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Linda is a parallel programming language that differs from other parallel languages in its simplicity 
and in its support for distributed data structures. The S/Net is a multicomputer, designed and built 
at AT&T Bell Laboratories, that is based on a fast, word-parallel bus interconnect. We describe the 
Linda-supporting communication kernel we have implemented on the S/Net. The implementation 
suggests that Linda’s unusual shared-memory-like communication primitives can be made to run 
well in the absence of physically shared memory; the simplicity of the language and of our implemen- 
tation’s logical structure suggest that similar Linda implementations might readily be constructed on 
related architectures. We outline the language, and programming methodologies based on distributed 
data structures; we then describe the implementation, and the performance both of the Linda 
primitives themselves and of a simple S/Net-Linda matrix-multiplication program designed to 
exercise them. 

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Ar- 
chitecture and Design-network communications; C.2.4 [Computer-Communication Networks]: 
Distributed Systems--network operating systems; D.3.3 [Programming Languages]: Language 
Constructs-concurrertprogrammingstructures; D.4.4 [Operating Systems]: Communication Man- 
agement-message sending. 

General Terms: Languages 

Additional Key Words and Phrases: Parallel programming languages 

1. INTRODUCTION 

A parallel programming language is a language that supports process-forking and 
interprocess-communication (in one form or another) in addition to the normal 
computation and control operations that all programming languages need. Par- 
allel languages are tools for parallel programming, and parallel programming in 
turn is useful in two ways. In domains where logically-concurrent algorithms are 
available (numerical problems, system simulation and AI are three such domains) 
it is a technique for making programs run faster. On local area networks, it is a 
method for constructing integrated operating systems and distributed utilities. 

Linda [13] consists of four simple operators that, when injected into a host 
language h, turn h into a parallel programming language. A Linda-based parallel 
language is in fact a new language, not an old one with added system calls, to the 
extent that the Linda compiler or preprocessor recognizes the Linda operations, 
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checks and rewrites them on the basis of symbol table information, and can 
optimize the pattern of kernel calls that result based on its knowledge of constants 
and loops, among other things. (Most of our programming experiments so far 
have been conducted in C-Linda, but we have recently implemented a Fortran- 
Linda preprocessor as well, at the request of Yale’s Numerical Analysis group.) 
The S/Net [l] is a multicomputer that can also function as the backbone of a 
local area net. Each S/Net is a collection of not more than sixty-four memory- 
disjoint computer nodes communicating over a fast, word-parallel broadcast bus. 
We have implemented a Linda-supporting communication kernel on an S/Net 
at AT&T Bell Laboratories (where the machine was designed and built). This 
implementation is of interest-we will argue-for two reasons. It demonstrates, 
first, that Linda’s usually powerful and flexible communication primitives can 
be made to run well; the language’s shared-memory-like semantics can in fact be 
supported efficiently in the absence of physically shared memory. Second, al- 
though Linda and the S/Net are particularly well-matched, the simplicity of the 
language and of the implementation’s design and of the S/Net logical structure 
suggest to us that Linda implementations like ours might readily be constructed 
on similar architectures elsewhere. Such implementations would promise, as ours 
does, to synthesize some of the advantages of shared-memory programming on 
the one hand and of unshared-memory network architectures on the other. 

We have argued elsewhere that Linda’s operators are in many cases substan- 
tially more powerful and expressive than comparable ones in other languages; 
that Linda is often cleaner, simpler and easier to use; and that the distributed 
data structures Linda supports and most other parallel languages forbid are often 
the most natural complement to distributed algorithms. In Section 2 we outline 
the language and briefly rehash some of these arguments. We compare Linda in 
particular to the remote procedure call protocol, which is of special interest 
because it has become the most widely discussed interprocess communication 
technique, and has been implemented, tested and used (Birrell and Nelson [3]). 
In Section 3 we describe our general strategy for implementing Linda on bussed 
networks, and in Section 4 we discuss the S/Net implementation specifically. 
Section 5 presents performance results, and Section 6, conclusions. 

2. LINDA 

Processes in Linda communicate through a globally-shared collection of ordered 
tuples called tuple space or TS. The four operators that Linda provides (1) add 
tuples to this shared collection, (2) remove tuples, (3) read tuples, (4) add 
unevaluated tuples whose evaluation begins as soon as they enter tuple space. 

The four operations defined over TS are out ( ) , in ( ) , read ( ) and 
eval ( ). out ( t ) causes tuple t to be added to TS; the executing process 
continues immediately. in ( s ) causes some tuple t that matches template s to be 
withdrawn from TS; the values of the actuals in t are assigned to the formulas 
in s, and the executing process continues. If no matching t is available when 
in ( s ) executes, the executing process suspends until one is, then proceeds as 
before. If many matching t’s are available, one is chosen arbitrarily. read ( s ) is 
the same as in ( s ) , with actuals assigned to formals as before, except that the 
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matched tuple remains in TS. eval (t ) is the same as out ( t ), except that 
e va 1 adds an unevaluated tuple to TS. (eva 1 is not primitive in Linda; it will 
be implemented on top of out. We haven’t done this yet in S/Net-Linda, so we 
omit further mention of eval.) 

For example: executing 

out("P", 5, false) 

causes the tuple ( " P" , 5 , f a 1 se ) to be added to TS. The first component of 
a tuple serves as a logical name, here l1 P II; the remaining components are data 
values. Subsequent execution of 

in("P", int i, boo1 b) 

might cause tuple ( “P " , 5 , false ) to be withdrawn from TS; 5 would be 
assigned to i and f a 1 se to b. Alternatively it might cause any other matching 
tuple-any other, that is, whose first component is "P" and whose second and 
third components are an integer and a Boolean respectively-to be withdrawn 
and assigned. Executing 

read("P", int i, boo1 b) 

when ( P , 5 , false ) is available in TS may cause 5 to be assigned to i and 
f a 1 se to b, or equivalently may cause the assignment of values from some other 
type consonant tuple, with the matched tuple itself remaining in TS in either 
case. 

The parameters to an in ( ) or read ( ) statement need not all be formals. 
Any actuals among them must be matched by corresponding actuals in a tuple 
for tuple-matching to occur. Thus the statement 

in("P*l, int i, 15) 

may withdraw tuple ( ” P ” , 6 , 15 ) but not tuple ( "P ” , 6 , 12 ) . This extended- 
naming convention (it resembles the select operation in relational databases) is 
referred to as “structured naming.” Structured naming makes TS content- 
addressable, in the sense that processes may select among a collection of tuples 
that share the same first component on the basis of the values of any other 
component fields. Any parameter to out ( ) or eval ( ) except the first may 
likewise be a formal; a formal parameter in a tuple matches any type-consonant 
actual in an in or read statement’s template. 

2.1 Linda versus Remote Procedure Call 

The remote procedure call model-to communicate with R, process Q sends 
invocation parameters to an entry in R and then blocks until the remotely- 
invoked entry sends result parameters back-is ubiquitous in parallel-language 
work, for an obvious reason. Since procedure invocation is the best tool for 
intraprocess communication, it seems natural to propose it as the basis for 
communication between processes as well. The Ada entry call [S] and the Qlambda 
process-closure invocation [lo] are both variants of this basic protocol, and 
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Birrell and Nelson implement remote procedure call in its pure form.’ It is 
obviously of interest, then, to compare Linda to remote procedure call. 

RPC can easily be implemented on top of Linda. The invoker uses out to send 
invocation parameters and a subsequent in to retrieve results, including a unqiue 
name (supplied by the system as the value of “me ‘I) as a parameter in the out 
tuple; the remote procedure prefaces the result tuple with this name. Thus the 
invoker executes 

out(ProcName, me, invocation-paranx) ; in (me, result-params) . 

Linda, of course, can be implemented on top of RPC as well’-so which kernel 
is preferable, where should we start? Obviously there is no absolute answer, but 
it may not be obvious that, for better or worse, Linda lends itself to a style of 
programming that is different from RPC style. Linda programs exist that would 
be so awkward under RPC that they are effectively ruled out of consideration. 
These idiomatic Linda programs depend, by and large, on distributed data 
structures-data structures that may be manipulated by many parallel processes 
simultaneously. Such structures are illegal in most remote-procedure-call lan- 
guages, which require instead that shared data objects be encapsulated in manager 
processes; operations on shared objects are carried out, on request, by the manager 
process on the user’s behalf. Manager processes are safe and reasonable, but 
there are important cases where distributed data structures seem by far more 
natural and more efficient; a useful parallel language (to our way of thinking) 
will support both. 

Distributed data structures are interesting for a number of reasons. In the 
manager-process model, all processes must funnel their shared-data manipula- 
tions through the manager, and there are potential costs in parallelism and in 
run time interprocess-communication and process-management overhead. Op- 
erations that might safely have been carried out by many user processes in 
parallel are performed by the (single) manager process one at a time; every 
operation on a shared object entails a conversation with its manager-process 
chaperone, and creating a new sharable data object requires either the creation 
of a new process or an increase in the load on an existing manager. Harder to 
quantify but perhaps of greater importance, the manager-process model preju- 
dices the development of a truly parallel programming style by forcing parallel 
programs into conventional, sequential molds. It would not be surprising if 
distributed data structures proved, in many cases, to be the most natural com- 
pliment to distributed algorithms. 

‘The CSP-Occam output statement [15, 161 . 1s another remote-procedure-call variant of sorts: 
executing a CSP output statement forces the sender to suspend until its message is received by the 
target process; the target process may thereupon return only an “okay-to-proceed” synchronization 
signal to the sender, where a remotely-invoked procedure would have been free to return whatever it 
liked. In any case, both the remote invocation and the CSP output statement deliver a message to an 
explicitly-designated receiver and suspend until the receiver gets it, both of which distinguish them 
from Linda. 
* With (most likely) prohibitive inefficiency, however: we would need to provide a central server to 
manage tuple space. 

ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986. 



114 l Nicholas Carrier0 and David Gelernter 

The simple matrix-multiplication program whose performance is discussed in 
Section 5 is a good illustration. The program consists of an initialization process, 
a cleanup process, and at least one but ordinarily many worker processes. Each 
worker is repeatedly assigned some element of the product matrix to compute; it 
computes this assigned element and is assigned another, until all elements of the 
product matrix have been filled in. If A and B are the matrices to be multiplied, 
then specifically-The initialization process uses a succession of out statements 
to dump A’s rows and B’s columns into TS. When these statements have 
completed, TS holds 

("A", 1 , llrow'l, A’s-first-row) ("B", 1 , "col", B’s-first-column) 
("A", 2, "row", A’s-second-row) ( "B'l , 2 , q*coln , B’s-second-column). 

. . . . . . 

Indices are included as the second element of each tuple so that worker processes, 
using structured naming, can select the ith row or j th column for reading. The 
initializer then adds the tuple 

("Dot", 1, dim, "A", "B", "C") 

to TS, and terminates. Here 1 indicates the next element to be computed, dim 
is the dimension of the input matrices, "A" and "B" are the inputs and "Cl' is 
the name of the product. 

Each worker process repeatedly decides on an element to compute, then 
computes it. To select a next element, the worker removes the “Dot” tuple from 
TS, determines from its second field the indices of the product element to be 
computed next, and reinserts “Dot” with an incremented second field: 

in("Dot", var NextElem, var dim, var matl, var mat2, var 
prod); 

if (NextElem < dim*dim) 
out("Dot", NextElem + 1, dim, matl, mat2, prod); 

i = (NextElem - l)/dim -I- 1; 
j = (NextElem - l)%dim + 1; 

The worker will now proceed to compute the product element whose index is 
(i, j). Note that if (i, j) is the lust element of the product matrix, the “Dot” tuple 
is not reinserted. When the other workers attempt to remove it, they will block. 
A Linda program terminates when all processes have terminated or have blocked 
at in or read statements. (Blocked workers can also be restarted on a new 
problem simply by dropping in a new “Dot” tuple.) 

To compute element (i, j) of the product, the worker executes 

read(mat1, i, var row); 
read(mat2, j, var col); 
out(prod, i, j, DotProduct(row, col)); 

Thus each element of the product is packed in a separate tuple and dumped into 
TS. (Note that the first read statement picks out a tuple whose first element is 
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llA1l and second is the value of i; this tuple’s third element is assigned to the 
formal row.) 

The cleanup process reels in the product-element tuples, installs them in the 
result matrix prod, and prints prod: 

for (row = 1; row c= NumRows; row++) 
for (co1 = 1; co1 + NumCols; col++) 

in(prod, row, col, var prod[row] [col]); 
print prod; 

This simple program was easy to write and strikes others (in our limited 
experience) as easy to understand. It has the nice property of scaling transpar- 
ently to accommodate any number of worker processes; it might be developed 
and debugged with a single worker, but thereafter it will run just as well with ten 
workers or a hundred. Unlike the “quasi-systolic” matrix program described by 
Shapiro [17], it does not require the system to fork a new process for every 
element in the result matrix; the user creates as many processes as seem 
reasonable given the available resources at any particular run. Finally, as we 
discuss in Section 5, it performs well. Note that many types of algorithms may 
be programmed within this general task-queue model [14]. 

This little matrix program illustrates many of the important differences 
between distributed data structures and manager processes. The input matrices 
are distributed data structures; all worker processes may read them simultane- 
ously. In the manager-process model, processes would send read-requests to the 
appropriate manager and await its reply. The “Next” tuple is a distributed data 
structure: all worker processes share direct access to it. In the manager process 
model, again, worker processes would read and update the “Next” counter 
indirectly via a manager. The product matrix is a distributed data structure, which 
all workers participate in building simultaneously. 

Notice how poor a conceptual model procedure-invocation provides for the 
interraction between the workers and the cleanup process. Workers don’t need 
to suspend processing, each time they send a message to the printer, until the 
message is received. To do so would be a waste of time. Of course we can fix this 
problem, in the remote-procedure context, by forking a proxy process to perform 
the remote call and be suspended until it returns, or by providing a special 
asynchronous-invocation operator, as Qlambda does. Neither fix addresses the 
conceptual problem: remote-procedure advocates rely on the naturalness of their 
model, but the relationship between the workers and the cleanup process is not 
that of a caller to a callee. The same holds of interprocess relationships in many 
other simple parallel program structures-consider the relation between one 
segment and the next in a parallel pipeline, for example. 

Remote procedure calls (as noted) are simple to build in Linda. What is 
interesting, though, is the number of cases in a single short program where they 
are not needed and not wanted-where direct dealings with a distributed structure 
are at least as natural and efficient, and arguably much more so. And note that 
matrix multiplication was singled out, not for anything special in its relationship 
to Linda, but simply because it was a readily-understood application, easy to 
write and to test. 
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3. LINDA ON BUSSED NETWORKS 

Linda has been widely regarded as posing a difficult implementation problem. 
Thus Andrews and Schneider [2], after noting that Linda’s global-naming scheme 
is well suited to programming client-server interactions (as discussed in [ll]), 
write as follows in discussing the TS operations: 

Unfortunately, implementing mailboxes can be quite costly without a specialized commu- 
nications network . . . When a message is sent, it must be relayed to all sites where a receive 
could be performed on the destination mailbox; then, after a message has been received, all 
these sites must be notified that the message is no longer available for receipt. [9] 

While the authors misunderstand the nature of Linda’s primitives (which resem- 
ble mailbox operations only superficially), their misgivings are easy to credit; the 
distributed, globally-accessible character of tuple space allows a naive implemen- 
tation great latitude for running poorly. Fortunately, on the S/Net, as on most 
bus and ring interconnects, it takes no longer to send to all n network nodes 
than to one. Thus it is in fact no more time-consuming (in the sense of elapsed 
clock time) to relay a tuple “to all sites where a receive could be performed” 
than it is to relay a message to any single site, nor is it more time-consuming to 
inform all sites that a tuple has been received, and should be deleted, than it is 
to inform the sender alone. There are indeed inherent costs in implementing 
Linda instead of plain send-message and receive-message, notably because the 
broadcast protocols we use require every processor on the bus to handle every 
message. On networks where there are no front-end communication processors 
(like our current S/Net), processors are therefore interrupted far more frequently 
than they would be under plain message-passing-but we still get good perform- 
ance from our kernel. (These interrupt-handling costs will in any case largely 
disappear on the next-generation S/Net, now being tested; it provides commu- 
nication coprocessors to absorb bus interrupts.) 

Our implementation buys speed at the expense of communication bandwidth 
and local memory; the reasonableness of this trade-off was our starting point. 
(Variants are possible that are more conservative with local memory; we discuss 
one below.) 

In the simplest version of the scheme-the version we implemented-executing 
out ( t ) causes tuple t to be broadcast to every node in the network; thus every 
node stores a complete copy of TS. Executing in (s ) triggers a local search for 
a matching t. If one is found, the local kernel attempts to delete t network-wide 
using a procedure we discuss later; if the attempt succeeds, t is returned to the 
process that executed in ( ) . (The attempt fails only if a process on some other 
node has simultaneously attempted to delete t, and it has succeeded). If the local 
search triggered by in ( s ) turns up no matching tuple, all newly-arriving tuples 
are checked until a match occurs, at which point the matched tuple is deleted 
and returned as before. read ( ) works in the same way as in ( ), except that 
no tuple deletion need be attempted; as soon as a matching tuple is found, it is 
returned immediately to the reading process. 

The delete protocol must satisfy two requirements: all nodes must receive the 
“delete” message; if many processes attempt to delete simultaneously, only one 
must succeed. The manner in which these requirements are met will depend, of 
course, on the available hardware. 
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When some node fails to receive and buffer a broadcast message, a negative- 
acknowledgement signal is available on the S/Net bus. The first delete protocol 
we implemented therefore had two parts: the sending kernel rebroadcasts a 
“delete t” message repeatedly until the negative acknowledgement signal is not 
present; it then awaits a message, reliably transmitted point-to-point from the 
node on which t originated, informing it either that “t has been assigned to you: 
proceed,” or “t has not been assigned to you: wait.” In this protocol, then, the 
kernel on the tuple’s origin node is responsible for allowing one process, and only 
one, to delete it. 

The following is an informal argument that this protocol works correctly. We 
know, once node k has completed its “broadcast the delete message” phase, that 
every node in the network has been informed that t is gone, no longer available 
either for reading or removing. If some node hadn’t gotten the word (if it had 
failed to receive k’s broadcast message), a negative acknowledgement would have 
been present on the bus and k would have retried the broadcast. (Note that delete 
messages are idempotent-instructions to delete a tuple that isn’t there are 
ignored.) Given that all nodes have been informed that t should be deleted, 
suppose k needs to rebroadcast its delete message several times, and the origin 
node’s response arrives during this period-will in complete correctly? It will, 
so long as we insure that the kernel is prepared to respond properly to arbitrary 
messages received during the delete phase, and then to resume the delete phase- 
which we have done. Suppose other nodes are simultaneously attempting to claim 
t-will only one of them be told to proceed? Yes. The origin node can easily 
make sure that it returns only one “proceed” message for each tuple in its custody. 
Will at least one node receive a “proceed” message? We can be sure that the 
origin node received the delete request, because if it hadn’t, a negative acknowl- 
edgment would have been raised during phase one. The “proceed” message itself 
is sent via a reliable point-to-point protocol: It is retried until the intended 
receiver gets it. 

We have noticed that broadcast failures on the S/Net are very rare; in fact, 
we’ve never seen one. If broadcast were necessarily reliable, the delete protocol 
would be simpler: a “delete t” message is broadcast; if the broadcasting node 
reads its own message back off the bus with no other “delete t” message 
intervening, the delete attempt has succeeded. If some other node’s “delete t” 
arrives first, the attempt fails. When several nodes attempt to delete simultane- 
ously, in other words, the kernel that grabs the bus first succeeds. We have used 
this procedure in combination with our ability to detect failure to develop a 
second delete protocol. We assume that broadcast is reliable, and use “reliable 
bus” delete; a failed-broadcast signal, should one ever occur, triggers the execution 
of a higher-level (potentially complicated) recovery routine. 

The protocols outlined above depend heavily on the availability of a negative 
broadcast acknowledgment on the S/Net bus. We are now in the process of 
completing a Linda kernel for an Ethernet-based Micro-Vax network, where 
there is no such signal. One approach in this new environment therefore requires 
(1) that each node remember the sequence number of the last message received 
from each other node, and send a back-order request if and when it notices a gap 
(this simple message-logging scheme is related to the technique described by 
Chang and Maxemchuck [5]); (2) that reads as well as ins get clearance from 
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the tuple’s origin node-in the case of read, if node k misses a delete message, 
a tuple that it believes is available may already have been deleted, only the tuple’s 
origin node (which alone may authorize a delete) knows for sure. Many other 
protocols are possible, and we expect to experiment with several. 

The S/Net’s kernel is costly in storage required, because tuple space is repli- 
cated. We currently allocate approximately 300 kbytes worth of tuple storage 
space on each node, out of total RAMS ranging from 600 kbytes to 1.2 Mbytes. 
As noted, other kernel designs are possible that are more conservative with 
storage space; we are now implementing one. In the new protocol, designed by 
Jerry Leichter, out requries only a local install; in ( s ) causes template s to be 
broadcast to all nodes in the network. Whenever a node receives a template s, it 
checks s against all of its locally-stored tuples. If there is a match, it sends the 
matched tuple off to the templates’s node; if not, it stores the template for x ticks 
(checking all tuples newly-generated within this period against it), then throws 
it out. If the template’s origin node hasn’t received a matching tuple after x ticks, 
it rebroadcasts the template. More than one node may respond with a matching 
tuple to a template-broadcast; when a template-broadcaster receives more that 
one tuple, it simply installs the extras alongside its locally-generated tuples and 
sends them onward when they are needed. This scheme doesn’t require reliable 
broadcast, and it doesn’t require tuples to be replicated on each node, so per- 
node storage requirements are much lower. 

In the current S/Net kernel, each node’s copy of tuple space is hashed on a 
tuple or template’s first component (which must, recall, be an actual). Tuple 
matching (that is, the mapping of newly-arrived tuples to waiting templates, or 
new templates to stored tuples) is guided by control words stored in each tuple 
or template’s header. This hashing scheme is less than ideal and will eventually 
be replaced. The problem is a common and useful Linda program pattern in 
which a large number of tuples have the same first field and are distinguished by 
some other field, consider the matrix program, for example. Hashing breaks down 
under these circumstances; for efficiency, we generally list the index first: thus 
(1, "A", A ‘s-first-row ) . (Tuples are arranged in this fashion in the S/Net matrix 
program we tested.) The user should not have to worry about the kernel’s hashing 
scheme, though, and we are now investigating a table organization in which each 
tuple field is hashed separately, and the shortest hash chain guides the tuple- 
match search. 

4. DETAILS OF THE S/NET LINDA KERNEL 

The S/Net we worked on consisted of 8 MC-68000’s with local memory ranging 
between 650 to 1200 kbytes, and a VAX 11/750, all connected by a word-parallel 
bus whose capacity is about 80 Mbits per second. There are no DMA channels 
or front ends (although in future iterations of this hardware there will be). The 
VAX handles Unix systems calls for the 68000’s; Unix calls are trapped by 
monitors on the 68000’s and sent to the VAX over the S/Net bus. 

The S/Net Linda kernel currently consists of a set of systems calls that allow 
a user to write C programs that run on several processors and communicate using 
ins, outs and reads. The Apollo Linda compiler shields the user from these 
low-level calls; we have yet to port it to the S/Net, but this will be done soon. 
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TIME 

in(a, b, c) 
User Level 

out(a, b, c) 

Fig. 1. Linda S/Net kernel 
system calls. 

match-loop(ptp-copy) 

User Level 

t 

(The Apollo Linda compiler is simply a C preprocessor, so the move will be easy.) 
The kernel is written in C with the exception of one assembly routine tha sends 
data over the bus, and the few lines of code that invoke the Linda interrupt 
handler (written in C) upon the arrival of any Linda-format message. This 
dispatch-to-Linda routine is necessary because Linda processes and messages 
may coexist with others on the S/Net; our interrupt handler is installed above 
an S/Net monitor that invokes it when appropriate. 

Figure 1 illustrates the ways in which the kernel routines interact. Two data 
structures are fundamental A ptp (proto-tuple packet) is a “tuple descriptor” 
that contains, for any tuple or template (recall that tuples and templates are 
structurally identical), the value or a pointer to the value of each actual element, 
and the type of each formal element. ptp’s are fixed-size structures, because our 
implementation imposes a limit of six fields per tuple beyond the first field- 
which is required to be either a string of at most sixteen characters or a long 
integer. (The tuples or templates themselves are not of fixed size, though. We 
currently support tuple elements of type integer, string, and “block”-where a 
block is an array of longwords and may be used to store reals, arrays and so 
forth.) tb's (tuble blocks) hold tuple packets in a form that is suitable for 
transmission across the bus. They come in two sizes: 20 bytes of header infor- 
mation plus either 100 or 512 bytes of data. When the routine ptp-tb( ) 

converts a tuple descriptor to a series of tuple blocks, it attempts to fit the tuple 
into the data area of a small tb. If the tuple spills over, additional large tb's are 
linked on until the tuple fits. (Here and throughout, these numbers were chosen 
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by intuition. After we have gained some experience working with the implemen- 
tation, we will be in a position to refine them.) 

Matching of in templates to out tuples is done by match-loop. Tuples are 
hashed on their first element into one of 256 linked tuple lists. Executing an in 
causes an invocation of match-loop ( ) , which searches the appropriate hash 
list for a tuple to receive. If it finds one it attempts to delete it, as discussed in 
Section 3. If it doesn’t find one, or if its delete attempt fails, it blocks pending 
arrival of a matching tuple. (We have not yet implemented multiprocessing 
within each S/Net node; for the time being, then, since each node runs only a 
single Linda process, a Linda process may block simply by spinning on a flag 
that is eventually toggled by the kernel in response to an interrupt. The Apollo 
Linda kernel does implement context-switching, though, and since the Apollo 
kernel is also a C program for the MC-680000 processor, adding per-node 
multiprocessing on the S/Net should be simple and will be undertaken soon.) A 
new tuple’s arrival triggers a search for a matching template, and if a match is 
found the kernel proceeds as above. 

It is worth noting that, although the kernel’s organization may seem a bit 
complex, it has been designed to allow flexibility in deciding at some future time 
on an optimal division of work between the compiler and the run time kernel. 
The work done at run time by make-ptp( ) (which builds tuple descriptors) 
can in fact be done almost entirely at compile time. The same holds in some 
cases for ptp-tb ( ) , which converts descriptors into tuple packets-although 
how frequently this is so depends on the compiler’s sophistication. Tuples whose 
elements are all constants, for example, can obviously be packetized at compile 
time. A slightly more sophisticated compiler might also move packetizing out of 
a loop when tuple elements are loop invariant, and so on. 

5. PERFORMANCE 

Our first goal in experimenting with the S/Net kernel was to establish how long 
the basic TS operations, out and in, take to perform. We then attempted to 
refine our understanding of the kernel’s performance by studying a simple Linda 
application program. 

In order to estimate the time required to perform in's and out's we ran the 
following programs on separate processors: 

PING : 

PONG : 

count = 0; 
while(TRUE) ( 

in("ping"); 
if (*count == LIMIT) break; 
out(**pong**); 

I 
print elapsed time; 
while(TRUE) ( 

out("ping"); 
in("pong"); 

Since we wanted to measure basic communication cost, we moved the support 
calls make-ptp and ptp-tb out of the loops, which is equivalent to assuming 
the existence of a compiler that is able to recognize that the strings vlping*' and 
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rrpongsv are constants. Elasped time was measured using the 68000’s clock via 
routines supplied by the existing operating system. 

Running with LIMIT equal to 20000 (i.e., 40000 out-in pairs) we measured 
a rate of 720 pairs per second (where a pair is out ( "ping" ) plus in ( "ping" ) 
or out ( ~~pong~~ ) plus in ( "pang" )) with the first delete protocol and 770 pairs 
per second with the second, simpler one. So the evidence suggests that a 
maximally-simple out-in transaction, from kernel entry on the out side to 
kernel exit on the in side, excluding, as noted, the cost of packetizing, takes 
about 1.3 ms with the fast delete protocol and 1.4 ms with the slow one. Other 
similar experiments support these general figures. The experiments were repeated 
various times with similar results, ordinarily with little or no nonLinda traffic 
sharing the S/Net bus with us. 

We sought a better idea of the kernel’s performance by implementing the 
matrix program discussed above. Figures 2 and 3 show measured execution time 
for Linda programs using one through four worker processes (one through six in 
the 32 x 32 case) in addition to one other process that first initializes and then 
cleans up. Each process runs on a separate processor, so two processors were 
active in the “one worker process” case, three in the “two workers” case and so 
forth, up to seven processors in the “six workers” case. We measured run time 
from the startup of the initializer to the point where the cleanup routine has 
removed the last product element from TS. (Cleanup then goes on to print the 
product matrix, and printing time is excluded from our measurement.) We are 
assuming an especially stupid compiler: we are measuring at run time tuple- 
formatting computations that would be avoided or done at compile time given a 
more sophisticated compiler. The graphs also show the time a standard C program 
(running on a single processor, or course) required to do the multiplication. Even 
for a matrix as small as 16 x 16, 3 Linda workers were enough to beat the C 
program. For large matrices, just two workers were enough. 

Figures 2 and 3 show another interesting datum as well. In every case there 
existed an a and b such that a curve of the form (a/n) + b would fit our datapoints 
precisely; our performance curves, in other words, have the shape of linear speedup 
curves. We interpret this data as suggesting that a represents parallelizable time 
while b represents fixed time. Execution time of the Linda program, in other 
words, can be divided into two parts: processing that can be split among the 
workers (a) and processing that is inherently sequential (b). Inherently sequential 
processing includes initialization time and time spent in kernel interrupts. 
Parallelizable time is composed of the time needed for the computations and for 
that portion of the communication burden that occurs outside of interrupt- 
handling and can therefore be carried out in parallel. 

Note that our goals in this experiment were to learn something about the 
performance of our kernel, not to build a matrix multiplier that is fast in absolute 
terms. The boards we are working with do not have floating point chips-floating 
point multiplications are done in software. It is interesting to note, though, that 
when we ran a version of this routine using long integer instead of floating-point 
multiplies, the speedup curved that resulted were almost identical in shape to 
the ones in Figures 2 and 3, although all times are scaled down in absolute terms. 

We are now in a position to make some further estimates of low-level com- 
munication costs. The fixed, sequential cost for a 64 x 64 multiplication is 
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Fig. 2. Execution time versus j 
number of worker (DOT com- 
puting one element of result 

!2 

matrix). 0 = measured value; 0 _ 
-= a/n + b; - - - = uniproces- e 
sor C. 

Number of WorKcr Processors 

roughly 8.2 seconds (s) (b above). This is largely made up of the 0.6s we have 
measured as required initialization time (the time needed to dump the input 
matrices into TS), plus the time needed, for each element of the product, to 
handle interrupts for two out - in pairs, one for the “Dot” tuple and one for the 
result. We ran this program with the longer delete protocol only; under this 
protocol, three interrupts are handled by each kernel in the course of handling 
an out - in pair. The net result is 0.3 ms per interrupt-driven invocation of the 
Linda kernel. 
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We went on to test a second version of the algorithm in which the granularity 
of parallelism is coarser and communication costs are correspondingly lower. In 
this version, worker processes compute an entire row of the product, not just a 
single element, in each task step. Figure 4 shows results for matrices with 
dimension 16, 32, and 64 using 1, 2, 3, 4 and 5 worker processors. (Data for 
16 x 16 has been scaled up by a factor of twenty.) Here we have plotted our data 
against curves that represent ideal speed-up of the C program. The solid curves 
intersect the ordinate at a point which represents measured performance of the 
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Fig. 4. Execution time versus number of workers (DOT computing one row of the result 
matrix). 0 = measured value; q = measured value * 20; - = (time of Q/n; --- = (time of 
C * 20)/n. 

C version: thus in the 64 x 64 case, for example, C took 113s (Linda with a 
single worker required 116s); the curve represents the effect of simply turning 
up C’s speed linearly-doubling it, tripling it and so on. For the two larger 
dimensions we observe a good fit, for all five processors, of Linda time to the 
idealized C speedup curve. 16 x 16 is not as good, but even so the addition of just 
one extra processor is sufficient for this version to finish faster than t,he 
uniprocessor C program. 

The astute reader may have noticed that the data points for odd numbers of 
processors are slightly worse than for even numbers. This is most pronounced in 
the 16 X 16 case for five processors. The explanation lies in the relatively large 
granularity of parallelism in this program. Consider the extreme case. For the 
16 x 16 problem, there are 16 rows of the result matrix to compute. Given four 
workers, each computes four rows. Given five, four will need to compute only 
three rows, but the fifth still needs to compute four, exactly as in the four-worker 
case. Despite the extra worker we must still wait, then, for a full four rows to be 
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computed in sequence-and so it is not surprising that the four and five worker 
versions take equal amounts of time to finish. In the finer-grained, element-by- 
element version of this problem, we have 256 tasks to distribute instead of 16, 
with a maximum of 64 tasks for four workers and 52 for five-an appreciable 
difference. Communications costs, on the other hand, are much greater in the 
fine-grained version, and the net result is that row-by-row ran twice as fast as 
element-by-element. 

One more interesting fact about the row-by-row version: if we were chaining 
matrix multiplications together-if we were waiting to multiply the product of A 
and B by C-then row-by-row multiplication of A and B produces results in the 
optimal sequence and the correct format for pipelining the two multiplications; 
multiplication of A x B by C can begin as soon as the first A X B worker-task 
completes. 

Is matrix multiplication a reasonable test case? Note that the Linda solution 
has more generality than we need. The matrix program assigns tasks to workers 
dynamically, but in a problem as simple and regular as matrix multiplication, we 
could as well have assigned each of n workers l/n. of the product matrix to 
compute. (It’s interesting to note, however, that even with a problem as orderly 
as matrix multiplication, dynamic scheduling might be the technique of choice if 
we were running on an inhomogeneous network, on which processors vary in 
speed and in run time loading. We’ve been studying just such a network-a 
collection of Vaxes ranging from Micro-Vax I’s to 8600’s.) What is interesting, 
then, is the fact that we measured good speedups despite (unnecessary) dynamic 
scheduling; a generalization of this same solution framework will work on 
irregular problems where dynamic scheduling is important. (We discuss such 
problems in [4].) 

5.1 Limitations of our Test Results 

The Linda kernel has only recently been completed, and we have much more 
testing to do. Most important, we can not yet say how our kernel will run on 
more than eight nodes; eight is the maximum available to us on our machine. 
We will have some basis for prediction once we know what fraction of the 
S/Net’s total communication capacity our running programs consume; we are 
now developing tests that will measure this. Several points are worth mentioning, 
though. Note first that, given programs like the matrix multipliers, total bytes 
transmitted over the bus depends on the size of the input matrices only, not on 
the number of parallel workers. Whether we run a single worker or a hundred, 
the “Dot” tuple is ined and outed exactly once for each element of the product, 
and so fourth. We don’t increase total bytes to be transmitted, then, when we 
add processors; we increase offered load insofar as we attempt to send the same 
number of bytes within a shorter interval. Test programs measured by other 
researchers at Bell have not succeeded, however, in using more than about 20 
percent of the S/Net’s available capacity even when doing nothing but repeated 
sends. This figure suggest to us that there is room for much more speedup as we 
add workers beyond the number we have been able to test so far, and that the 
TS primitives will continue to run well as total processors increase. We won’t 
know for sure, though, until we have access to a larger S/Net. 
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6. CONCLUSIONS 

Linda offers parallel programmers a new way of looking at network communi- 
cations systems. Standard communication protocols require that information be 
handed around from process to process; no process can unburden itself of new 
data without first determining where the data should go, and then handing it 
along explicitly. Linda processes, on the other hand, are anonymous drones 
sharing access to one data pool. Shared memory has long been regarded as the 
most flexible and powerful way of sharing data among parallel processes-but a 
naive shared memory is hard to implement without hardware support, and 
requires the addition of synchronization protocols if it is to be safely accessed in 
parallel. In Linda, however, the shared memory’s cell-size is the logical tuple, not 
the physical byte, and so it is coarse-grained enough to be supported efficiently 
without special hardware. And because, in Linda’s shared memory, data may not 
be altered in situ-it is accessible via read, remove and add instead of the 
standard read and write-it may safely be shared by any number of parallel 
processes. 

Several limitations and one nonlimitation of this work should be noted. A 
major limitation is the cursory way in which we have dealt with questions of 
reliability and failure. A Linda environment is not a particularly vulnerable one; 
in some ways, failure or unreliability of the nodes or the interconnect are easier 
to handle in a Linda environment than in a conventional one. Regardless, we 
have not yet dealt carefully with failure, and we will clearly need to before our 
implementation is complete. There is another limitation of sorts in the fact that 
our focus in the S/Net project to date has been on the Linda primitives them- 
selves, not on parallel applications that use them; applications programming 
using our Linda kernel is a current research topic both for ourselves and for a 
parallel-application project at Bell. 

One further point that will perhaps be taken as a limitation is the limited 
extensibility of the S/Net architecture and the limited generalizability, in this 
sense, of our results. The current S/Net bus will not support more than sixty- 
four nodes: A VLSI-based reimplementation will accomodate no more than 256. 
The S/Net and its Linda kernel will not suffice for thousand or multithousand 
node super-computer networks. We have in fact studied the implementation of 
Linda on large hypercube-connected linked networks [12], and a Linda imple- 
mentation for such a machine is now in design. More important, the limited 
extensibility of the S/Net is irrelevant to our interests and goals in this project, 
and we do not regard it as a limitation. This is so for three reasons. First, we 
believe that a working fifty- or one hundred-node multicomputer that application 
programmers could actually use (one whose potential power was conveniently 
accessible to a wide community of programmers, not limited to those with 
intimate knowledge of the machine), would be highly powerful and desirable tool. 
Such a machine has certainly not (to our knowledge) been achieved to date. 
Second, smaller networks will continue to be of interest in the design of advanced 
workstations; investigation of a parallel workstation (one that uses the Linda 
kernel to support a parallel interpreter for Symmetric Lisp [ 141) is a major future 
goal of the S/Net-Linda project. Finally, the techniques we are investigating on 
the S/Net should be applicable to much larger bussed networks as well. 
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Linda is intended as a general-purpose programming vehicle both for parallel 
applications and for distributed systems. Our S/Net work to date has included, 
besides the matrix multiplication routines, experiments with parallel LU decom- 
position with partial pivoting, and with a VLSI simulator; some of this ongoing 
work is discussed in [4]. The Micro-Vax Linda kernel is intended mainly for 
distributed systems programming; previous work with an Apollo-workstation- 
based Linda simulator included concurrent-system problems like Dijkstra’s din- 
ing philosophers and the readers-writers problem, the Jacobi iterative method 
for differential equations, pipeline programs (a square-root approximator, for 
example), parallel sorting and prime-number-generating routines that build 
process pipelines dynamically in outward-telescoping fashion, and a concurrent 
version of the Apollo Linda preprocessor itself. 

As a communications kernel for a bus-connected network, S/Net-Linda falls 
generally within the category of several others that have been reported in recent 
years, including the Birrell and Nelson RPC kernel, Cheriton and Zwaenpoel’s 
V Kernel [7] and Spector’s Remote Operations kernel [18], among others. Linda 
differs fundamentally from all three in what it offers the user; the V kernel 
provides RPC-like synchronous message passing (in addition to an efficient 
internode file transfer service), and Spector provides flexible systems-level pro- 
tocol-construction tools to the systems programmer. It is nonetheless worth 
pointing out that Linda’s performance, within latitude of all the obvious incom- 
parabilities, is roughly in league with the others (assuming the software and not 
the microcoded version of Spector’s system). In the V kernel, the synchronous 
send of a short message, from send-message until the sender receives a reply, 
requires 2.56 ms3; a generally comparable operation in Linda requires roughly 
2.6 ms with a null message. (The figure for short messages is about the same). 
Birrell and Nelson’s reported 1.1 ms for remote invocation of a procedure of no 
arguments that returns no results-the figure represents elapsed time from 
invocation through remote procedure execution and return-is considerably 
faster; but Linda and the V Kernel both run on MC-68000’s, the RPC kernel on 
the much-faster Dorado. 

Since Linda provides a form of logically shared memory, it might be deemed 
reasonable to compare it to physically shared memory systems. Two separate 
questions are possible: Is Linda as expressive as the programming systems 
provided with physically shared memory machines? Does it run as well? For 
now, the second question is unanswerable, because we haven’t implemented 
Linda on a shared memory machine. Comparing Linda on the S/Net to something 
else on a shared memory architecture tells us nothing, because we have not 
controlled for hardware: In general, we expect communication to be cheaper on 
physically shared memory systems; we expect them to be capable of realizing 
speedups from programs that are far more communication-intensive than any- 
thing we can run efficiently using S/Net-Linda-but of course, we’d also expect 
Linda on a shared-memory machine to run faster than S/Net-Linda. Regarding 
the first question, programming primitives developed for shared-memory archi- 
tectures cannot on the whole be expected to run, as Linda does, on network 

3 A second paper [7] quotes a higher figure for a modified system, but the lower number reflects a 
kernel that is closer to ours. 
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machines. Once again, we are dealing with incomparables. For the sake of 
argument, the programming tools that have been made available on shared- 
memory architectures seem generally to be conceptually lower-level than Linda’s 
primitives. Consider, for example, the Chrysalis operating system for the BBN 
Butterfly [9]. Global names in Chrysalis may refer to memory segments, events, 
“dual queues,” or processes. (In Linda, global names refer only to tuples; Linda 
processes never need to deal directly with memory segments or with other 
processes.) Chrysalis provides operations on segment attribute registers for 
purposes of memory sharing, and events (with associated event handlers and 
event blocks), together with “post” operations, for synchronization and commu- 
nication. (Events are always associated with processes; “post” may send either 
to an event or to a dual-queue.) There are doubtless cases in which Chrysalis 
primitives are more appropriate than Linda primitives; in most cases, we will 
prefer Linda’s simplicity. 

The S/Net architecture has features that suit it particularly well to our kernel, 
and we have made significant use of them, as noted. In planning new Linda 
kernels we are not restricted, however, either to the S/Net in particular or to 
bus-based networks generally. The Micro-Vax kernel (which we have already 
used for some preliminary matrix-multiplication experiments) is very similar to 
the S/Net’s, but Linda kernels for two different hypercube multicomputers are 
also in design, and their lower-half communication routines are very different 
(though the upper-half routines that set up and manage tuple space are largely 
the same). Linda does not require shared memory, but it is a natural match to 
multicomputers that happen to provide it; we believe that Linda will be easy to 
implement on shared memory machines, and that it will prove valuable as a 
clean, simple way of parcelling out access to the shared memory resource. This 
is potentially complex to control in a parallel-programming environment. 

Despite the varied architectures we are now dealing with, the S/Net’s special 
importance to the Linda project can not be denied. Some of our most interesting 
current collaborative work involves developments in S/Net hardware that will 
allow the Linda kernel to run better. In the short term this work involves 
communication coprocessors that will soak up the heavy bus-interrupt load our 
kernel generates, leaving the host processors free to compute in peace. For the 
longer term, we are investigating the design of a VLSI “Linda chip” that executes 
a good part of the kernel in hardware. All of our work to date tends to the 
conclusion that the tuple-space operators are in fact a good basis for a parallel 
machine language-a simple set of flexible, powerful operators to be supported 
directly by a multicomputer’s communication hardware. These basic operators 
are accessed most directly via Linda, but higher-level languages may be imple- 
mented above them as well. Our goal of a hardware Linda Machine is likely to 
be realized first in the S/Net context. 
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