
at any point. In addition, it is possible to experiment 
with the efficacy of minor variations such as a deeper or 
shallower search for candidates, more frequent global 
iterations between phases 1 and 2, the use of coding 
schemes to prevent candidates from reentering candidate 
lists immediately after being rejected, etc. This type of 
manageability makes it easier to understand how the 
algorithm behaves and tailor the algorithm to particular 
types of problems. 

Much remains to be done. The degree of nonopti- 
mality caused by iterating between phases 1 and 2 rather 
than combining them should be explored. The handling 
of key orders in the current algorithm must be revised 
and made more general (a maximum of two keys are 
allowed for each dataset in the current implementation). 
Further refinement of methods for estimating execution 
costs would increase the applicability of the results. 

This paper has presented an explanation and dem- 
onstration of an approach for producing answers to a 
puzzle that confronts system designers every day. The 
next step is to apply this approach in facilitating the 
design of real systems. Whether human designers really 
need help of this type is actually an empirical question 
that can be studied by comparing the efficiency of actual 
system designs with tha~t of designs generated by algo- 
rithms such as the one presented here. Whether or not 
such algorithms outperform human designers, the need 
for their development is clear. To implement automatic 
programming capabilities in which people describe the 
substantive processing to be accomplished and machines 
translate such descriptions into executable code, design 
choices will have to be made automatically. 
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Programming for distributed and other loosely 
coupled systems is a problem of growing interest. This 
paper describes an approach to distributed computing 
at the level of general purpose programming languages. 
Based on primitive notions of module, message, and 
transaction key, the methodology is shown to be 
independent of particular languages and machines. It 
appears to be useful for programming a wide range of 
tasks. This is part of an ambitious program of 
development in advanced programming languages, and 
relations with other aspects of the project are also 
discussed. 

Key Words and Phrases: distributed computing, 
modules, messages, assertions 

CR Categories: 4.22, 4.32 

1. Introduction and Overview 

When the University of Rochester Computer Science 
Department was started in 1974, our initial research 
goals included taking a really serious look at program- 
ming languages. There were two underlying assump- 
tions: (l) that programming languages had changed little 
in the previous decade despite advances in many related 
areas and (2) that one could envision compilers as so- 
phisticated as the best current artificial intelligence pro- 
grams. We began by trying to isolate the most important 
concepts available in programming systems to see how 
they interacted with each other. The project was called 
PLITS (Programming Language in the Sky) and, al- 
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though it has come down a little closer to the ground, 
the name has stuck. The study is far from complete, but 
we claim to have an interesting preliminary result, 
namely that a judicious incorporation of three constructs: 
modules, messages, and assertions, can lead to program- 
ming language systems of  considerable power and ele- 
gance. 

This paper concentrates on the implications of  the 
continuing advance of  distributed computing On the 
design for high-level programming languages. Many 
problems of  distributed computing (DC) do not arise in 
conventional programming. Solutions of  these problems 
lead in a natural way to new programming language 
constructs. A distributed computation is spread among 
several computers which are assumed to be connected 
by some communication paths. For the foreseeable fu- 
ture these communication paths will be less reliable and 
have lower bandwidth than is available in the processors 
themselves. This leads us to expect that DC programs 
will be made up of  largely self-contained modules which 
will share very little information directly. One would 
also want to have the communication between modules 
be some asynchronous message protocol, rather than 
subroutine or coroutine calls where one module would 
always have to wait for a response from the other. It 
appears to us that the module-message paradigm is 
inherently well suited to DC and is likely to appear in 
some form in any proposed high level language for DC. 
Even if we restrict consideration to a single machine, 
modules and messages seem to provide important advan- 
tages over existing languages and abstraction proposals 
such as Alphard [29], CLU [27] and Euclid [24]. 

The choice of  the primitive high level language con- 
structs for PLITS was not made a priori. Starting from 
a survey of  the "powerful ideas" of  programming sys- 
tems, we attempted to see if there were inherent incom- 
patibilities among them. There were only a few such 
situations, such as the incompatibility between separately 
compilable procedures and code optimization through 
procedure integration. A significant conclusion was that 
parallelism and data sharing are inherently difficult to 
combine effectively. Our interest in networking and our 
work on a message-based operating system [2] strongly 
suggested the idea of  messages, but did not totally solve 
the problem of  how to communicate without data shar- 
ing. 

The decision to have symbolic names as the basis of  
communication seems obvious in retrospect, but was 
difficult to arrive at. By using names of  message slots as 
the shared notion and having no name-valued constructs, 
we are able to have flexible communication among 
modules with no sharing of  storage. It was clear from 
work in automatic programming and verification that 
more declarative information was needed--hence  the 
general notion of  assertions was included. Transaction 
keys were added later as a solution to several problems 
in selective reception, protection, flow control, and mul- 
tiplexed servers. The bulk of the paper is concerned with 
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the important questions that arose from attempting to 
implement this set of  ideas and use them to solve hard 
problems. Although many difficult questions remain, 
enough clean solutions have been found to convince us 
that there is something fundamentally sound in the 
PLITS world view. 

The use of  the modules and messages can be illus- 
trated by some simple examples. A module is a self- 
contained entity, like a Simula or SmaUtalk class, a SAIL 
process, or a CLU cluster. It is not important which 
programming language is used to encode the body of a 
module; we will explicitly have to account for the case in 
which various modules are coded in different languages 
on a variety of  machines. The presentation here is based 
on a specific choice of  body language: PASCAL as 
defined in [22]. This should be easier to understand than 
definitions based on abstract syntax. 

Modules communicate with one another solely 
through messages. In order to have communication, there 
must be something that is understood by both commu- 
nicating modules. The shared element in PLITS is a 
name which may be thought of  as an uninterpreted string 
of  characters. A message is a set of  (name ~ value) pairs 
called slots. The value portion of  a slot will be an element 
of  some primitive domain (e.g. integers) whose represen- 
tation is also generally understood. 

The modules of  any PLITS system must compose, 
send, receive, and decompose messages. For  this purpose, 
we add some data types and operations to PASCAL or 
any other body language. In the PASCAL case, the 
primitive data types are extended to include module and 
message. Each module explicitly declares (public) every 
slot name that it deals with along with the data type of  
that slot. As we will see later, there is a process analogous 
to linkage-editing that ensures that public slot names are 
used consistently. The word "public" refers to sharing 
within a job but not across jobs; the notion of  job is 
extended to distributed job (D JOB) in Section 3. 

PASCAL has four primitive types: integer, Boolean, 
char, and real, and three structure types: arrays, records, 
and sets. We will ignore sets and subrange types, but will 
use enumeration types. The PLITS constructs do not 
have a particular obvious encoding in PASCAL (if they 
did, we might not need them). We have chosen to 
represent modules as additional type constructors anal- 
ogous to array or record. In keeping with PASCAL's 
fairly strong typing, each kind of  module class will be a 
different type. Part of  PLITS is deeply incompatible with 
strong typing (much more will be said about this below). 
In particular, we want to allow some slots to have as the 
data type the union of  all module types, which we denote 
module. It is crucial that any module (written in PAS- 
CAL-PLITS or some other X-PLITS) be able to send a 
message to any other. 

We also add a type message which is like the PAS- 
CAL type record except that it has all the public slot 
names of  the module as potential field names. The global 
constructs in PASCAL-PLITS will be the public slot 
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Fig. 1. 
1 Const  George = mod 
2 Begin 
3 Public Recipient: module 
4 Object: integer 
5 var I, J, Next_Fib: integer 
6 Messl ,  Mess2: message 

7 Send message (Recipient ~ Me) To 
Fibonacci 

8 Receive Mess2 From Fibonacci 
9 Next_Fib := Mess2. Object 

1 0 End 

Const Fibonacci = mod 
Begin 
Public Recipient: module 

Object: integer 
vat This, Last, Previous: integer 

Request: message 
Last := 0 
This  := 1 
While True Do 

Begin 
Receive Request 
Previous := Last 
Last := This 
This  := Last + Previous 
Send message (Object ~ This) To 

Request .  Recipient 
End 

End 

Fig. 2. 
0 Const  Fibonacci = mod 
1 Begin 
2 Public Object: integer 
3 Public Recipient, Complaint_Dept,  Complainer: module 
4 Public Problem: problem_type 

var Request, My_Complaint:  message 
Complainee: module 
This, Last, Previous, Biggest: integer 

Last := 0; This := 1; Biggest := 2 ~' 35 - 1 
My_Complaint  := message  (Problem ~ Overflow, 

Complainer ~ Me 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 
21 
22 

23 

24 

25 
26 
27 

While True do 
Begin 

Receive Request 
Previous := Last; 
Last := This; 
If Biggest - Last > Previous 
Then Begin This := Last + Previous; 

Send message (Object ~ This) To 
Request .  Recipient About Request .  About  

End 
Else Begin 

Put (Recipient ~ Request  • Recipient) 
In My_Complaint;  

Complainee := 
If Present  Request .  Complaint_Dept  
Then Request .  Complaint_Dept  
Else City_Hall; 

Send My_Complaint  To Complainee About 
Request .  About  

End 
End While Loop 

End 

names, module type declarations (including constant 
modules) and some enumeration types. There are to be 
no global variables of  any type. 

For  a first example (Figure 1), suppose there were a 
module, Fibonacci, which provided the service of  sup- 
plying consecutive positive Fibonacci numbers, and a 
module, George, which wanted to make use of this 
service. (George and Fibonacci are actual module names, 
not module prototypes or class definitions.) 
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George is declared to be a constant of type module 
(using the rood construct) and to have two public slot 
names: "Recipient" of  type module and "Object" of type 
integer. The type constructor mod is analogous to the 
PASCAL constructor record. The primitive type module 
denotes the union of  all types declared with a rood 
constructor; PASCAL does not have an analogous union 
of  all records. We will refer to types declared using rood 
as "module types." The variables Mess l and Mess2 are 
declared to be of  type message. The Send statement in 
line 7 uses the PASCAL constructor syntax to build a 
message and send it. After sending the message to Fi- 
bonacci, George is automatically suspended until a mes- 
sage from Fibonacci is received (line 8). This particularly 
simple control regime is equivalent to a subroutine call. 
Since Fibonacci has the same two public slot names as 
George, they can communicate. Fibonacci is a server 
module that waits for a request, computes the next value, 
and sends an answer message to the module named in 
the request. Although this is George in the example, it 
could be a general continuation. 

One of  the major goals of  the PLITS effort is the 
development of  techniques for programming reliable 
systems. Since each PLITS module has complete control 
over its internal state and the messages it accepts, one 
can program any module so that it never reaches an 
undesirable internal state. Of  course, a module which 
contains internal protection against a wide variety of  
external errors can become quite bulky. There is a fun- 
damental design tradeoff between hardening individual 
modules and guaranteeing at the system level that certain 
global conditions cannot arise. A detailed discussion of 
these issues is beyond the scope of  this paper (cf. [16]). 
However, in Figure 2, we present a somewhat more 
protected Fibonacci module which will not be subject to 
integer overflow. Figure 2 also includes instances of 
several additional PLITS constructs. 

The first new notion occurs on line 4 where a public 
slot name of type "problem_type" is declared. The type 
problem_type is a fixed collection of uninterpreted sym- 
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bols exactly like the PASCAL "enumeration" type. 
There will be several public enumeration types in a 
PLITS system. In lines 9-11, a prepackaged message is 
assembled and stored in the message variable, My_ Com- 
plaint. In lines 19 and 24, the Send statements contain 
an extra component "About"; this specifies a particular 
transaction key in a way which is described below. The 
other new code is in lines 21-27; the Recipient slot of 
My_Complaint is filled in from the Request. If  there is a 
Complaint_Dept (cf. [20]) slot in this request, the module 
which is its value will be sent the complaint. Otherwise 
some default complaint handler, City_Hall, will hear 
about it. The name of the Recipient module (which may 
have been awaiting an answer) is passed along to the 
Complaint_Dept, because there might be some appropri- 
ate response to the problem. For example, there could 
be some double precision Fibonacci module which would 
be able to return an appropriate value if George were 
prepared to accept it. This could require that George 
handle the double size integers; that is not very hard to 
arrange, for example, by an extra slot for the high order 
part. 

There is a more interesting problem in the control 
discipline used in the coding of the module George given 
in Figure 1. The statement on line 8 is: 

Receive Mess2 from Fibonacci 

But we saw in the expanded Fibonacci module of Figure 
2 that there might be an error recovery module that 
would supply the answer if Fibonacci could not. The 
coding style of line 8 requires that the answer be con- 
veyed back to Fibonacci and then to George, but there 
is nothing to be gained by retracing our steps. To solve 
this and a number of other control problems, we will add 
one more construct, transaction, to PLITS. Intuitively, 
a transaction is a unique key which can be used in the 
regulation of message traffic. A transaction is required 
in the About slots of  the Send statements of lines 19 and 
24 of Figure 2. In this case, the outgoing transaction key 
is just the one accompanying the request message. If  
some Complaint_Dept were able to rectify the overflow 
problem, it could forward the correct answer to a slightly 
modified George. Our third example (Figure 3) shows a 
recoding of the module George which does selective 
reception on the transaction, Fibkey, which it originally 
provided. Figure 3 is an overview of a complete PAS- 
CAL-PLITS program containing the expanded version 
of Fibonacci, etc. 

These introductory examples are intended to provide 
an intuitive notion of what is being proposed. In the next 
section a precise definition of PASCAL-PLITS is given, 
roughly following the style of [22]; this will be used for 
examples throughout the paper. Section 2 also shows 
how we capture key notions from several areas of com- 
puter science in a PLITS system. Section 3 considers the 
implementation problems arising in extending these 
ideas to distributed computing systems. In Section 4, we 
return to the consideration of a one-language PLITS 
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system, more or less assumed to run on a single machine. 
Properties are introduced as a special kind of assertion 
which are an improvement on strong typing. Assertions 
are shown to be the key to verification and optimization 
of PLITS programs. Finally, we present a brief overview 
of  debugging and exception handling in a PLITS envi- 
ronment. The material of Sections 3 and 4 summarizes 
a number of ongoing research efforts, for which refer- 
ences are provided. 

A word about the current state of PLITS implemen- 
tation seems to be called for. The basic concepts of  
PLITS were crystalized early in 1976 and some students 
attempted to carry out toy implementations. A servicea- 
ble SAIL-PLITS was implemented that summer by Jim 
Low using the SAIL macro facility; it has been used for 
running examples like those in this paper and for course 
problems and term projects. This version incorporates 
essentially the constructs described in Section 2. The 
underlying support system described in Section 3 has 
been implemented on our local network [2] under the 
direction of  Paul Rovner, and is being used in current 
distributed systems [10] and artificial intelligence re- 
search [40]. Most of the ideas of Section 4 are being 
incorporated into Zeno [3], the base language for the 
Advanced Compiler project in our laboratory. A com- 
plete high level multilanguage multimachine PLITS sys- 
tem is under development, but has lower priority than 
the more basic efforts. 

Fig. 3. 

Program Everything 
Problem_type = (Overflow, Time Out, 

Absent Slot, Illegal Module, ...) 
public Recipient, Complaint_Dept,  Complainer: module 

Object: integer 
Problem: problem_type 

const George = rood 
Begin 

Public Recipient: module 
Object: integer 

var I, J, Next_Fib: integer 
Messl,  Mess2: message 
Fibkey: transaction 

Fibkey := New Transaction 

Send message (Recipient ~ Me) 
To Fibonacci About Fibkey 

Receive Mess2 About Fibkey 
Next_Fib := Mess2.Object  

End 

const Fibonacci = rood 
i [cf. Figure 2] 
End 

const City_Hall = rood 

End 

End 
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2. D e f i n i t i o n s  

2.1 A P r e c i s e  D e f i n i t i o n  o f  M i n i m a l  P L I T S  

We now state more precisely what is proposed to be 
included in a PLITS system. The language described is 
somewhat more restrictive than one would want to use 
for the construction of large systems (cf. [2]), and the 
definition is being kept minimal so that the fundamental  
issues can be more easily addressed. For example, the 
current def'mition allows no block structure or other 
partitioning of  the space of  public slot names. A number  
of  other straightforward extensions are mentioned in 
passing. Even so, we will omit all consideration of  three 
important issues to be covered in Sections 3 and 4: 
computer  networking, assertions and program transfor- 
mation, errors, and other system issues. 

We now proceed to a fairly precise definition of  a 
PASCAL-PLITS.  The purpose is to provide a fixed 
language in which to present subsequent PLITS exam- 
ples, not to propose an extension to PASCAL. We will 
define the syntax of  the additions locally rather than 
present modified syntax graphs. We will also (for now) 
be even less formal than [22]. 

Recall that a message is a set of  name ~ value pairs, 
where the names and their associated types are publicly 
known. The first new construct is the public slot name 
definition, which is of  the form: 

Public S~:T1, $2:T2 .... Sin:Tin; 

where the Si are all public slot names and the Ti are their 
associated elementary types. An elementary type is either 
a PASCAL primitive type or t r a n s a c t i o n  or a module 
type. We also add a type m e s s a g e  which is similar to the 
PASCAL record type. The legal message constructors in 
module P are all of  the form: 

message (Sj ~ Xj, Sk ~ Xk, ...) 

where each Xj is an element of  type Tj and the slot name 
Sj: Tj has been declared public in P. This differs from the 
record  constructor in that the field names are given 
explicitly in any order and need not all be present. Every 
message implicitly includes two extra slots: Source of  
type module and About of  type t ransac t ion .  

In analogy with PASCAL record field extractors, we 
define for a message M 

M.Si  = Xi 

to hold, providing that the pair Si ~ Xi is an element of  
M. I f  there is no S~ - Xi pair in M, an exception condition 
occurs; exceptions will be discussed in Section 4. We also 
extend the PASCAL with construct from implicitly nam- 
ing the record to implicitly naming the message in the 
obvious way. This definition of  message allows a module 
P to send and receive messages with slots not known to 
P but not to examine or alter these slots. There are some 
additional operations on a message: 

Put Si ~ Xi In M 
Remove Si From M 
M. S := Xi 

357 

All of  these require that Xi be of  type T~ and that the 
slot Si: Ti has been declared public in module P. The put  
statement adds the slot Si ~ Xi or replaces the existing 
value of  Si. The remove statement totally removes an 
Si ~ Xi if  it is present; no error results if the slot is absent. 
The assignment statement updates the value of  the slot 
S if it is present; otherwise an exception condition (see 
Section 4) is generated. 

I f  M is a message, V is of  a module type, and K is a 
transaction identifier, then there are valid statements of  
the form: 

Sand M To V (About K} 

In any PLITS messages are always sent by value (cop- 
ied). There are also two predicates on message slots: 

Absent Si In M 
Present Si In M 

The P r e s e n t  ( A b s e n t )  predicate returns True if there 
is (is not) an Si ~ Xi pair present in M. The predicates 
of  equality and inequality are extended to objects of  
t ransac t ion ,  m e s s a g e ,  and module type. This completes 
the discussion of  message types from the internal PAS- 
CAL point of  view. In addition to its importance for 
messages, the data structure consisting of a set of  name 

value pairs has many  other good uses. We are currently 
calling this data structure an A-set (analogous to the 
LISP notion of  A-list) and are exploring their use in a 
number  of  contexts. 

An alternative PASCAL-PLITS syntax for the slots 
known to a module P would be achieved by declaring, 
in P, a local instance Pmessage of  the type constructor 
m e s s a g e  

type Pmessage = messageS~:T~ 
S2:T2 

end; 

where the {Si:Ti} are exactly the pairs that appeared in 
the public declaration in the definition used above. This 
definition of  message is more PASCAL-like,  allowing 
the compiler to carefully control what kind of  messages 
a module could receive. What  this definition gives up is 
the ability for a module to handle messages some of  
whose slots it knows nothing about. An important claim 
of  this paper  is that very strong typing is ineffective as a 
way to promote careful programming and that the PLITS 
methodology offers a way of  saying more precisely what 
conditions a message must satisfy in order to be accept- 
able to a module. Similarly, one might want to have 
stronger restrictions on variables of  type m o d u l e .  For 
example, a strongly typed language would have con- 
structs like "fixed-length queue of real module." The 
proposed way of  treating such issues with properties is 
discussed briefly in Section 4 and in detail in [16]. In 
general, PLITS does not currently support structured 
types in public slots (but see Section 3). In particular, 
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there can be no message slot of  type message. I f  K is of  
type transaction and V is of  module type, then 

Receive <message  exp.> {From V} {About K} 

is the pattern for the four types of  Receive statements. 
The internal axiomatic semantics of  Send and Receive 
can be treated simply. A Send statement has no direct 
effect on the sending module. A Receive statement has 
the internal semantics of  an assignment to a message 
variable. In many  implementations, the failure of  a 
message to arrive in a specified (perhaps by default) 
amount  of  time will result in an exception condition. The 
use of  the axiomatic semantics for verification and the 
discussion of  exception handling is presented in Section 
4. 

The sending and receiving of  messages are central to 
any PLITS implementation and must be considered with 
some care; most of  Section 3 is concerned with some 
issues arising in message-based systems. For  our defini- 
tion of PASCAL-PLITS,  we need two semantic rules on 
message transfer. The first is that message queues are 
assumed to be unbounded,  in the sense that the stack 
and the heap are considered unbounded in PASCAL 
and similar languages. Queue management,  error detec- 
tion, etc., are important system considerations but can 
be omitted at this stage of  definition. 

The second semantic rule concerns the preservation 
of  order among messages. The rule is: for each triple 
(Sender, Transaction, Receiver) messages are guaranteed 
to arrive at the receiver in the same time order as they 
were sent from the sender. No other order properties can 
be relied upon. For all communicat ion between a partic- 
ular sender and receiver which does not have an (About 
transaction) clause, the system will assign a single fixed 
transaction identifier. Thus if no transactions at all are 
used between a sender and receiver, messages will all 
arrive in sequence. 

A module type in PASCAL-PLITS is given by a 
declaration of the form: 

type T = mod L; Begin S End 

The module type notion does not have a direct counter- 
part in PASCAL. A module has some of  the properties 
of  a procedure and some of  the properties of  a record 
(like Simula classes, etc.). We have chosen to define it as 
a type constructor so we could easily have module classes 
and instances. The parameter  list L is the same as that 
of  a PASCAL procedure and is used to initialize new 
modules of  the given type. All parameters are passed by 
value. The special case of  a constant of  module type was 
shown in Figure 3. 

Module instances come into being in the standard 
PASCAL way. I f  T is a module type and V is o f  type T, 
we can write: 

V .--- T(L) 

where L is an actual parameter  list. This creates a new 
instance of  a module of  type T and assigns a reference to 
this module to V. The next example (Figure 4) presents 
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Fig. 4. 

1 Program Everything 
2 type qactions = (Clear, Empty?, Size?, Remove,  Append,  

Generate,  Next, Print) 
3 
4 type qmod = mod Length: integer 
5 Begin 
6 public Recipient: module 
7 Command:  qactions 
8 Datum: real 
9 Flag: Boolean 

10 var First, Next: integer 
11 Mess 1: message 
12 const Q = array [0: Length] Of  real 
13 First := l; Next := 1 
14 While True Do 
15 Begin 
16 Messl  := Receive 
17 With Messl  Do 
18 Case C o m m a n d  Of  
19 Clear: Begin 
20 First := 1; Next := 1 
21 Send message  (Flag ~ True) To Recipient 
22 End; 
23 Empty?.: Begin var Arts: Boolean 
24 Arts := (First = Next) 
25 Send message (Flag ~ Ans) To Recipient 
26 End 

27 End of  while loop 
28 End of  qmod definition 
29 Const  Fred = mod 
30  Begin 
31 public Recipient: module 

32  var Diskq: module 

33 Diskq := qmod (14) 
34  Send {Recipient ~ Fred, C o m m a n d  ~ Append,  

Da tum ~ 3.14) To Diskq 

35  End of  Fred 

a fragment of  the code for a fixed-length queue of  real 
values. The style of  coding of  Figure 4 follows the 
Smalltalk [19] idea of  having a data structure interpret 
messages with a command  slot. The enumerat ion type 
qactions on line 2 defines the commands  which are 
meaningful to qmod modules. The command  Generate 
is intended to start the sequencing; the remaining qac- 
tions are obvious. The definition starting in line 4 of  the 
prototype qmod has one formal parameter,  Length, which 
is used in line 12 to fix the size of  the array used for the 
queue instance. The public slot names, vars, and the 
const array are the minimal constructs needed for a 
simple queue module. Lines 14--18 lay out the standard 
PLITS style for a server module which waits for any 
message and then branches on the value of  some action 
or command  slot. In line 17, the PASCAL With construct 
is used to implicitly prefix all slot names within its scope 
with the message variable, Messl. For  example, line 18 
is equivalent to: 

Case Mess 1. C o m m a n d  Of  
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Starting in line 29, we have a constant module, Fred, 
which makes use of  a private instance of qmod which it 
refers to through its local module variable Diskq. Line 33 
gives the code for establishing an instance of  qmod with 
the Length of  the queue equal to 14. Line 34 shows how 
Fred would put an element on the queue, providing its 
own name as the Recipient for error messages. 

In keeping with the general PLITS philosophy, a 
module cannot be killed from outside. There is a single 
statement: 

Self destruct 

which will allow a module to eliminate itself. The prob- 
lem of messages to and from a destroyed module is a 
standard one in operating systems and in networking 
and is discussed in Sections 3 and 4. 

There are five additional constructs which return 
Boolean values: 

Pending {From P} {About K} 
Extant P 

where P is of  module type and K is a transaction. The 
first four test if there is a message ready for the module 
executing them, and the fifth, if a given module instance 
is still active. 

The final new construct to be defined is an additional 
simple type, transaction. An object of  type transaction is 
specified to be unique across all "sites" in a PLITS 
environment. (The definition of a site and the implemen- 
tation of transaction type objects is discussed in Section 
3.) In PASCAL-PLITS, we declare transaction variables 
in the usual way: 

T1, Key:transaction. 

In addition to transaction variables and slots, there is 
one expression of  type transaction, New-transaction; it is 
used in statements of the form: 

Key := New-transaction. 

As we discussed above, any Send, Receive, or Pending 
command can have an optional part 

About K 

where K is a transaction expression. Transaction objects 
are used in a variety of ways in the coordination of 
modules. For example, a Fibonacci module could assign 
separate transaction objects to each of  a number of  
Fibonacci sequences which could be pulsed asynchro- 
nously. 

Interesting design issues arise in the choice of  the 
receive and pending constructs. One would like a module 
to be able to do quite selective receive's and not be 
bothered with messages that it was not ready to process. 
For example, one could allow receive to take an arbitrary 
predicate on the values of  slots in the message. There are 
several difficulties. One cannot build into the system all 
the generality that might ever be required--for  example, 
a module might want to receive that message which has 
the greatest value for some slot. Another problem is that 
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having very selective receive's puts a great burden on the 
system for storing, checking, and keeping track of  mes- 
sages. Finally, there are problems of  defining the correct 
sequencing for messages which are being controlled by 
complex predicates. The definition we have chosen is a 
compromise. Clearly, having receive only specify the 
source is too restrictive. Many different kinds of selective 
receive's can be coded into transaction keys. The pro- 
posed way of  handling more complex receive specifica- 
tions is through the use of  a "front-end" module. The 
sender-transaction encoding has proved to be a conven- 
ient basis for the low level communication protocols 
required for reliable transmission and flow control (cf. 
Section 3 and [39]). A PLITS system should provide 
primitives, data structures, etc., which make this rela- 
tively easy. It probably is worth adding negation and sets 
of  senders and transactions to the primitive receive and 
pending. 

2.2 Discussion 
O n e  important feature of  PLITS systems is the use of  

messages as the basic control primitive. Although there 
have been many proposals for synchronization and con- 
trol disciplines, all of  these are easily captured by the 
message construct often leading to clearer solutions to 
classic control problems. We also can deal with hardware 
or software interrupts and with timing signals as mes- 
sages. All of  this is well known, and has been incorpo- 
rated in several systems, but has not been enunciated in 
high level constructs or languages ([20, 22] are partial 
exceptions). The notion of  module-valued slots seems to 
provide easily a very flexible, but safe discipline for 
control transfers, incorporating continuations, complaint 
departments, etc. 

The use of  messages is also valuable in solving the 
problems of  shared resources, particularly data struc- 
tures. The general idea that a resource always be allo- 
cated by a single controlling module greatly simplifies 
all the common exclusion problems. The currently fash- 
ionable way [28] of manipulating data in an external 
module (class, form, etc.) is to execute a procedure in 
that module. The message paradigm has several advan- 
tages over subroutine calls. If  the modules were in dif- 
ferent languages, the subroutine call mechanisms would 
have to be made compatible. Any sophisticated lockout 
procedure would require the internal coding of queues 
equivalent to what the message switcher provides. In the 
subroutine discipline, a module which tries to execute a 
locked subroutine is unable to proceed with other com- 
putation. The total picture on the relative value of mes- 
sages and calls is much more complex; Section 4 contains 
some additional discussion. 

Another view of PLITS messages (A-sets) is as a 
generalization of parameter lists in subroutine or corou- 
tine calls. The idea of explicitly naming parameters is 
common in assembly languages where the total number 
of  parameters to a routine may be very large. More 
importantly, the set of  slots presents a collection of  

Communications June 1979 
of Volume 22 
the ACM Number 6 



suggested parameters rather than filling in the values of 
parameters. This leads naturally to the use of  semantic 
checks on the consistency of  parameters and to the use 
of default values for unspecified ones. This is already 
stronger than strong typing and can be further 
strengthened by using Assertions (cf. Section 4). Three 
other advantages also fall out. The use of  return messages 
frees us from the constraint of  single-valued functions--  
there is no reason why an answer message should have 
only one slot. The use of  A-sets of name~value pairs as 
the input and output of  all modules provides the cleanest 
form we have seen for the composition of  multiple- 
valued functions. For intermodule communication, we 
also solve the so-called "uniform reference p r o b l e m " -  
one need not be concerned with whether an answer (say 
an array element) is computed by a procedure or a table. 
Mesa [l 8] also attempts to achieve these goals by a quite 
different method. 

There is yet another useful view of messages. One 
can view a message as a partially specified relation (or 
pattern), with some slot values filled in and some un- 
bound. This is common in relational databases [l] and 
artificial intelligence languages [5]. In this view, a mes- 
sage is a task specification with some Recipient and some 
Complaint Departments to talk to about it. Various 
modules can attempt to satisfy or contract out parts of 
the task of  filling in the remaining slots. One nice feature 
of  the current design is the ability for a module to handle 
messages containing slots unknown to it. This allows for 
several modules working together on a task while main- 
taining locality. For example, an executive module could 
route messages (on the basis of  a few slots that it under- 
stood) to modules which deal with totally different public 
slot names. We can also view a message A-set (set of  
name~value pairs) as a collection of  bindings of  varia- 
bles. This shares many of  the properties of  LISP A-lists 
and SAIL contexts and seems to be an excellent way to 
handle the problem of  evaluation relative to an environ- 
ment. 

There is no apparent conflict among these alternative 
views of  PLITS messages. It is too early in the develop- 
ment to be sure, but the combined power of these para- 
digms seems to provide a qualitative improvement in our 
ability to develop programs. 

There are other interesting features that arise when 
messages are combined with the idea of  modules. The 
most obvious feature of  PLITS programming is the high 
degree of  locality and protection it provides. Each PLITS 
module is totally self-contained and communicates solely 
through messages. This means that no local variables 
can even be examined from the outside, no procedures 
invoked, etc. A module can be asked to return or update 
a value, execute a function, etc. It now becomes quite 
natural to screen requests for validity (much more than 
type checking), to guard against conflicting demands on 
a data structure, etc. This does not solve all the problems 
attacked by structured programming strictures, but does 
make it clear what has to be done and where. For 
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Fig. 5. 

coust Alphonse  = m o d  

1 Begin 
2 public A, B: integer 
3 Action:  ac t ions  
4 Recipient :  module  

5 var  In_Mess,  Out_Mess:  message 
6 Key: transaction 
7 Key  := New_Transac t i on  
8 Send message (Act ion  ~ Lock,  A ~ 0, B ~ 0) To  Gas ton  

About  Key  
9 Send message (Act ion  ~ Fetch,  A ~ 0, B ~ 0, 

Rec ip ien t  ~ Me) 
1 0 To  G a s t o n  About  Key 
11 Receive In_Mess from G a s t o n  About  Key  

1 2 Out_Mess  := m e s s a g e  (A ~ - In_Mess-  B, 
B ~ - I n _ M e s s . A ,  Ac t ion  ~ Update ,  

1 3 Rec ip ien t  ~ Me) 
1 4 Send  Out_Mess  To  Gas ton  About  Key  

1 5 Receive  In_Mess  from Gas ton  About  Key  
1 6 I f  In_Mess .  Ac t ion  ~ Reject  
1 7 Then Send message (Act ion  ~ Unlock ,  A ~ 0, B ~ 0) To  

Gas ton  About  Key  
1 8 Else  C o m m e n t  whatever ;  

1 9 End 

example, consider the problem of  maintaining consist- 
ency in a multiply-accessed database. 

First let us consider a simple exclusion problem: 
Suppose a module Alphonse wants to swap and negate 
two integers A and B in another module Gaston, which 
we can think of  as a global data structure. Alphonse must 
get the values of  A and B, swap and negate them, and 
put them back. The problem is to do this without unduly 
locking Gaston and in such a way that no inconsistencies 
can arise. One rather elaborate PASCAL-PLITS solution 
to this problem is shown in the next example (Figure 5). 
The module Alphonse first sends a message to Gaston to 
lock A and B except for messages using transaction Key. 
It then fetches the two values, swaps and negates them, 
sends them back and waits for a response. When Gaston 
has completed the internal update, a message is returned 
to Alphonse. If  all went well, Alphonse will send an 
unlock message to Gaston to complete the transaction. 
There are simpler ways to accomplish this, but this 
program above makes much of  the discipline explicit. 

The module Gaston, which we are viewing as a global 
data structure, must have a way of  locking A and B 
during the critical period when their values are not 
stable. The easiest way is to delay response to any 
message involving A or B which does not have the magic 
key. Notice here that we are assuming that the public 
slot names A and B each correspond to a single "global 
variable" which we wish to regulate. This is a specialized 
use of  public slot names, but an important one and one 
which naturally gives rise to exclusion problems. 

As before, the key for this transaction can be passed 
from module to module. The pair of  send's on lines 8 
and 9 could be made into a single fetch and lock state- 
ment, either by adding such a primitive action or adding 
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a postaetion slot to the message. Similarly, one could 
simplify lines 14-17 by using an update and unlock 
construct. There is no difficulty making these constructs 
indivisible, because a module (e.g. Gaston) is never in- 
terrupted. There can be no deadlock (in this simple case) 
because Alphonse locks all the resources that it needs (A 
and B) before starting. The module Gaston can receive 
and process other messages while waiting for A lphonse-- 
the entire module is not locked. 

There is a potential problem of  code in Gaston using 
the local variables associated with A and B but not 
mentioning them in messages. If  one really wants a 
variable to be totally protected in PLITS, one must make 
it a module. A more plausible solution is that any module 
which allows locking of  particular variables must main- 
tain internal consistency by not modifying these variables 
itself while they are locked. The potential deadlock 
situations are internal to the module and should be easily 
avoidable. 

More commonly, one is concerned with the exclusion 
problem in large complex data structures. One very clean 
analysis of  this problem can be found in [9]. They 
develop a notion of  a sufficient discipline for locking and 
extend it to "predicate" locks which are logical condi- 
tions set up by one module to guarantee the integrity of  
its modifications. The PLITS implementation of this 
algorithm is a straightforward extension of the ideas 
developed above [32]. 

The coding of the structure-monitoring module Gas- 
ton could be done in a number of  different ways. We 
have suggested that Gaston could simply ignore messages 
that involve A or B. This could be done using a 
Smart_Receive function call of  the form 

Mess3 := Smart_Receive (Transaction = Key V 
(Absent(A) A Absent(B))) 

We have already discussed some of  the alternative ways 
of coding a Smart_Receive, for example, using a filtering 
front end module. It is almost equivalent to have Gaston 
accept all messages and only process the appropriate 
ones, but there are advantages and disadvantages to each 
method. If  Gaston deals with all messages, it must have 
an internal data structure which duplicates much of  the 
system function of  queuing messages. On the other hand, 
by looking at all messages, Gaston has the opportunity 
to detect high priority messages, time-critical situations, 
contradictions, etc. This discussion suggests the kind of  
issue that arises in the design of a system that is based 
on PLITS. We are attempting to provide a set of primi- 
tives that will support a variety of solutions to problems 
like the monitoring of global variables. 

3. Implementation Considerations 

The implementation of PLITS ideas has proceeded 
in parallel with the formulation of the general concepts 
described above. The development of  an operating sys- 
tem for RIG (Rochester's Intelligent Gateway) [2] used 
the message-module paradigm, but no higher level lan- 

guage forms. A serviceable SAIL-PLITS with essentially 
the features described in Section 2 was written by Jim 
Low in the summer of  1976 and has been used for 
experimental and student work. One outgrowth of  this 
effort is an "advanced compiler" project, which is dis- 
cussed briefly in Section 4. The other major current 
effort is the implementation of  a uniform framework for 
multimachine, multilanguage distributed user jobs 
("D JOBs") in the PLITS style. This is being carried out 
in the context of  our local network which currently 
contains four Altos, two Eclipses, and a DEC KL 10 and 
is described in [12]. The discussion here is intended to 
point out the issues arising in the implementation of 
PLITS or any similar high level language for distributed 
computing. Once arrangements for starting a D JOB are 
made, the underlying system should be invisible to a 
PLITS user who will program as described in Section 2. 

We first look more carefully at the process of  sending 
and receiving messages. Even on a single machine, there 
will have to be some underlying programs which handle 
messages and schedule modules for execution. We will 
call such a collection of  programs a Kernel A Kernel is 
a conventional multiprogramming monitor which se- 
quences through the modules on its "ready" queue. A 
Kernel also maintains data structures describing modules 
which are "suspended" waiting to Receive a message of  
a specified sort. These data structures, together with 
analogous ones for messages which result from Send 
statements, suffice to implement the PLITS message 
primitives. 

With an underlying operating system like TOPS/10 
or TENEX, it may be convenient to group modules into 
a single job if they communicate mainly with one an- 
other, or comprise a package, or share code. Such a 
group is called a Site. In general, each site will have its 
own kernel. A problem arises if the modules of a D JOB 
are written in different body languages. It may be the 
case that languages differ in their representation of  prim- 
itive data types (e.g. real). We require that the represen- 
tation of  primitive data types be uniform within a site. 
This, as well as other considerations, may give rise to the 
situation where there is more than one site on a given 
machine involved in an individual distributed job. 

A D JOB might consist of  modules on several com- 
puters. For example, a distributed vision application 
might consist of  an image processing site on the PDP-10, 
an interactive site on an Alto, a site on an Eclipse for 
managing a color display, and file servers on both the 
PDP-10 and on the Eclipse. One of  the modules in each 
D JOB is designated the "controlling module" for the 
D JOB. In this example, the controlling module might be 
one on the Alto. The controlling module for a D JOB is 
responsible for initializing and terminating the D JOB 
and for taking appropriate action when one of the other 
modules of  the D JOB fails. 

Figure 6 is a graphic representation of  the breakdown 
of  functions and terminology which we have adopted. It 
is convenient to divide the PLITS support functions into 
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Fig. 6. 

Djob A 

_ Link < 

Djob B 

Machine 1 Machine 2 

two subsets carried out by the site Kernel and by the 
Host Control Program (HCP) respectively. In Figure 6, 
there are two D JOBS, A and B, which have no connec- 
tion but happen to be both distributed over Machines l 
and 2. DJOB A consists of  three sites: Sl  1 and Sl2  on 
Machine 1 and $21 on Machine 2. Each site has a Kernel 
assigned to it as described above. The Kernel performs 
the following functions: 

(1) distributes messages to and from modules within 
the site; 

(2) forwards messages to and from other sites; 
(3) carries out needed representation shifts for inter- 

site messages; 
(4) allocates resources within the site; 
(5) generates unique (world-wide) module and 

transaction identifiers; 
(6) checks for errors and assertion violations. 

We have discussed the first three functions briefly 
and will give more details on them below. The fourth 
function, resource allocation within the site, is concerned 
with storage allocation and reclamation, scheduling of 
ready modules, etc. The fifth function is discussed later 
in this section. Error and assertion checking are discussed 
in Section 4. 

Each HCP is an extension of  its machine's operating 
system. It performs four main functions: 

(l)  distributes messages among sites local to this 
machine; 

(2) forwards messages to and from other machines; 
(3) starts and stops DJOBS, and provides access to 

other operating system services; 
(4) checks for intersite errors and assertion viola- 

tions. 

When a PLITS message is sent by a module, its 
destination is checked. If it is within the sender's site, the 
site Kernel handles it; if  not, it is given to the local HCP. 
If  the destination is within another site on the same 
machine, it is given to the Kernel for that site; if not, the 
HCP has it forwarded to the appropriate machine-- the  
job of  HCP functions 1 and 2 above. To do this effec- 
tively requires quite a lot of  mechanism beneath the 
surface. Problems faced include reliable transmission, 
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flow control, error handling, and providing user services 
for distributed computations. This has led us to view the 
underlying support facilities as a distributed operating 
system (DSYS). 

Each machine HCP has two parts: a "DSYS Job 
Manager" (for distributed jobs) and a "DSYS Commu- 
nications Manager." This organization reflects the two 
separate facilities of  DSYS: operating system support 
and services for PLITS D JOBS, and basic message com- 
munication in the PLITS style. 

Each Job Manager: 

(1) provides services for DJOBS (i.e. start, stop, 
access to services of  the local operating system); 

(2) remembers which local services are allocated to 
which D JOBs, and which module is the con- 
trolling module for each DJOB; 

(3) arranges to recover resources used by such ser- 
vices when a D JOB finishes. 

In addition, each Job Manager keeps track (for each 
D JOB whose controlling module is local) of the other 
computers that are involved in the D JOB. The Job 
Manager for the controlling module of a D JOB knows 
which other HCP's to notify when the D JOB finishes (or 
dies). 

Consider the problem of setting up a D JOB. If there 
are two sites on the same machine with the same primi- 
tive data representations, the HCP must check that the 
use of  public slot names is compatible--essentially the 
same process as binding the externals of  two load mod- 
ules. If  two sites have incompatibility in representation 
of  a primitive data type, then some conversion routines 
will be automatically invoked for inter-site messages 
when they are sent. The ARPA network voice protocol 
[7] presents a good model of a scheme in which a 
dialogue between machines is used to reconcile represen- 
tation differences before messages containing data are 
sent. All of  this is fairly messy, but should only be 
necessary when a new PLITS language processor is 
brought up on a machine. In the usual case, the standard 
conversions between sites will have been established and 
the negotiations between machines will be simple. 

The DSYS Communications Manager (DCM) on 
each computer is responsible for forwarding messages to 
and from modules on other local sites and on other 
computers. The DCM accepts messages to be forwarded 
to remote modules from local ones, and passes messages 
to local modules that arrive from remote ones. In addi- 
tion to dealing with communications I /O  devices, the 
DCM controls the flow of messages from local senders 
based on the rate of  acceptance by intended receivers 
and the availability of buffer space. The DCM also 
provides a "reliable transmission" service. 

The DCM allocates buffer space for messages on a 
"destination" basis. Each (receiving module, transaction) 
pair is considered a "destination" for messages. A de- 
scriptor which includes a "destination queue" exists for 
each destination. Each such queue has its own allotment 
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of  buffer space for messages. This space is not committed 
a priori, but is rather a (changeable) estimate of  how 
much of a backlog of  messages should be allowed for 
the destination. The basic flow control mechanism is 
simple: a sending module is kept suspended until space 
on the destination queue becomes available. If  the des- 
tination is in the same site as the sender, the site Kernel 
controls message flow. If  the destination is at a different 
site, the message is passed to the DCM, which arranges 
to forward it. 

A destination descriptor is a distributed data struc- 
ture. The destination's site Kernel has a portion, and 
each computer upon which there is at least one module 
sending messages to the destination has a portion (main- 
tained by the sender's DCM). One can view the portions 
on remote computers as queue extensions. The primary 
job of each DCM is to maintain its part of  this distributed 
data structure to support module-to-module communi- 
cation across computer boundaries. The system is de- 
signed in such a way that a DCM can "forget" about its 
part of  a remote destination descriptor if there is no 
message activity for a while. A scheme for "implicit 
connections" is the basis for this design: local knowledge 
about remote destinations is acquired when needed, 
automatically. There is purposely no requirement that 
state information about a remote module be maintained 
arbitrarily long. 

There is a question of how to identify modules in a 
distributed system. If  there were a central source of  
identifiers, it might take a long time to get one and the 
central source might be sometimes inaccessible. If each 
module created its own, there would either have to be a 
lot of handshaking or there would be a danger of dupli- 
cations. Our solution is simple and quite general: an 
identifier (in the present design) is a 32-bit number 
composed of four fields: a computer number, an "incar- 
nation number," a site number, and a "local module 
number." Such an identifier is a network "address" 
[33]. The computer number uniquely identifies one of  
the computers in our network. The incarnation number 
is used to distinguish old incarnations of  the operating 
system on the indicated computer from the most recent 
one. DSYS uses this information to trap references to 
defunct operating system incarnations. The site number 
identifies a site on the indicated computer, and the local 
module number identifies a module at the site. Thus a 
module address uniquely identifies a module in the 
distributed system. 

One consequence of this definition is that a given 
module always resides on the same machine, somewhat 
contrary to current fantasies about distributed comput- 
ing. In our view, a module will be compiled to take full 
advantage of the hardware and software resources of its 
machine. There may be equivalent modules on various 
machines, and programs will be able to choose between 
them, but each will have a distinct unique address, hence 
machine of  residence. 

There is one additional question that should be ad- 
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dressed at this t ime--sending structured data objects in 
messages. As defined, PLITS allows only single elements 
to be the value of  a message slot. This is defensible in a 
one-site system where one can assume that access to 
arrays, for example, can be by message, with an advanced 
compiler (Section 4) making the simple cases efficient. 
This model simply breaks down in the case of  remote 
sites and we are forced to consider sending blocks of 
information in messages. This also means that a PLITS 
user cannot, in practice, totally ignore the location of  his 
modules, but one would hardly expect it to be otherwise. 

There are several possible ways to add structured 
types to PLITS messages. The most general would be to 
allow for constructed modes (as in Algol 68) and the use 
of  these modes as data types for public slot names. In 
this case, the initial connection dialogues would also 
have to come to agreement about all the publicly defined 
modes, but there does not seem to be any inherent 
difficulty about this (we already require checking enu- 
meration types). One would not, of  course, allow the use 
of  references or pointers in the defined modes. General 
structured types are omitted from this version of  PLITS 
for simplicity and because our ideas on a universal 
structure mechanism are just beginning to take shape 
[16]. 

We are using a somewhat simpler extension--a single 
additional public type: bundle. A bundle object is a self- 
describing collection of objects of primitive type. We will 
first present the syntax of bundle and then disouss its use. 

(group) ::= (repetition) (elementary type) (repetition values of type) 
(bundle)  ::= (total length) (group) I (bundle)  (group) 

Thus a bundle is a collection of one level structures. For 
example, a bundle of  two complex numbers followed by 
an action update would be of  t~ae form given in Figure 
7 (where action is a public enumeration type). The idea 
is that bundles are relatively simple and are handled by 
relaUvely few modules at each site. If  two sites wanted 
explicitly to include the information that a pair of  reals 
was a complex number rather than a 2-vector, they 
would use another enumeration type to provide descrip- 
tors in bundles. Similarly, one could have bundle descrip- 
tors either in the bundle or in accompanying slots. Our 
current interest in bundles is primarily for passing very 
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large collections of data such as images [40] and, to a 
lesser extent, for buffer management within a site. In 
connection with this, one probably wants to add a 
Sendoff construct which asserts that the sending module 
has no further need for the data in this message. It is too 
early to tell how much elaboration of the bundle mech- 
anism will prove worthwhile. 

4. Related Issues 

The overall aims of the PLITS project go well beyond 
the distributed computing proposals presented above. 
The project originated as an attempt to look very care- 
fully at programming languages and their use in a very 
broad context. There is a great deal that we do not yet 
understand, but a surprising number of questions do 
seem to yield to mutually compatible solutions, such as 
the module-message paradigm. The first technical report 
[10] on the PLITS project contains a loose overview of 
our ideas on a variety of topics. Some of these are being 
treated in detail in current reports [11, 16, 39], and others 
will follow. We include here just enough discussion of 
these issues to show how the material of the first three 
sections fits into the overall project. 

A major focus of effort in PLITS is the use of 
declarative information in programming languages. Our 
concerns cover a broad range of issues, ranging from a 
careful study of type mechanisms [16] to general nonpro- 
cedural programming. We are attempting to develop a 
uniform solution, involving a general notion of assertions 

and very sophisticated compilers that will encompass 
conventional optimizations, language extension, verifi- 
cation and automatic programming within a single 
framework. We will outline the issues most closely re- 
lated to distributed computing, starting with the issue of 
primitive data types. 

In current programming languages, data types and 
the associated type machinery are used for a variety of 
purposes. In some cases alternatives to ordinary data 
types may serve better, providing language facilities 
which are more expressive and more extensible. At the 
simplest level, data types are used to indicate a particular 
hardware representation for variables. The compiler 
must have this information in order to generate correct 
code. Real and integer are common examples, directly 
related to the difference in code generated for real and 
integer variables. In a tagged architecture where the reals 
and integers were not distinguished, there might be a 
single type number, which combined both. 

Given that the number of types which have a distinct, 
direct hardware representation is small and fixed, it 
seems appropriate to regard them as primitive. The 
present data type machinery is perfectly adequate for 
this purpose, if we accept that for a given site, each 
simple variable has a single particular hardware repre- 
sentation which we wish to specify. The compiler will 
ensure that we do not mix different representations in a 

364 

meaningless way. It is central to the present conception 
of data type that the compiler checks type correctness. 

This has led to the unfortunate notion that if the 
compiler is to check something, then it must be a data 
type. Data types are now being used to encode all those 
properties of a variable which the compiler checks. 
Strong typing (e.g. PASCAL) attempts to provide for 
assertional information and consistency checking, but 
uses much too weak an expressive mechanism. A strong 
type is essentially the logical AND of a set of properties, 
with the OR of these conjunctions expressible as a union 
type. This does not allow the programmer a convenient 
way of asserting the desired consistency checks. The use 
of union types also gives rise to some subtle aliasing 
effects [38]. 

As a simple case of the difficulty, suppose that a 
programmer would like to have three independent prop- 
erties, such as 

small(x)  ~ Ixl < 15; odd(x) ~- m o d  2 = 1; posi t ive(x) =- x > 0 

In a strongly typed language, he can do this only by 
defining composite properties like small odd or odd 
positive. Unless a coercion is defined, one cannot, for 
example, use a small odd variable in a procedural call 
which requires a small argument. Composite types can 
be combined using the union construct, which has the 
effect of oring properties together. 

Even with three basic properties over a hundred 
different plausible types can be produced. For example: 

un ion  (small ,  odd) 
un ion  (small  posit ive,  odd) 
un ion  (smal l  positive, small odd) 

where presumably any property may also be negated. 
This creates even greater problems with generic op- 

erators, which are operators associated with different 
function procedures for arguments of different type. For 
example: 

small + small 
odd + odd 
positive + positive 

might each invoke a different procedure. This might be 
adequate if three procedures were all that are needed, 
but what about: 

small + small odd 

small + odd 

Perhaps the first can use the same procedure as 

small + small 

by invoking the coercion of small odd to small, but what 
about the second? The variable of type small might be 
odd, so that the odd + odd would be correct, or perhaps 
the variable of type odd is small, or perhaps they are 
both positive! A profusion of composite and union types 
could not possibly help; it would multiply the number of 
cases to be considered alarmingly. 

The problem rests on two fundamental assumptions 
of the type mechanism: that a variable has just one type; 
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and that types match only if they are identical or can be 
coerced to be so. But neither assumption is necessary to 
do the job that property types are here being required to 
do. If  a programmer wants to declare that a variable 
always satisfies some predicate P, or that the actual 
argument to a procedure must satisfy another, then it 
should be possible to say just that. 

The solution to this and a number of  related problems 
is to add a simple property mechanism to the primitive 
type facilities of  a language. For problems involving only 
simple variables such as that described above, the use of 
separate properties for small, odd, and positive make it 
quite easy to specify the "type" requirements for varia- 
bles and functions. For composite data structures, such 
as arrays or records, the property mechanism becomes 
more complex. Our current ideas on this are given in 
[16]. 

Even with the property mechanism, we are restricted 
to specifying only conditions involving one variable or 
argument. There is no way, for example, to specify that 
the arguments to a procedure sum to one (or approxi- 
mately one). For this and a number of  other reasons we 
propose to include a more general assertion facility in 
PLITS. 

An assertion is a predicate which the compiler will 
guarantee to be true at run time. It will either prove it 
true (at compile time), or generate code to check the 
assertion. Assertions may be used to describe important 
properties of  variables and data structures. A property is 
a special kind of  assertion that applies to only one 
variable and holds throughout the lifetime of  that vari- 
able. They help the programmer to write provably cor- 
rect code, and can be used for error checking. Assertions 
may be used by the compiler to generate more efficient 
code. Since they have to be proved or checked, they 
function as "hints" as to what program properties the 
optimizer might use. There is no attempt, however, to 
coerce the programmer into providing enough assertions 
to allow formal verification of  all programs. 

We will present assertions and their uses more con- 
cretely, continuing the use of  PASCAL-PLITS as a basis. 
Certainly the notion of  (assertion) will include the ex- 
isting (Boolean) expressions, but may be more extensive. 
As a first example, consider the reception of messages by 
a module. One would like to be able to Assert that a 
given Receive will acquire only certain kinds of  mes- 
sages. With our definitions, the obvious thing is to ac- 
company the Receive statement with 
Assert Slots Must  Be (set of  Public slot names) 

This assertion allows the compiler to assume that no 
other public slot names known to this module will appear 
in any message picked up at this point. One could also 
assert, e.g. that the action slot of  incoming messages at 
this point could not have the value Update; the compiler 
should then be able to generate much better code for this 
read-only access. A well-written PLITS program will 
have every Receive statement accompanied by one or 
more assertions. Since modules are otherwise totally self- 
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contained, the compiler can then analyze the receiving 
module for consistency, code-optimization, etc. The ex- 
ecution-time truth of  an assertion might be provable at 
compile time, but otherwise it will require a compiled-in 
check. The idea here is that we can develop proofs of  
conditional correctness of  individual modules given their 
assertions with errors being detected as run-time viola- 
tion of  specific assertions. The problem of  verifying the 
correctness of  a collection of  modules is more complex 
and is addressed in [11]. The method proposed there is 
to characterize each module as a finite-state machine 
and to establish the properties of  the system by reacha- 
bility theorems in the vector space of  states of  the mod- 
ules. The propagation of information among modules 
which communicate only by messages is addressed in 
I37]. 

The specifications of a module in PLITS should 
include the assertions on its incoming and outgoing 
messages. Assertions will enable us to capture easily 
constructs like the pre, post, invariants, and requires of  
Alphard [29]. For automatic programming, the specifi- 
cation of  a module must also include other information, 
like the resource utilization [31] of  the module. 

More formally, there are two (statement) constructs 
involving assertions proposed for PASCAL-PLITS. 

(a) Assert (assertion) 
(b) Under (assertion) Do (statement) 

The first of  these is the basic form which generates an 
exception condition if the assertion fails to hold. Con- 
struct (b) specifies that the (assertion) is to hold through- 
out the (statement). This idea has also been called 
"invariants" or "continuously evaluating expressions" 
and is extremely powerful. Unfortunately, it is not easy 
to specify or to implement in a general and useful way. 
There are two difficulties: efficiency and the grain of 
evaluation. The efficiency question is easy to under- 
s tand--how can we implement invariants without un- 
duly slowing down the computation. It is our claim that 
standard flow analysis and value propagation techniques 
can make this feasible in the usual cases. This is a good 
example of  what we would like from an advanced com- 
piler. 

The grain problem for invariants is much deeper. 
Should the semantics of  Under specify that the (assertion) 
must hold at every individual machine cycle or at some 
coarser grain? Our current definition is that the (assertion) 
must hold at the end of  each first level substatement of  
the (statement) which is the body of  the Under. 

In addition to their use in verification, assertions play 
a central role in our work on code optimization. One of  
the key problems in bringing PLITS-style programming 
into widespread use is the development of techniques for 
producing efficient code from the decoupled and pro- 
tected constructs of  PLITS. The idea here is to have the 
compiler understand those cases where certain checks 
are not needed at execution time. 

One can get a feeling for this problem by considering 
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the implementation of  standard variables and arrays in 
PLITS. It is certainly true that we could have array (even 
individual variable: cf. [20]) modules which took mes- 
sages and returned values. Doing this in the obvious way 
would cause an unacceptable slowdown of  about a 
hundred in the execution of  simple programs. One so- 
lution to this "grain" problem is to make modules be 
rather large subsystems, coded in the usual way. The 
better solution is to use a more sophisticated compiler. 
In general, there are times when one would want the full 
PLITS paraphernalia for accessing a global array. For 
example, one might want to have critical sections or 
check the range of  values or trace the updates or change 
the internal representation of  the array or lots of  other 
things. What we would like is to be able to close [45] a 
collection of  PLITS modules and get very good code for 
the simple cases. 

This module integration problem is the direct exten- 
sion of  the standard procedure integration task which is 
an important aspect of current optimization efforts. One 
encouraging initial result is that the narrow message- 
based interface among modules makes global flow anal- 
ysis much less costly than in other proposed schemes for 
parallelism [37]. Similar module integration problems 
would arise in any of  the proposed data abstraction 
languages like Alphard [29] or CLU [27] or EUCLID 
[241. 

Debugging calls for some new techniques in a PLITS 
(or any Distributed Computing) environment. A direct 
ancestor of  PLITS was the Stanford Hand-Eye System 
[15] in which some of these problems were addressed. 
The major additional debugging tools there were time- 
labeled selective message tracing and the ability to inter- 
act separately with individual modules. A major diffi- 
culty was that the user console handled everything se- 
quentially, merging all communication streams. The use 
of  multiple streams was developed by Swinehart [43] and 
is a central feature of  the Rochester RIG system [2] 
which has a PLITS-Iike message basis. 

Another important set of  issues arises from the fact 
that message switching systems manifest errors in char- 
acteristic ways. Since modules are self-contained, careful 
coding can guarantee that a module never process a 
message that would force it into a bad state. Messages 
that violate assertions can be found and reported. The 
difficult error conditions come from situations like dead- 
lock, flooding, starvation, etc. 

A deadlock in PLITS arises when two (or more) 
modules are in a situation where each is attempting to 
receive a message which must be sent by another. Flood- 
ing occurs when a module generates too many messages 
and starvation where a module does not receive messages 
intended for it. There are a variety of other error condi- 
tions that can arise in a multiprocessing environment 
involving critical race conditions, inconsistent shared 
data, etc., but these will not normally be detectable as 
problems in queue management. The hope is that the 
message discipline and the use of  assertions will make it 
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easier and more natural to write correct programs and 
find errors. 

We have developed two kinds of  solutions to error 
conditions arising in queue management. The first kind 
of solution involves having the PLITS kernel use more 
sophistication in its management of  message queues in 
order to minimize the number of  avoidable deadlocks, 
etc. These techniques were described briefly in Section 
3 and are treated more thoroughly in [39]. 

The second class of  solution to error conditions in- 
volves the use of  system-generated exception conditions. 
The system (DSYS) underlying a PLITS implementation 
will have a great deal of  information about the message 
state of  the various modules. It is straightforward to have 
the system detect a variety of  illegal and dangerous 
situations. It is also possible (cf. [10]) to provide for the 
checking of  user-provided assertions on message behav- 
ior. Errors or assertion violations can be treated as types 
of  exception conditions. 

In PLITS, exception conditions can be clearly divided 
into two classes: those that arise within a module and 
those that are external to the module. Since much PLITS 
programming is event driven, exception conditions will 
cover much more than the usual error conditions. Typical 
internal conditions include overflow, type violations, 
message arrival, and absent slots. External exception 
conditions include invalid messages, time-out notifica- 
tions and the availability or demise of  other modules. In 
the PLITS environment, the notification for an external 
exception condition will be through messages. Although 
it is not strictly necessary, it is preferable to have the 
notion of  priority message for exception conditions 
(among other things). In our proposal, a priority message 
will be received (if present) immediately before the next 
Send or Rece ive  statement executed by the module. This 
is equivalent to having a statement of  the form: 

1 While Pending About (priority transaction) Do 
2 Begin Message M l; 
3 Receive M 1 About (priority transaction) 
4 Cause  (priority_message, M l) 
5 End 

before each Send and Receive statement. The Cause  
statement in line 4 triggers an internal exception condi- 
tion within the module. Thus, an external exception 
condition is announced as a priority message to the 
module; this could be explicitly checked for at any time, 
but will normally be converted to an internal exception 
condition of  type priority_message. 

The treatment of  internal exception conditions will, 
of  course, be different in different body languages. The 
following proposal for PASCAL-PLITS is a simplifica- 
tion of  ideas of  [26] made possible by the elimination of  
data sharing across modules. A PASCAL-PLITS pro- 
gram has a fixed set of  named exception conditions and 
a (generally larger) set of  procedures, called handlers. 
Following Levin, we assume that the handler to be 
invoked for a given condition can be declared as part of  
the declaration of  a block by a statement of  the form: 
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On (condition) Invoke (handler) 

The record of which handler is currently appropriate for 
each condition follows the PASCAL dynamic nesting 
structure. When invoked, a handler runs as a normal 
procedure called in the block where its condition was 
caused. This is all straightforward--the difficult prob- 
lems are how to pass information to the handler and how 
the handler should complete. We expect the following 
simple solutions to suffice for PASCAL-PLITS. 

There are two basic completion paths commonly 
needed for exception handlers--ei ther the handler re- 
turns to the point of invocation or it must exit to some 
higher level. It might also need to pass on the situation 
to another handler. The following four statements: 

Return {Causing ((condition), (arg))} 
Exit {Causing ((condition), (arg))} 

cover the possibilities. A handler might call other rou- 
tines, change global data within its module, send mes- 
sages, etc. while operating. When it is finished, it must 
either Return to the point of  invocation or Exit from the 
block in which it was declared. Optionally, it can also 
cause another condition after it completes. 

A thorough discussion of exception handling and the 
advantages of this design are beyond the scope of  this 
paper. The astute reader will have observed that the (arg) 
accompanying a Cause was a (message) (A-set) in the 
previous example. The use of sets of name ~ value pairs 
as arguments to condition handlers seems particularly 
appropriate, because various handlers might deal with 
different slots. As was mentioned in Section 2, we are 
currently exploring the use of  A-sets in a number of 
programming contexts. 
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A cyclic-order property is defined for bodies 
bounded by smooth-curved faces. The property is shown 
to be useful for analyzing pictures of such bodies, 
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Corrigendum. Programming Techniques 

Robert Sedgewick, "Implementing Quicksort Pro- 
grams," Comm. AC M  21, 10 (October 1978), 847-857. 

On page 851, first column, line 30 and Program 2, 
line 8, change l + 1 to l. 

On page 852, first column, lines 7-8, change while 
A [ j ]  < v andj _< N to whilej _< N and A [ j ]  < v. (Here 
and is a so-called conditional which does not evaluate 
the second argument if the first is false.) 

The first of these errors was pointed out by Nelson 
H.F. Beebe. The published version has a running time 
proportional to N 2 for a file in reverse order. This 
problem has appeared in other Quicksort implementa- 
tions (see Knuth, Sorting and Searching, p. 614). 

The second error was pointed out by Burton L. 
Leathers, who suggests that the conditional and could be 
avoided by searching the rightmost subtile for the largest 
element in the array, and using it in A IN] as a sentinel 
rather than oo in A[N + 1]. 
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Introduction 

When we look at a good-quality picture of a scene 
containing a number of three-dimensional objects, we 
are usually able to "understand" the scene; that is, we 
are able to perceive the real physical nature of the 
objects. The reason for this is that we have seen similar 
scenes before and at those times were able, by a combi- 
nation of touching and viewing, to develop the ability of 
relating pictures of three-dimensional objects to the ob- 
jects themselves. The same applies--perhaps with the 
need for slightly more specialized learning--to the un- 
derstanding of  scenes depicted in terms of line drawings, 
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