of all external devices,
the exact value of the clock, and the internal states of all
components. In particular, A and B need not have identical
real-time clock values if P’s execution does not depend on the
real-time clock. Similarly, the contents of file 7 on machine 4
and B can differ if P does not atiempt to reference F. If
program P depends on physical details of its virtual machine
during execution, it becomes difficult, if not impossible, to
simulate the virtual machine during replay.

Real-time programs, in particular, may not be good
candidates for Instant Replay because it is so difficult to
simulate equivalent virtual machines.® We require that pro-
grams receive identical input from the environment during
both execution and i'eplay. However, it is not sufficient simply
to supply the same input to the process, we must also supply it
at the same points during program execution. This can be very
difficult for real-time programs since they often receive input
as a result of asynchroncus interrupts. Without making special
provisions to record when interrupts occur during program
execution, which could severely degrade performance, we
cannot accurately simulate the original virtual machine envi-
ronment.

It is important to note that the problem of finding equivalent
virtnal machines also arises when debugging sequential
programs; it is orthogonal to the specific problem of debug-
ging parallel programs. We do not depend on a particular
simulation of virtual machines, so any techniques developed
for sequential program debugging can probably be used.
Specifically, we assume that programs do not exploit the
physical characteristics of any resources allecated by the
system, therefore, we need only ensure that the amount of
resources available during replay is at least the amount used by
the program during the original execution. Any unsuccessful
attempt to allocate resources during execution can be re-
corded, so that the same behavior can be recreated during
replay. :

® To our knowledge, no significant software debugging system exists for
real-time programs.
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B. Communication Through Shared Objects

If processes in a parallel program do not communicate, each
process can be debugged using traditional techniques, since
other processes in the program would have no effect on the
execution path of a particular process. It is only when
processes interact, via communication and synchronization
primitives, that the potential for nonrepeatable behavior arises.
Examples of process interactions include P and V primitives
applied to a shared semaphore [8), monitor entry procedures
[10], send/receive message primitives, and general sharing of
memory. Instant Replay models all process interactions in a
parallel program as operations on shared data. This characteri-
zation of process interactions is not restrictive since all
communication and synchronization primitives can be reduced
to operations on shared data. In particular, message passing
can be modeled as communication through a shared port,
mailbox, or memory segment.

Qur approach exploits the fact that values exchanged
between processes via shared data depend only on the initial
values in shared objects, the order in which processes are
granted access to shared objects, and the deterministic nature
of processes. Operations on shared data objects can be
separated into two classes: read operations, which do not
change the state of an object, and write operations, which do.
By recording the sequence of write operations on each shared
object, it is possible to recreate the proper sequence of state
transitions for all shared objects during program replay.
Similarly, by recording the version number of each shared
object read by a process, it is possible to recreate the proper
input values for that process during replay. This is exactly the
information we record during the monitoring phase.

Instant Replay requires that the set of operations on each
shared object have a valid serialization. A set of operations has
a valid serialization if the result of each individual operation is
the same as it would be if the operations had all been executed
in some sequential order. A protocol that ensures a valid
serialization, such as a concurrent-read-exclusive-write
(CREW) protocol [6], must be used for access to each shared
object. In choosing a protocol, we ook for one that guarantees
serializability, while exerting minimal impact on shared object
access and allowing maximal parallelism. If an access protocol
that guarantees serializability for operations on shared objects
is already present in the application or the system, it is not
necessary to superimpose another. Therefore, our techniques
are applicable to programs that incorporate results of current
research efforts on how to structure interprocess communica-
tion to admit the most parallelism. For example, Lamport
{12], Peterson [20], and Vitanyi and Awerbuch [25] present
algorithmic solutions for the concurrent-reading-while-writing
(CRWW) problem that permit concurrency among readers and
writers, as well as among writers themselves. Instrumentation
for Instant Replay can be added to systems that use such
protocols, if a serialization order of operations on each shared
object can be determined.*

4 For a serialization of operations on a shared object to be possible the
object must be regular [12]. An object is regulgr when all reads not
concuTent with a write get correct values, and any read that overlaps a
series of writes obtains either the value of the object before the first of the
writes, or ong of the values being written.
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For the remainder of this paper, we will illustrate our
technique using a CREW protoco! for access to shared objects.
A CREW protocol ensures a total order of writers with respect
to each shared object, a total order of readers with respect to
writers of each shared object, and a partial order of readers
with respect to each shared object. Although we could use a
protocol that requires mutually exclusive (ME) access to
shared objects, resulting in a total order on accesses to each
object, many parallel programs allow concurrent readers, An
exclusive access protocol would artificially limit the parallel-
ism in such programs. Since the execution path of a program
can be characterized by a partial order on the operations with
respect to each shared object, we will not require a total order.

In addition to being independent of a particular protocol,
Instant Replay does not rely on a particular granularity of
interprocess communication. The granularity of access to
shared objects is implementation-dependent. Message-passing
systems only require the protocol during shared buffer access;
shared-memory systems may require the protocol to be used
whenever shared storage is referenced.

[

C. Data Structures for Program Monitoring

In order to record the partial order of accesses to objects that
characterizes an execution, we use a set of process history
tapes. During the monitoring phase, a process history tape is
used to record the version number of each shared object
accessed by a process; it is modified only by the corresponding
process. Since the relevant information is read and recorded as
part of the access to an object, the monitoring phase imitates
whatever parallelism is exhibited by the application.

Each history tape has a header containing several fields: a
pointer to the current square on the tape, a pointer to the last
non-blank square on the tape, and a pointer to the initial square
on the tape. The two operations that can be applied to a history
tape arc ReadHistoryTape, which reads the value writtén in
the current square, and WriteHistoryTape, which writes a
value in the current square. Each of these operations advances
the current square pointer of the tape.

Upon creation, each shared object is assigned a version
number of 0. Also upon creation, each process is assigned a
history tape that is initially blank. During each read or write
operation on a shared object by a process, information about
the object is recorded on the process’s history tape. All history
tapes created during the execution of a parallel program are
linked together to form a tree. Each time a process spawns a
child, a reference to the history tape of the child process is
recorded on the history tape of the parent. This organization of
history tapes enables each process history tape to be associated
with the correct process during execution replay.

In addition to the information recorded on a process’
history tape regarding interactions with shared objects and
child processes, arbitrary details of a process’s execution can
be recorded on the tape for use during replay. Specifically, the
resolution of certain interesting events can be recorded on the
history tape in order to replay programs containing nondeter-
minism. The information recorded about such events can be
used to recreate the same event during program replay. A
mechanism to support the recording of these events would
need to be added to the implementation of the programming
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ReaderEntry (object,process);
if mode = MONITOR then
P{object.lock); ]
AtomicAdd(object.activeReaders, 1);
V(object.lock);
WriteHistoryTape(process,object. version);
else
/* Find out version read during monitoring phase */
key : = ReadHistoryTape(process);
while object.version ! = key do delay
end if;
end ReaderEntry;
ReaderExit (object);
AtomicAdd(object.totalReaders, 1),
/* Ignored in replay mode */
AtomicAdd(object.activeReaders, —1);
end ReaderExit;

Fig. 1.

language at the appropriate level (i.e., compiler code genera-
tion or language runtime support). Such a mechanism would
be appropriate to record the statement alternative chosen in a
nondeterministic selection statement, whether or not a timeout
interval had expired during execution, and clock values
returned by system calls.

D. Access Protocols for Shared Objects

In order to properly record a partial order of the accesses to
each shared object, a protocol that ensures a valid serialization
is needed. In this section we will describe such a protocol, a
concurrent-read-exclusive-write (CREW) protocol that can be
used to implement Instant Replay.

The CREW access protocol for shared objects consists of
four procedures: entry and exit procedures for readers, and
entry and exit procedures for writers. During the monitoring
phase, these procedures enforce a CREW access protocol on
shared objects and record a partial order of dccesses to each
shared object. During the replay phase, these same procedurés
are used to enforce the pariial order recorded during the
monitoring phase.

Each process that reads a shared object must use the entry
procedure ReaderEntry (Fig. 1). This routine uses a sema-
phore associated with the object to ensure that readers do not
attempt to access that object while a writer is using it. Once the
reader is granted access by the semaphore, it increments the
rumber of active readers using the object.” Writers are not
allowed to modify the object as long as the count of active
readers is nonzero. Once the count of active readers has been
updated, the reader process releases the semaphore and
records the version of the object it is about to read on its
process history tape. Then, the reader is allowed to access the
object. Eventually, the exit routine ReaderExit (also in Fig. 1)
is called, which simply maintains a count of all readers for a
particular version of the object and décrements the number of
active readers for the object, thereby allowing writers a chance
to proceed.

In replay mode, the entry procedure for readers proceeds as
before, except that history tapes are not written, they are
merely read and advanced as execution proceeds. Each reader

3 We use atomic increment and decrement operations to maintain the reader
counts for an object, thereby avoiding the need for additional synchronization.
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WriterEntry (object, process);
if mode = MONITOR then
P(chject.lock);
/* Wait for all current readers to finish */
while object.activeReaders ! = 0 do delay;
WriteHistory Tape{(process,object. versicn);
WriteHistory Tape(process,object. totalReaders);
else
/* Read version modified during monitoring phase */
key : = ReadHistoryTape(process);
while object.version ! = key do delay;
/* Read count of readers for previous version */
key := ReadHistoryTape(process);
while object.iotalReaders < key do delay;
end if;
end WriterEntry;
WriterExit (object);
object.totalReaders : = 0;
if mode = MONITOR then
object.version + = 1;
V(object.lock);
else
AtomicAdd(object.version, 1);
end if;
end WriterExit;

Fig. 2.

process must wait until the version number for the target
object is équal to the version number recorded on the reader’s
history tape. This ensures that the reader will see the correct
version of the target object during replay. Once the reader has
read the object, a count of readers for that version is
incremented in the exit routine. This counter allows a writer to
create the next version of an object only when all readers have
finished with the current version.

Each process that modifies a shared object must use the
entry procedure WriterEntry (Fig. 2). In this routine, the
writer uses a semaphore associated with the object to gain
exclusive access to the object: Once the semaphore is
acquired, the writer process waits for all active readers to
finish. No new readers can access the object since the entry
routine for a reader must also acquire the semaphore. When all
readers have finished with the object, the writer is free to
access the current version of the object. The writer records the
current version numiber of the object onto its process history
tape as well as the number of readers for that version. The
writer may then modify the shared object. Exclusive access is
maintained because the semaphore is not released until the exit
procedure is called. The WriterExit routine (also in Fig. 2)
simply initializes the number of readers for the new version,
increments the version munber for the object, and releases
exclusive access to the object by performing a V operation on
the object’s semaphore.

In replay mode, the object semaphore is not required for
either readers or writers because the information on process
history tapes, in conjunction with the counts maintained with
the object, is sufficient to correctly order the operations on a
target object. A writer must wait until the current version of
the object matches the version number recorded on the writer’s
history tape. This ensures that the writer modifies the correct
version. Next, the writer must make sure that the number of
readers that have seen the current version of the object during
replay is equal to the number of readers that saw that version
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in the original execution. Since the ReaderExit routine
updates the count of total readers for the object version after
completing the read, a writer cannot proceed until all reads of
the previous version have finished. Following the write
operation, the WriterExit procedure simply initializes the
number of readers for the new version and then increments the
object version number. Since this is the last operation
performed by a writer, no reader will attempt to access the
new version until the writer has finished. '

This description of a CREW access protocol is intended to
be illustrative, not definitive. Instant Replay requires neither a
CREW protocol nor this particular implementation of a
CREW protocol. As stated previously, we could use an ME
protocol to guarantee a valid serialization. A different imple-
mentation would probably be required in a loosely coupled
system, one that does not use shared memory. In particular,
rather than accessing shared memory locations to read and
record object status information, some parts of the protocol
could be implemented as remote operations. Version numbers
could be used to control access to message buffers on remote
nodes, preventing buffer overflow problems during replay.
Also, additional machinery (e.g., buffers) would need to be
added so that the communication necessary for replay does not
compete for the same limited resources used by the executing
program. Nevertheless, regardless of the characteristics of a
particular implementation of the access protocols, our basic
approach is to record a partial order of operations on each
shared object and ensure the same order during program
replay.

TII. MULTIPROCESSOR PROTOTYPE OF INSTANT REPLAY

A prototype implementation of Instant Replay has been
developed for the BBN Butterfly™ Parallel Processor. Several
considerations motivated the choice of the Butterfly as a
testbed. First, we have a Butterfly at the University of
Rochester, but lack methods and tools for debugging parallel
programs. This, combined with the current surge of software
development for the Butterfly, created an urgent need we
wanted to fulfill. Second, interprocess communication on the
Butterfly is inexpensive, which tends to encourage develop-
ment of communication-intensive programs. Third, communi-
cation on the Butterfly is available over a wide range of
granularities; process interactions can occur through direct

sharing of memory, ot through the use of higher level

primitives for message passing. Finally, the high degree of
parallelism offered by the Butterfly provides a challenging test
since highly parallel, communication-intensive applications
will experience the greatest performance degradation using
any program monitoring technique.

A. The BBN Butterfly Parailel Processor

The BBN Butterfly Parallel Processor at the University of
Rochester consists of 128 processing nodes connected by a
switching network. Each switch node in the switching network
is a 4-input, 4-output crossbar switch with a bandwidth of 32
Mbits/s. Each processor is an 8 MHz MC68000 with 24-bit
virtual addresses. A 2901-based bit-slice coprocessor inter-
prets every memory reference issued by the 68000 and is used
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to communicate with other nodes across the switching net-
work. All the memory in the system resides on individual
nodes, but any processor can address any memory through the
switch. A remote memory reference (read) takes about 4 ps,
roughly five times as long as a local reference.

Chrysalis [19], the Butterfly operating system, consists
largely of a protected subroutine library that implements
operations on a set of primitive data types, including event
blocks (structures used by processes to post a word of data to
the event owner), dual queues (queues that hold a sequence of
long word data enqueued by processes, or alternatively, a
sequence of process handles corresponding to processes
waiting to dequeue data as it becomes available), shared
memory segments, and 2 global name table. Objects of these
types can be shared among all processes executing on the
machine. Low-level operations on these data types are
provided by Chrysalis, many of which are implemented by
microcode. These primitive operations provide a gencral
framework upon which efficient high-level communication
protocols and software systems can be built.

B. Monitoring Chrysalis Operations

Our prototype implementation provides programmers with
encapsulated versions of the Chrysalis primitive operations on
events, dual queues, shared memory objects, and processes.
The encapsulated versions of the Chrysalis primitives enforce
CREW access synchronization and record a partial order on
the operations as detailed in the previous section. This
implementation was done at the level of primitive Chrysalis
operations to make replay available to all programs; it can be
used in any software system developed on top of the Chrysalis
operating system. In particular, recent system development
efforts at the University of Rochester that can be easily
modified to incorporate Instant Replay include LYNX, a
programming language and runtime system for distributed
computing [22], [23], and SMP, a message-passing system
that supports multicast message communication among groups
of processes [15].

While encapsulating the Chrysalis primitives for events and
dual queues, it became apparent that providing a CREW
protocol for all operations was inappropriate. Most of the
operations on events and dual queues are atomic, which means
that the operations must occur serially with respect to their
target data. object (a characteristic of the hardware). The
CREW protocol allows concurrent readers of shared objects,
but introduces additional cost. Since event and dual queue
operations cannot exploit concurrent execution of readers, the
expense of the CREW protocol is not justified. By replacing
the CREW protocol with the simpler mutual exclusion (ME)
protocol, we force the serial execution of the Chrysalis event
and dual queue primitive operations, but reduce execution
overbead by simplifying the entry and exit protocols. An ME
protocol enables use of a single entry/exit routine pair and
reduces the amount of information recorded on process history
tapes, since we need not maintain a count of the readers for
each version,

Using encapsulated versions of Chrysalis primitives in
program code requires no additional effort beyond that
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necessary to use the original primitives. Additional program
code is only necessary for regulating access to shared memory
objects. Chrysalis provides primitives for sharing segments of
memory. General sharing of memory objects as provided by
the Butterfly hardware and Chrysalis primitive operations
imposes no restrictions on memory access other than serializ-
ing word operations on each node, since the memory hardware
has only a single port. To guarantee that operations on such
shared segments conform to a CREW access protocol, it is
necessary to use access entry and exit routines to control
sharing of these segments. The programmer can control the
granularity of operations bracketed by the access routines in
response to performance concerns. By controlling the cost of
the operations within an entry and exit routine pair, the
programmer can balance the reduction of parallelism incurred
when locking for long periods of time with the overhead of
frequently executing the locking primitives. (Since the access
protocol entry and exit routines have a small critical section
requiring mutual exclusion, there is a serial nature to their
execution.)

C. Case Studies

‘Two applications were chosen for experiments in program
monitoring and replay: computation of a knight’s tour of a
chess board and Gaussian elimination. The knight’s tour
problem was chosen because there is an existing implementa-
tion on the Butterfly that exhibits extremely nondeterministic
behavior, A parallel implementation of Gaussian elimination
was chosen for study since, unlike the knight’s tour program,
no matter what execution path occurs when the Gaussian
elimination program is run, the overall amount of computation
performed by the program is constant. Also, our implementa-
tion of Gaussian elimination has already been the subject of a
thorough performance study [14] and the statistics previously
obtained about the program’s execution behavior can be used
as a baseline for comparison to determine the cost of our
monitoring techniques.

1} Knight's Tour: A knight’s tour is a path on a chess board
for a knight that successively visits each square once and only
once using legal chess moves. Our program to compute a
knight’s tour of a chess board consists of a master process and
a user-specified number of slave processes. The master selects
an initial position of the knight on the chess board and enters
the corresponding board description in a global task queue.
Next, the master creates a set of slave processes that cooperate
to search for a knight’s tour beginning with the initial board
position. Each slave removes a set of board descriptions from
the global task queue and replaces it with a new set of board
descriptions which could be generated by adding a legal move
of the knight from its previous position. The order in which
these board descriptions are added and deleted from the task
queue determines the breadth and depth of the search
performed. Since the order in which slave processes are
granted access to the task queue depends on the relative
progress of the processes and resolution of memory contention
for the task queue, successive executions of the program tend
to produce different tours,

Calls to monitored versions of the task queue primitive
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operations (the task queue is a dual queue) were inserted in the
program in place of the original calls to Chrysalis primitives.
These modifications did not reguire substantial effort and
caused no significant growth in code size. The effect on the
performance of each individual primitive is substantial, since
the original primitives are implemented in microcode and
there is no such support for the history tape maintenance
operations. However, the effect on overall program perform-
ance is difficult to measure due to the inherent nondeterminis-
tic nature of the knight’s tour computation. We cannot obtain
identical executions of the monitored and unmonitored ver-
sions of the program to compare execution times because such
times vary wildly between successive invocations of the
program. We were able to measure accurately the comparative
execution times for a knight’s tour program during the
monitoring phase and the replay phase of the same execution.
The difference between the two execution times was less than
5 percent.

Using 16 processors, three successive executions required
18, 38, and 52 s to find three different solutions fora 5 x 3
chess board; the executions used 12K, 36K, and 60K bytes,
respectively, for history tapes.® Using 64 processors, a
solution was found in 43 s and required 48K bytes for history
tapes. It is not surprising that the amount of space required for
the history tapes of the knight’s tour program varies with the
amount of time taken to find a solution. Communication is
roughly a constant percentage of the computation and no
matter how many processors are working on the task,
communication speed, hence history tape space requirements,
is limited by the need to serialize access to a single shared task
queue. We estimate that the knight’s tour program generates
between 250 and 300 communication events per second; each
communication event requires four bytes to record. From this
we can estimate the space requirements for the history tape as
a function of the time needed to find a particular solution,

2) Gaussian Elimination.: To obtain an empirical compari-
son of the relative cost of monitored and unmonitored program
executions, an existing program to solve a system of linear
equations using Gaussian elimination was instrumented. In
Gaussian elimination, the total amount of work performed by
the program is independent of the precise ordering of
interprocess events during execution; the computation for each
pivot row depends on a fixed number of other rows.

The implementation of Gaussian elimination uses a broad-
cast message-passing system as the basis for communication
among the cooperating processes in the program.” A single
master process initializes shared data structures and then
spawns worker processes to diagonalize the matrix. The
master delegates rows of the matrix to each slave process
participating in the solution. Each time the processing of a row
is completed, the contents are broadcast by the process holding
that row to each of the other slaves,

¢ Qur current implementation uses a 32-bit word for each entry on a history
tape, although 16-bit words would suffice for our case studies, as well as most
other programs. Therefore, our space requirements are conservative and
could easily be reduced by a factor of 2,

7 The message-passing system used here is an early prototype of SMP [15]. -
The results described in this section are particularly relevant to programs
based on SMP, or similar communication models.
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Send Message
Find buffer
WriterEntry(buffer, myprocess)
Copy message into buffer
Set number of recipients
WriterExit(buffer)

Receive Message
ReaderEntryPoll{buffers, myprocess}
Poll incoming message buffers
Copy message into user area
ReaderExitPoll(puffers)
WriterEntry(buffer, myprocess)
Decrement number of recipients
WriterExit(buffer)

Fig. 3.

To instrument this application we replaced some dual queue
and event primitives used for synchronization between the
master and slaves with monitored versions of the Chrysalis
primitives. The underlying message-passing system, however,
required more extensive changes. Message passing was imple-
mented using shared memory segments as communication
buffers. Modifications to the send and receive primitives of the
message-passing system were required to enforce the CREW
access protocols, as detailed in Section I, for the shared
communication buffers.

Although the code overhead and programming effort to
make this transformation were more substantial than that
required for the knight’s tour, the size of the effort was still
small. The original Gaussian elimination program contains
1059 lines of code. To instrument the program for Instant
Replay, 24 lines of code were altered and 17 lines of code
were added. Most of the changes to the source code files
occurred in the message-passing module. Fig. 3 shows the
skeletal form of the monitored message-passing routines.

The performance of the Gaussian elimination implementa-
tion was degraded by the enforcement of a CREW protocol on
shared object access and recording the access order to shared
objects. Fig. 4 depicts the- performance of monitored and
unmonitored versions of the application on a 400 x 400
matrix. The unmonitored program improves dramatically in
performance as additional processors become involved in the
computation, however, there is no significant improvement in
performance when more than 32 processors are in use. In fact,
performance begins to degrade slightly beyond 32 processors
because the additional communication involved is not justified
by the gain in parallelism [14]. Our first attempt at monitoring
this program did not incorporate any optimizations and
resulted in severe performance degradation when more than 8

_processors were in use, as shown in Fig. 4. This experiment

demonstrates the importance of efficient monitoring opera-
tions. Modifying the monitoring protocols to reduce the size of
critical sections greatly improved the performance, but still
managed to roughly triple the execution time of the program
on 64 processors. Examination of the monitoring cost showed
that the program was spending a great deal of time monitoring
and recording noncritical polling operations on buffers.® To

8 New evidence has cast doubt upon the data used to plot the curve for
menitoring without polling primitives. While monitoriig with polling primi-
tives is clearly preferable, we now believe the disparity between these two
approaches is less severe than our graph suggests.
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Fig. 4. Gaussian elimination of 2 400 x 400 matrix using message passing.

lower the cost of monitoring, we devised a special entry
procedure for use with the common programming idiom in
which readers poll before reading a value. '

Our implementation of message passing uses polling to find
incoming messages. Whenever a process atterpts to receive a
message, a large number of buffers, one for each process in
the computation, are polled. Our naive approach to monitoring
operations considered each polling operation as an access to a
shared object, which was duly recorded on the process’s
history tape. The realization that none of the polling opera-
tions, except the last one, are necessary for replay led us to
devise a special entry procedure used in conjunction with
polling. With this new entry procedure, the access ordering to
a buffer is recorded only when a message is found. An
indication of which buffer supplied the message and the
version number for that buffer are recorded on the process’s
history tape. During replay, only the buffer from which a
process received a message during the monitoring phase is
polied. Use of this entry procedure eliminated recording of
nonessential ordering information during the monitoring
phase, saving both time and storage space for the information
collected. The performance of the program using the special
eniry procedure is also shown in Fig. 4. The result: we were
able to monitor a communication-intensive application for
replay by imposing a performance overhead of less than 1
percent for up to 64 processors. In addition, we were able to
replay the program in the same amount of time as was used by
the original execution.

As we have already stated, Gaussian elimination is a
communication-intensive program, which tends to produce
large history tapes. Diagonalization of an 800 x 800 matrix
on 64 processors requires 400K bytes for the history tapes.
While this is not a small amount of space, it is worth
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comparing the space requirements for our method with other
techniques that save the contents of every message received by
a process in an event log. Such an approach requires over 150
Mbytes of space! In general, Instant Replay will always take
less space than an event log whenever large messages are
involved, since we only require between 4 and 8 bytes for each
message.’

IV. INsTANT REPLAY IN THE DesucGing CYCLE

Program replay makes it possible to repeat the execution of
a parallel program as often as desired. Unfortunately, Instant
Replay does not automatically debug programs, parallel or
otherwise. How then do we use the replay capability to debug
parallel programs? In this section we describe several tech-
niques for error isolation that can be used together with our
approach. We have already used some of these techniques in
our own work; others require the cooperation of additional
tools that we have not yet developed.

Our goal is to provide repeatable execution, so that it is
possible to observe the same exccution of a parallel program as
often as desired. Any results that may have been ignored
during previous observations can always be reproduced on
demand for closer examination. This capability is especially
useful for parallel programs since a) multiple processes tend to
generate a lot of output, making it easy to miss important
results and b) the programming environments for parallel
architectures are not as mature as the programming environ-
ments for sequential machines, and often lack tools for
collecting and analyzing output data. However, the most
important reason for reproducible behavior is that it makes
cyclic debugging possible.

The simplest form of cyclic debugging is to add output
statements to an erroneous program that provide additional
details about the execution of the program. Successive
executions can be used to provide successively greater detail
about those parts of the program under suspicion. This
technique does not work with parallel programs in general
because the cutput statements can change the relative timing of
operations within the program and yield a different execution
sequence. With Instant Replay, however, any number of
output statements can be added to the program without
changing the execution sequence provided by the replay
mechanism. In fact, any type of statement may be added to
the program during replay, as long as the additions do not
affect the sequence of interactions with shared objects by each
process. Thus, the programmer can debug parallel programs
by adopting the same cyclic methodology for error isolation
used in debugging sequential programs. We have found that
this capability alone is a valuable tool for debugging parallel
programs, particularly in the absence of other debugging
tools.

Repeatable execution also makes top-down, interactive
debugging possible. Hierarchical abstraction of detail is
necessary to cope with the complexity of large sofiware

® Normally, four bytes per message are used, however, the polling entry
procedure used by Gaussian elimination requires eight bytes.
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systems. Abstraction is particularly important in understand-
ing the behavior of parallel programs. The programmer should
not have to be concemmed with the low-level details of
execution of a parallel program, such as the interleaving of
primitive operations. Instead, we are interested in the salient
features of the execution that characterize its behavior. Qur
approach allows the programmer to start with a high-level
view of a program’s behavior, produced by normal output
statements or an event mechanism similar to Behavioral
Abstraction. By carefully refining that viewpoint, based on the
information made available during successive replay, the
programmer can study erroneous behavior at any level of
detail desired. As a result, one can diagnose program errors in
a top-down fashion without wading through voluminous,
irrelevant detail at each step.

Another common technique used to debug sequential
programs is breakpoint insertion. Breakpoints are added to the
program at interesting points in the code. Execution is
suspended at each breakpoint, allowing the programmer to
examine the system state. Breakpoints only suspend a single
thread of execution, however, which is not sufficient for
parallel programs consisting of multiple threads of execution.
Inserting a breakpoint in one process of a parallel program wiil
have an effect on every process that communicates, directly or
indirectly, with the suspended process. In particular, break-
points can change the relative order of events during execu-
tion, producing a different execution sequence each time.
Fortunately, we can provide reproducible execution even in
the presence of breakpoints. No matter how many break-
points are encountered during replay, we continue to order
operations based on the contents of history tapes. A process
that is suspended by a breakpoint will eventually cause all
other processes to wait for some shared object to be read or
written (assuming a connected graph of process interactions).
When the suspended process is allowed to continue beyond the
breakpoint, it will eventually catch up to the other processes
and the entire program will continue executing. Thus, it is
possible to cycle through breakpoints in many different
processes during program replay, examining system state for a
different process at each breakpoint.

This use of breakpoints also allows the programmer to
examine the global state of the computation. Due to communi-
cation delays and a reliance on local viewpoints, it is
impossible to take an instantaneous snapshot of global state.
However, all we really need to see are meaningful global
states [4], consistent states based on the happened before
ordering of Lamport [11]. For example, if we suspend a
process P at breakpoint X, all events that occurred before P
reached X should be reflected eventually in all other proc-
esses. In addition, other processes should not be allowed to
proceed beyond any point that requires process P to proceed
beyond X. This view of a computation is the best we can hope
for since, if all processes are stopped as the result of setting a
single breakpoint, the happened before relation cannot
distinguish between the global state represented by all sus-
pended processes and an omniscient snapshot of the global
state during normai execution. We provide exactly this notion
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of global state, and any notion that atiempts to be more precise
is not likely to be meaningful in a distributed system,

We can use breakpoints, in conjunction with Instant Replay,
to provide the ability to halt distributed programs in'a
consistent state, as in [18], without the need for additional
mechanisms. By setting a local breakpoint during replay we
are, in effect, setting a breakpoint in the global state. When the
local breakpoint is reached, we can see the exact state of the
local process containing the breakpoint, and the exact state of
all other processes as they block due to enforcement of the
happened before relation. Differences between the state of
each process in an instantaneous snapshot and what we sec at a
breakpoint reflect the natural degree of asynchrony between
processes in the program.

A consequence of our breakpoint capability is the ability to
support single-step execution of processes. Single-step execu-
tion can be used during debugging to trace the state transitions
of an individual process or the effects of interprocess
communication on the internal states of communication
partners. We can replay a process using single-step execution
because enforcement of the happened before relation ensures
that asynchrony between processes remains within allowable
bounds.

Instant Replay can also be used in conjunction with an event
log technique to allow repeatable execution of a subset of
processes involved in a computation. As we have described it,
our approach requires that the input to each process be
recomputed during replay, rather than retrieved from an event
log. This is both an advantage and a disadvantage. While our
technique requires less time and space during the monitoring
phase, it also requires that all processes be reexecuted during
replay. Global replay is a disadvantage if the computational
requirements to replay a program are very large, particularly
when it is unnecessary to recreate the entire original set of
processes to isolate an error. By using an event log together
with Instant Replay, we can reexecute the subset of processes
in which we are interested and simulate the rest.

There is a tradeoff between the expense of maintaining an
event log during normal execution and the expense of
reexecuting all processes during replay. The event log
approach and Instant Replay represent two extremes, wherein
the expense is shifted from the monitoring phase to the replay
phase. However, a compromise between our technique and the
event log approach is possible. When frequent replay of a
subset of processes in a computation is desired, as would be
the case when using cyclic debugging to isolate errors, it is
possible to collect additional information in an event log
during replay that would eliminate the need for reexecution of
the entire program during subsequent replay. We can record in
an event log all external inputs to the subset of processes of
interest. This record would include both inputs from the
external environment and inputs from processes not under
scrutiny. Interactions inveolving processes to be reexecuted
during replay are recorded, as before, as partial orders on
history tapes. On subsequent executions, only the designated
subset of processes would be reexecuted and their interface
with the external environment, including the other processes,
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would be simulated using the event log. Since we assume that
the debugging methodology is cyclic, the set of processes that
are simulated by an event log will grow larger as we look at
fewer processes in greater detail (i.e., top-down debugging).
Note however that we would continue to use Instant Replay in
the monitoring phase because it has the least impact on normal
program execution and can be used to generate event logs
during the debugging cycle. '

Finally, we can use Instant Replay, together with techniques
developed by Miller [16], [17], for both causal analysis and
performance monitoring of parallel programs. These tech-
niques use a program history graph, which represents in-
terprocess events and the elapsed time between related events,
to analyze the behavior of the program. It is possible to change
some aspects of the history graph to analyze the effect of
changes in the execution environment [17], however, there is
no guarantee that modifying system parameters, such as
expected communication delay and processor load, will not
change the execution behavior of the program. By using
Instant Replay to guarantee repeatable execution behavior, it is
possible o change cost labels in the history graph and replay
the program under new assumptions, withoui changing the
execution behavior of the program. (Of course, the replay
mechanism would have to be modified to incorporate changes
to the history graph, such as the message delay time.) In
particular, one could examine the effect of communication
costs on overall program performance by artificially varying
the delay associated with communication. It is important to
note that performance results derived from such an exercise
are estimates, since the program is forced to obey a particular
execution sequence in the presence of varying performance
parameters. However, it is still possible to learn a great deal
about parallel programs using these techniques, particularly
when used with programs whose executions are less sensitive
to race conditions.

V. CONCLUSIONS AND FUTURE WORK

One of the most important tools for analyzing and debug-
ging software is the interactive debugger. Cyclic debugging
with an interactive debugger requires the ability to reproduce
program behavior on demand. We have described the design
and implementation of a system for reproducible execution of
parallel programs. In summary, Instant Replay:

e provides reproducible execution of paraliel programs

* is not dependent on any particular form of interprocess
communication

» makes possible global replay of programs, rather than
processes

e introduces no centralized bottleneck, either during moni-
toring or replay

« does not require synchronized clocks or globaily consist-
ent logical time

1 In extraordinary circumstances where even a single replay is impractical,
process history tapes and a partial event log could both be recorded during the
monitoring phase.
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e allows modifications to programs during the debugging
cycle

* has only minor impact on program performance during
the monitoring phase

* has reasonablé space requirements

# js applicable to both loosely coupled and tightly coupled
environments.

There are two potential disadvantages to our approach.
First, we record a version number for each access to a shared
object. If the granularity of comimunication is very smail (e.g.,
one-byte messages), we could use less space by simply storing
data values (i.e., the event log approach). Second, we require
that all processes in a program reexecute during replay. Even
though we have shown how to use evenit logs to eliminate some
processes during successive replays, no iterative technique is
well-suited to prograins that are impractical to reexecute.

Nevertheless, our experience has shown that Instant Replay
is effective, efficient, and practical. Additional experience
with our technique is necessary, however. We must perform
further empirical studies to determine the performance cost of
our moaitoring technique on other programming environ-
ments. Specifically, we intend to explore applications of our
techniques to message-based communication in loosely coup-
led systems and lightweight tasks and shared memory in
tightly coupled systems. Our case studies, while very different
in programming style, do not address all of the programming
models we wish to support.

Several optimizations to reduce further the timae and space
needs of our technique are also under consideration. An
example of such an optimization was described in Section III.
Other optimizations based on similar idempotent operations
are possible. Another interesting optimization is based con the
observation that some parallel programs (or segments of
programs) are deterministic. The Gaussian elimination pro-
gram is a good example. The processes that perform Gaussian
elimination proceed in lockstep; no monitoring operations are
necessary to reproduce behavior. It is possible to reduce
contention and space needs for monitoring if we can determine
that some sequence of interprocess operations yields 2
deterministic schedule. Clearly this information is application-
specific and may only be obtainable with programmer assist-
ance. Nonetheless, this approach is worth exploring for large
parallel systems with deterministic components.

Finally, we intend to explore the impact of Instant Replay
on the development of a general-purpose programming envi-
ronment for parallel architectures. Additional tools will be
constructed as a part of any such environment (e.g., source-
level single-process debuggers for paraliel programis, tools to
monitor execution with graphical displays, compilers to
automatically instrumer’ programs), and we will want to
integrate our program replay capability with those tools as
they are developed.
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