
at any point. In addition, it is possible to experiment
with the efficacy of minor variations such as a deeper or
shallower search for candidates, more frequent global
iterations between phases 1 and 2, the use of coding
schemes to prevent candidates from reentering candidate
lists immediately after being rejected, etc. This type of
manageability makes it easier to understand how the
algorithm behaves and tailor the algorithm to particular
types of problems.

Much remains to be done. The degree of nonopti-
mality caused by iterating between phases 1 and 2 rather
than combining them should be explored. The handling
of key orders in the current algorithm must be revised
and made more general (a maximum of two keys are
allowed for each dataset in the current implementation).
Further refinement of methods for estimating execution
costs would increase the applicability of the results.

This paper has presented an explanation and dem-
onstration of an approach for producing answers to a
puzzle that confronts system designers every day. The
next step is to apply this approach in facilitating the
design of real systems. Whether human designers really
need help of this type is actually an empirical question
that can be studied by comparing the efficiency of actual
system designs with tha~t of designs generated by algo-
rithms such as the one presented here. Whether or not
such algorithms outperform human designers, the need
for their development is clear. To implement automatic
programming capabilities in which people describe the
substantive processing to be accomplished and machines
translate such descriptions into executable code, design
choices will have to be made automatically.

Received November 1977; revised January 1979

References
1. Alter, S. Optimizing the behavior of application systems. Proc.
Sixth Annual Conf. of the Computer Measurement Group, San
Francisco, Oct. 8-10, 1975, pp. 192-211.
2. Gerritsen, R. A preliminary system for the design of DBTG data
structures. Comm. ACM 18, 10 (Oct. 1975), 551-557.
3. Hoffer, J. An integer programming formulation of computer data
base problems. TR #1-74, Dept. of Management Studies, Case
Western Reserve U., Cleveland, Ohio, Oct. 1974.
4. Kornfeld, W. Methodology for optimization in automatic
programming systems. Unpub. B.S. Th., M.I.T., Cambridge, Mass.,
June 1975.
5. Low, J. Automatic coding-choice of data structures. Memo AIM-
242, Stanford Artif. Intell. Lab., Stanford, Calif., Aug. 1974.
6. Mitoma, M. F., and Irani, K. B. Automatic database schema
design and optimization. Proc. Int. Conf. on Very Large Databases,
1975, pp. 278-321 (available from ACM, New York).
7. Morgenstern, M. Automated design and optimization of
management information systems software. Unpub. Ph.D. Th.,
M.I.T., Cambridge, Mass., 1976.
8. Nunamaker, J. F., Nylin, W. C., and Konsynski, B. Processing
systems optimization through automatic design and reorganization of
program modules. In Information Systems, J. T. Tou, Ed., Plenum,
New York, 1974, pp. 311-336.
9. Ruth, G. Automatic design of data processing systems. Third
ACM Symp. on Principles of Programming Languages, Atlanta,
Georgia, Jan. 1976, pp. 50-57.
10. Yao, S. B., and Merten, A. G. Selection of file organization using
an analytic model. Proc. Int. Conf. on Very Large Databases, 1975,
pp. 255-267 (available from ACM, New York).

353

Programming J.J. Homing
Languages Editor

High Leve!
Programming for
Distributed
Computing
J e r o m e A. F e l d m a n
U n i v e r s i t y o f R o c h e s t e r

Programming for distributed and other loosely
coupled systems is a problem of growing interest. This
paper describes an approach to distributed computing
at the level of general purpose programming languages.
Based on primitive notions of module, message, and
transaction key, the methodology is shown to be
independent of particular languages and machines. It
appears to be useful for programming a wide range of
tasks. This is part of an ambitious program of
development in advanced programming languages, and
relations with other aspects of the project are also
discussed.

Key Words and Phrases: distributed computing,
modules, messages, assertions

CR Categories: 4.22, 4.32

1. Introduction and Overview

When the University of Rochester Computer Science
Department was started in 1974, our initial research
goals included taking a really serious look at program-
ming languages. There were two underlying assump-
tions: (l) that programming languages had changed little
in the previous decade despite advances in many related
areas and (2) that one could envision compilers as so-
phisticated as the best current artificial intelligence pro-
grams. We began by trying to isolate the most important
concepts available in programming systems to see how
they interacted with each other. The project was called
PLITS (Programming Language in the Sky) and, al-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author's address: Dept. of Computer Science, Mathematical Sci-
ences Building, University of Rochester, Rochester, N.Y. 14627.
© 1979 ACM 0001-0782/79/0600-0353 $00.75.

Communications June 1979
of Volume 22
the ACM Number 6

though it has come down a little closer to the ground,
the name has stuck. The study is far from complete, but
we claim to have an interesting preliminary result,
namely that a judicious incorporation of three constructs:
modules, messages, and assertions, can lead to program-
ming language systems of considerable power and ele-
gance.

This paper concentrates on the implications of the
continuing advance of distributed computing On the
design for high-level programming languages. Many
problems of distributed computing (DC) do not arise in
conventional programming. Solutions of these problems
lead in a natural way to new programming language
constructs. A distributed computation is spread among
several computers which are assumed to be connected
by some communication paths. For the foreseeable fu-
ture these communication paths will be less reliable and
have lower bandwidth than is available in the processors
themselves. This leads us to expect that DC programs
will be made up of largely self-contained modules which
will share very little information directly. One would
also want to have the communication between modules
be some asynchronous message protocol, rather than
subroutine or coroutine calls where one module would
always have to wait for a response from the other. It
appears to us that the module-message paradigm is
inherently well suited to DC and is likely to appear in
some form in any proposed high level language for DC.
Even if we restrict consideration to a single machine,
modules and messages seem to provide important advan-
tages over existing languages and abstraction proposals
such as Alphard [29], CLU [27] and Euclid [24].

The choice of the primitive high level language con-
structs for PLITS was not made a priori. Starting from
a survey of the "powerful ideas" of programming sys-
tems, we attempted to see if there were inherent incom-
patibilities among them. There were only a few such
situations, such as the incompatibility between separately
compilable procedures and code optimization through
procedure integration. A significant conclusion was that
parallelism and data sharing are inherently difficult to
combine effectively. Our interest in networking and our
work on a message-based operating system [2] strongly
suggested the idea of messages, but did not totally solve
the problem of how to communicate without data shar-
ing.

The decision to have symbolic names as the basis of
communication seems obvious in retrospect, but was
difficult to arrive at. By using names of message slots as
the shared notion and having no name-valued constructs,
we are able to have flexible communication among
modules with no sharing of storage. It was clear from
work in automatic programming and verification that
more declarative information was needed--hence the
general notion of assertions was included. Transaction
keys were added later as a solution to several problems
in selective reception, protection, flow control, and mul-
tiplexed servers. The bulk of the paper is concerned with

354

the important questions that arose from attempting to
implement this set of ideas and use them to solve hard
problems. Although many difficult questions remain,
enough clean solutions have been found to convince us
that there is something fundamentally sound in the
PLITS world view.

The use of the modules and messages can be illus-
trated by some simple examples. A module is a self-
contained entity, like a Simula or SmaUtalk class, a SAIL
process, or a CLU cluster. It is not important which
programming language is used to encode the body of a
module; we will explicitly have to account for the case in
which various modules are coded in different languages
on a variety of machines. The presentation here is based
on a specific choice of body language: PASCAL as
defined in [22]. This should be easier to understand than
definitions based on abstract syntax.

Modules communicate with one another solely
through messages. In order to have communication, there
must be something that is understood by both commu-
nicating modules. The shared element in PLITS is a
name which may be thought of as an uninterpreted string
of characters. A message is a set of (name ~ value) pairs
called slots. The value portion of a slot will be an element
of some primitive domain (e.g. integers) whose represen-
tation is also generally understood.

The modules of any PLITS system must compose,
send, receive, and decompose messages. For this purpose,
we add some data types and operations to PASCAL or
any other body language. In the PASCAL case, the
primitive data types are extended to include module and
message. Each module explicitly declares (public) every
slot name that it deals with along with the data type of
that slot. As we will see later, there is a process analogous
to linkage-editing that ensures that public slot names are
used consistently. The word "public" refers to sharing
within a job but not across jobs; the notion of job is
extended to distributed job (D JOB) in Section 3.

PASCAL has four primitive types: integer, Boolean,
char, and real, and three structure types: arrays, records,
and sets. We will ignore sets and subrange types, but will
use enumeration types. The PLITS constructs do not
have a particular obvious encoding in PASCAL (if they
did, we might not need them). We have chosen to
represent modules as additional type constructors anal-
ogous to array or record. In keeping with PASCAL's
fairly strong typing, each kind of module class will be a
different type. Part of PLITS is deeply incompatible with
strong typing (much more will be said about this below).
In particular, we want to allow some slots to have as the
data type the union of all module types, which we denote
module. It is crucial that any module (written in PAS-
CAL-PLITS or some other X-PLITS) be able to send a
message to any other.

We also add a type message which is like the PAS-
CAL type record except that it has all the public slot
names of the module as potential field names. The global
constructs in PASCAL-PLITS will be the public slot

Communicat ions June 1979
of Volume 22
the ACM Number 6

Fig. 1.
1 Const George = mod
2 Begin
3 Public Recipient: module
4 Object: integer
5 var I, J, Next_Fib: integer
6 Messl , Mess2: message

7 Send message (Recipient ~ Me) To
Fibonacci

8 Receive Mess2 From Fibonacci
9 Next_Fib := Mess2. Object

1 0 End

Const Fibonacci = mod
Begin
Public Recipient: module

Object: integer
vat This, Last, Previous: integer

Request: message
Last := 0
This := 1
While True Do

Begin
Receive Request
Previous := Last
Last := This
This := Last + Previous
Send message (Object ~ This) To

Request . Recipient
End

End

Fig. 2.
0 Const Fibonacci = mod
1 Begin
2 Public Object: integer
3 Public Recipient, Complaint_Dept, Complainer: module
4 Public Problem: problem_type

var Request, My_Complaint: message
Complainee: module
This, Last, Previous, Biggest: integer

Last := 0; This := 1; Biggest := 2 ~' 35 - 1
My_Complaint := message (Problem ~ Overflow,

Complainer ~ Me

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22

23

24

25
26
27

While True do
Begin

Receive Request
Previous := Last;
Last := This;
If Biggest - Last > Previous
Then Begin This := Last + Previous;

Send message (Object ~ This) To
Request . Recipient About Request . About

End
Else Begin

Put (Recipient ~ Request • Recipient)
In My_Complaint;

Complainee :=
If Present Request . Complaint_Dept
Then Request . Complaint_Dept
Else City_Hall;

Send My_Complaint To Complainee About
Request . About

End
End While Loop

End

names, module type declarations (including constant
modules) and some enumeration types. There are to be
no global variables of any type.

For a first example (Figure 1), suppose there were a
module, Fibonacci, which provided the service of sup-
plying consecutive positive Fibonacci numbers, and a
module, George, which wanted to make use of this
service. (George and Fibonacci are actual module names,
not module prototypes or class definitions.)

355

George is declared to be a constant of type module
(using the rood construct) and to have two public slot
names: "Recipient" of type module and "Object" of type
integer. The type constructor mod is analogous to the
PASCAL constructor record. The primitive type module
denotes the union of all types declared with a rood
constructor; PASCAL does not have an analogous union
of all records. We will refer to types declared using rood
as "module types." The variables Mess l and Mess2 are
declared to be of type message. The Send statement in
line 7 uses the PASCAL constructor syntax to build a
message and send it. After sending the message to Fi-
bonacci, George is automatically suspended until a mes-
sage from Fibonacci is received (line 8). This particularly
simple control regime is equivalent to a subroutine call.
Since Fibonacci has the same two public slot names as
George, they can communicate. Fibonacci is a server
module that waits for a request, computes the next value,
and sends an answer message to the module named in
the request. Although this is George in the example, it
could be a general continuation.

One of the major goals of the PLITS effort is the
development of techniques for programming reliable
systems. Since each PLITS module has complete control
over its internal state and the messages it accepts, one
can program any module so that it never reaches an
undesirable internal state. Of course, a module which
contains internal protection against a wide variety of
external errors can become quite bulky. There is a fun-
damental design tradeoff between hardening individual
modules and guaranteeing at the system level that certain
global conditions cannot arise. A detailed discussion of
these issues is beyond the scope of this paper (cf. [16]).
However, in Figure 2, we present a somewhat more
protected Fibonacci module which will not be subject to
integer overflow. Figure 2 also includes instances of
several additional PLITS constructs.

The first new notion occurs on line 4 where a public
slot name of type "problem_type" is declared. The type
problem_type is a fixed collection of uninterpreted sym-

Communicat ions June 1979
of Volume 22
the ACM Number 6

bols exactly like the PASCAL "enumeration" type.
There will be several public enumeration types in a
PLITS system. In lines 9-11, a prepackaged message is
assembled and stored in the message variable, My_ Com-
plaint. In lines 19 and 24, the Send statements contain
an extra component "About"; this specifies a particular
transaction key in a way which is described below. The
other new code is in lines 21-27; the Recipient slot of
My_Complaint is filled in from the Request. If there is a
Complaint_Dept (cf. [20]) slot in this request, the module
which is its value will be sent the complaint. Otherwise
some default complaint handler, City_Hall, will hear
about it. The name of the Recipient module (which may
have been awaiting an answer) is passed along to the
Complaint_Dept, because there might be some appropri-
ate response to the problem. For example, there could
be some double precision Fibonacci module which would
be able to return an appropriate value if George were
prepared to accept it. This could require that George
handle the double size integers; that is not very hard to
arrange, for example, by an extra slot for the high order
part.

There is a more interesting problem in the control
discipline used in the coding of the module George given
in Figure 1. The statement on line 8 is:

Receive Mess2 from Fibonacci

But we saw in the expanded Fibonacci module of Figure
2 that there might be an error recovery module that
would supply the answer if Fibonacci could not. The
coding style of line 8 requires that the answer be con-
veyed back to Fibonacci and then to George, but there
is nothing to be gained by retracing our steps. To solve
this and a number of other control problems, we will add
one more construct, transaction, to PLITS. Intuitively,
a transaction is a unique key which can be used in the
regulation of message traffic. A transaction is required
in the About slots of the Send statements of lines 19 and
24 of Figure 2. In this case, the outgoing transaction key
is just the one accompanying the request message. If
some Complaint_Dept were able to rectify the overflow
problem, it could forward the correct answer to a slightly
modified George. Our third example (Figure 3) shows a
recoding of the module George which does selective
reception on the transaction, Fibkey, which it originally
provided. Figure 3 is an overview of a complete PAS-
CAL-PLITS program containing the expanded version
of Fibonacci, etc.

These introductory examples are intended to provide
an intuitive notion of what is being proposed. In the next
section a precise definition of PASCAL-PLITS is given,
roughly following the style of [22]; this will be used for
examples throughout the paper. Section 2 also shows
how we capture key notions from several areas of com-
puter science in a PLITS system. Section 3 considers the
implementation problems arising in extending these
ideas to distributed computing systems. In Section 4, we
return to the consideration of a one-language PLITS

356

system, more or less assumed to run on a single machine.
Properties are introduced as a special kind of assertion
which are an improvement on strong typing. Assertions
are shown to be the key to verification and optimization
of PLITS programs. Finally, we present a brief overview
of debugging and exception handling in a PLITS envi-
ronment. The material of Sections 3 and 4 summarizes
a number of ongoing research efforts, for which refer-
ences are provided.

A word about the current state of PLITS implemen-
tation seems to be called for. The basic concepts of
PLITS were crystalized early in 1976 and some students
attempted to carry out toy implementations. A servicea-
ble SAIL-PLITS was implemented that summer by Jim
Low using the SAIL macro facility; it has been used for
running examples like those in this paper and for course
problems and term projects. This version incorporates
essentially the constructs described in Section 2. The
underlying support system described in Section 3 has
been implemented on our local network [2] under the
direction of Paul Rovner, and is being used in current
distributed systems [10] and artificial intelligence re-
search [40]. Most of the ideas of Section 4 are being
incorporated into Zeno [3], the base language for the
Advanced Compiler project in our laboratory. A com-
plete high level multilanguage multimachine PLITS sys-
tem is under development, but has lower priority than
the more basic efforts.

Fig. 3.

Program Everything
Problem_type = (Overflow, Time Out,

Absent Slot, Illegal Module, ...)
public Recipient, Complaint_Dept, Complainer: module

Object: integer
Problem: problem_type

const George = rood
Begin

Public Recipient: module
Object: integer

var I, J, Next_Fib: integer
Messl, Mess2: message
Fibkey: transaction

Fibkey := New Transaction

Send message (Recipient ~ Me)
To Fibonacci About Fibkey

Receive Mess2 About Fibkey
Next_Fib := Mess2.Object

End

const Fibonacci = rood
i [cf. Figure 2]
End

const City_Hall = rood

End

End

Communicat ions June 1979
of Volume 22
the ACM Number 6

2. D e f i n i t i o n s

2.1 A P r e c i s e D e f i n i t i o n o f M i n i m a l P L I T S

We now state more precisely what is proposed to be
included in a PLITS system. The language described is
somewhat more restrictive than one would want to use
for the construction of large systems (cf. [2]), and the
definition is being kept minimal so that the fundamental
issues can be more easily addressed. For example, the
current def'mition allows no block structure or other
partitioning of the space of public slot names. A number
of other straightforward extensions are mentioned in
passing. Even so, we will omit all consideration of three
important issues to be covered in Sections 3 and 4:
computer networking, assertions and program transfor-
mation, errors, and other system issues.

We now proceed to a fairly precise definition of a
PASCAL-PLITS. The purpose is to provide a fixed
language in which to present subsequent PLITS exam-
ples, not to propose an extension to PASCAL. We will
define the syntax of the additions locally rather than
present modified syntax graphs. We will also (for now)
be even less formal than [22].

Recall that a message is a set of name ~ value pairs,
where the names and their associated types are publicly
known. The first new construct is the public slot name
definition, which is of the form:

Public S~:T1, $2:T2 Sin:Tin;

where the Si are all public slot names and the Ti are their
associated elementary types. An elementary type is either
a PASCAL primitive type or t r a n s a c t i o n or a module
type. We also add a type m e s s a g e which is similar to the
PASCAL record type. The legal message constructors in
module P are all of the form:

message (Sj ~ Xj, Sk ~ Xk, ...)

where each Xj is an element of type Tj and the slot name
Sj: Tj has been declared public in P. This differs from the
record constructor in that the field names are given
explicitly in any order and need not all be present. Every
message implicitly includes two extra slots: Source of
type module and About of type t ransac t ion .

In analogy with PASCAL record field extractors, we
define for a message M

M.Si = Xi

to hold, providing that the pair Si ~ Xi is an element of
M. I f there is no S~ - Xi pair in M, an exception condition
occurs; exceptions will be discussed in Section 4. We also
extend the PASCAL with construct from implicitly nam-
ing the record to implicitly naming the message in the
obvious way. This definition of message allows a module
P to send and receive messages with slots not known to
P but not to examine or alter these slots. There are some
additional operations on a message:

Put Si ~ Xi In M
Remove Si From M
M. S := Xi

357

All of these require that Xi be of type T~ and that the
slot Si: Ti has been declared public in module P. The put
statement adds the slot Si ~ Xi or replaces the existing
value of Si. The remove statement totally removes an
Si ~ Xi if it is present; no error results if the slot is absent.
The assignment statement updates the value of the slot
S if it is present; otherwise an exception condition (see
Section 4) is generated.

I f M is a message, V is of a module type, and K is a
transaction identifier, then there are valid statements of
the form:

Sand M To V (About K}

In any PLITS messages are always sent by value (cop-
ied). There are also two predicates on message slots:

Absent Si In M
Present Si In M

The P r e s e n t (A b s e n t) predicate returns True if there
is (is not) an Si ~ Xi pair present in M. The predicates
of equality and inequality are extended to objects of
t ransac t ion , m e s s a g e , and module type. This completes
the discussion of message types from the internal PAS-
CAL point of view. In addition to its importance for
messages, the data structure consisting of a set of name

value pairs has many other good uses. We are currently
calling this data structure an A-set (analogous to the
LISP notion of A-list) and are exploring their use in a
number of contexts.

An alternative PASCAL-PLITS syntax for the slots
known to a module P would be achieved by declaring,
in P, a local instance Pmessage of the type constructor
m e s s a g e

type Pmessage = messageS~:T~
S2:T2

end;

where the {Si:Ti} are exactly the pairs that appeared in
the public declaration in the definition used above. This
definition of message is more PASCAL-like, allowing
the compiler to carefully control what kind of messages
a module could receive. What this definition gives up is
the ability for a module to handle messages some of
whose slots it knows nothing about. An important claim
of this paper is that very strong typing is ineffective as a
way to promote careful programming and that the PLITS
methodology offers a way of saying more precisely what
conditions a message must satisfy in order to be accept-
able to a module. Similarly, one might want to have
stronger restrictions on variables of type m o d u l e . For
example, a strongly typed language would have con-
structs like "fixed-length queue of real module." The
proposed way of treating such issues with properties is
discussed briefly in Section 4 and in detail in [16]. In
general, PLITS does not currently support structured
types in public slots (but see Section 3). In particular,

Communications June 1979
of Volume 22
the ACM Number 6

there can be no message slot of type message. I f K is of
type transaction and V is of module type, then

Receive <message exp.> {From V} {About K}

is the pattern for the four types of Receive statements.
The internal axiomatic semantics of Send and Receive
can be treated simply. A Send statement has no direct
effect on the sending module. A Receive statement has
the internal semantics of an assignment to a message
variable. In many implementations, the failure of a
message to arrive in a specified (perhaps by default)
amount of time will result in an exception condition. The
use of the axiomatic semantics for verification and the
discussion of exception handling is presented in Section
4.

The sending and receiving of messages are central to
any PLITS implementation and must be considered with
some care; most of Section 3 is concerned with some
issues arising in message-based systems. For our defini-
tion of PASCAL-PLITS, we need two semantic rules on
message transfer. The first is that message queues are
assumed to be unbounded, in the sense that the stack
and the heap are considered unbounded in PASCAL
and similar languages. Queue management, error detec-
tion, etc., are important system considerations but can
be omitted at this stage of definition.

The second semantic rule concerns the preservation
of order among messages. The rule is: for each triple
(Sender, Transaction, Receiver) messages are guaranteed
to arrive at the receiver in the same time order as they
were sent from the sender. No other order properties can
be relied upon. For all communicat ion between a partic-
ular sender and receiver which does not have an (About
transaction) clause, the system will assign a single fixed
transaction identifier. Thus if no transactions at all are
used between a sender and receiver, messages will all
arrive in sequence.

A module type in PASCAL-PLITS is given by a
declaration of the form:

type T = mod L; Begin S End

The module type notion does not have a direct counter-
part in PASCAL. A module has some of the properties
of a procedure and some of the properties of a record
(like Simula classes, etc.). We have chosen to define it as
a type constructor so we could easily have module classes
and instances. The parameter list L is the same as that
of a PASCAL procedure and is used to initialize new
modules of the given type. All parameters are passed by
value. The special case of a constant of module type was
shown in Figure 3.

Module instances come into being in the standard
PASCAL way. I f T is a module type and V is o f type T,
we can write:

V .--- T(L)

where L is an actual parameter list. This creates a new
instance of a module of type T and assigns a reference to
this module to V. The next example (Figure 4) presents

358

Fig. 4.

1 Program Everything
2 type qactions = (Clear, Empty?, Size?, Remove, Append,

Generate, Next, Print)
3
4 type qmod = mod Length: integer
5 Begin
6 public Recipient: module
7 Command: qactions
8 Datum: real
9 Flag: Boolean

10 var First, Next: integer
11 Mess 1: message
12 const Q = array [0: Length] Of real
13 First := l; Next := 1
14 While True Do
15 Begin
16 Messl := Receive
17 With Messl Do
18 Case C o m m a n d Of
19 Clear: Begin
20 First := 1; Next := 1
21 Send message (Flag ~ True) To Recipient
22 End;
23 Empty?.: Begin var Arts: Boolean
24 Arts := (First = Next)
25 Send message (Flag ~ Ans) To Recipient
26 End

27 End of while loop
28 End of qmod definition
29 Const Fred = mod
30 Begin
31 public Recipient: module

32 var Diskq: module

33 Diskq := qmod (14)
34 Send {Recipient ~ Fred, C o m m a n d ~ Append,

Da tum ~ 3.14) To Diskq

35 End of Fred

a fragment of the code for a fixed-length queue of real
values. The style of coding of Figure 4 follows the
Smalltalk [19] idea of having a data structure interpret
messages with a command slot. The enumerat ion type
qactions on line 2 defines the commands which are
meaningful to qmod modules. The command Generate
is intended to start the sequencing; the remaining qac-
tions are obvious. The definition starting in line 4 of the
prototype qmod has one formal parameter, Length, which
is used in line 12 to fix the size of the array used for the
queue instance. The public slot names, vars, and the
const array are the minimal constructs needed for a
simple queue module. Lines 14--18 lay out the standard
PLITS style for a server module which waits for any
message and then branches on the value of some action
or command slot. In line 17, the PASCAL With construct
is used to implicitly prefix all slot names within its scope
with the message variable, Messl. For example, line 18
is equivalent to:

Case Mess 1. C o m m a n d Of

Communica t ions June 1979
of Volume 22
the ACM Number 6

Starting in line 29, we have a constant module, Fred,
which makes use of a private instance of qmod which it
refers to through its local module variable Diskq. Line 33
gives the code for establishing an instance of qmod with
the Length of the queue equal to 14. Line 34 shows how
Fred would put an element on the queue, providing its
own name as the Recipient for error messages.

In keeping with the general PLITS philosophy, a
module cannot be killed from outside. There is a single
statement:

Self destruct

which will allow a module to eliminate itself. The prob-
lem of messages to and from a destroyed module is a
standard one in operating systems and in networking
and is discussed in Sections 3 and 4.

There are five additional constructs which return
Boolean values:

Pending {From P} {About K}
Extant P

where P is of module type and K is a transaction. The
first four test if there is a message ready for the module
executing them, and the fifth, if a given module instance
is still active.

The final new construct to be defined is an additional
simple type, transaction. An object of type transaction is
specified to be unique across all "sites" in a PLITS
environment. (The definition of a site and the implemen-
tation of transaction type objects is discussed in Section
3.) In PASCAL-PLITS, we declare transaction variables
in the usual way:

T1, Key:transaction.

In addition to transaction variables and slots, there is
one expression of type transaction, New-transaction; it is
used in statements of the form:

Key := New-transaction.

As we discussed above, any Send, Receive, or Pending
command can have an optional part

About K

where K is a transaction expression. Transaction objects
are used in a variety of ways in the coordination of
modules. For example, a Fibonacci module could assign
separate transaction objects to each of a number of
Fibonacci sequences which could be pulsed asynchro-
nously.

Interesting design issues arise in the choice of the
receive and pending constructs. One would like a module
to be able to do quite selective receive's and not be
bothered with messages that it was not ready to process.
For example, one could allow receive to take an arbitrary
predicate on the values of slots in the message. There are
several difficulties. One cannot build into the system all
the generality that might ever be required--for example,
a module might want to receive that message which has
the greatest value for some slot. Another problem is that

359

having very selective receive's puts a great burden on the
system for storing, checking, and keeping track of mes-
sages. Finally, there are problems of defining the correct
sequencing for messages which are being controlled by
complex predicates. The definition we have chosen is a
compromise. Clearly, having receive only specify the
source is too restrictive. Many different kinds of selective
receive's can be coded into transaction keys. The pro-
posed way of handling more complex receive specifica-
tions is through the use of a "front-end" module. The
sender-transaction encoding has proved to be a conven-
ient basis for the low level communication protocols
required for reliable transmission and flow control (cf.
Section 3 and [39]). A PLITS system should provide
primitives, data structures, etc., which make this rela-
tively easy. It probably is worth adding negation and sets
of senders and transactions to the primitive receive and
pending.

2.2 Discussion
O n e important feature of PLITS systems is the use of

messages as the basic control primitive. Although there
have been many proposals for synchronization and con-
trol disciplines, all of these are easily captured by the
message construct often leading to clearer solutions to
classic control problems. We also can deal with hardware
or software interrupts and with timing signals as mes-
sages. All of this is well known, and has been incorpo-
rated in several systems, but has not been enunciated in
high level constructs or languages ([20, 22] are partial
exceptions). The notion of module-valued slots seems to
provide easily a very flexible, but safe discipline for
control transfers, incorporating continuations, complaint
departments, etc.

The use of messages is also valuable in solving the
problems of shared resources, particularly data struc-
tures. The general idea that a resource always be allo-
cated by a single controlling module greatly simplifies
all the common exclusion problems. The currently fash-
ionable way [28] of manipulating data in an external
module (class, form, etc.) is to execute a procedure in
that module. The message paradigm has several advan-
tages over subroutine calls. If the modules were in dif-
ferent languages, the subroutine call mechanisms would
have to be made compatible. Any sophisticated lockout
procedure would require the internal coding of queues
equivalent to what the message switcher provides. In the
subroutine discipline, a module which tries to execute a
locked subroutine is unable to proceed with other com-
putation. The total picture on the relative value of mes-
sages and calls is much more complex; Section 4 contains
some additional discussion.

Another view of PLITS messages (A-sets) is as a
generalization of parameter lists in subroutine or corou-
tine calls. The idea of explicitly naming parameters is
common in assembly languages where the total number
of parameters to a routine may be very large. More
importantly, the set of slots presents a collection of

Communications June 1979
of Volume 22
the ACM Number 6

suggested parameters rather than filling in the values of
parameters. This leads naturally to the use of semantic
checks on the consistency of parameters and to the use
of default values for unspecified ones. This is already
stronger than strong typing and can be further
strengthened by using Assertions (cf. Section 4). Three
other advantages also fall out. The use of return messages
frees us from the constraint of single-valued functions--
there is no reason why an answer message should have
only one slot. The use of A-sets of name~value pairs as
the input and output of all modules provides the cleanest
form we have seen for the composition of multiple-
valued functions. For intermodule communication, we
also solve the so-called "uniform reference p r o b l e m " -
one need not be concerned with whether an answer (say
an array element) is computed by a procedure or a table.
Mesa [l 8] also attempts to achieve these goals by a quite
different method.

There is yet another useful view of messages. One
can view a message as a partially specified relation (or
pattern), with some slot values filled in and some un-
bound. This is common in relational databases [l] and
artificial intelligence languages [5]. In this view, a mes-
sage is a task specification with some Recipient and some
Complaint Departments to talk to about it. Various
modules can attempt to satisfy or contract out parts of
the task of filling in the remaining slots. One nice feature
of the current design is the ability for a module to handle
messages containing slots unknown to it. This allows for
several modules working together on a task while main-
taining locality. For example, an executive module could
route messages (on the basis of a few slots that it under-
stood) to modules which deal with totally different public
slot names. We can also view a message A-set (set of
name~value pairs) as a collection of bindings of varia-
bles. This shares many of the properties of LISP A-lists
and SAIL contexts and seems to be an excellent way to
handle the problem of evaluation relative to an environ-
ment.

There is no apparent conflict among these alternative
views of PLITS messages. It is too early in the develop-
ment to be sure, but the combined power of these para-
digms seems to provide a qualitative improvement in our
ability to develop programs.

There are other interesting features that arise when
messages are combined with the idea of modules. The
most obvious feature of PLITS programming is the high
degree of locality and protection it provides. Each PLITS
module is totally self-contained and communicates solely
through messages. This means that no local variables
can even be examined from the outside, no procedures
invoked, etc. A module can be asked to return or update
a value, execute a function, etc. It now becomes quite
natural to screen requests for validity (much more than
type checking), to guard against conflicting demands on
a data structure, etc. This does not solve all the problems
attacked by structured programming strictures, but does
make it clear what has to be done and where. For

360

Fig. 5.

coust Alphonse = m o d

1 Begin
2 public A, B: integer
3 Action: ac t ions
4 Recipient : module

5 var In_Mess, Out_Mess: message
6 Key: transaction
7 Key := New_Transac t i on
8 Send message (Act ion ~ Lock, A ~ 0, B ~ 0) To Gas ton

About Key
9 Send message (Act ion ~ Fetch, A ~ 0, B ~ 0,

Rec ip ien t ~ Me)
1 0 To G a s t o n About Key
11 Receive In_Mess from G a s t o n About Key

1 2 Out_Mess := m e s s a g e (A ~ - In_Mess- B,
B ~ - I n _ M e s s . A , Ac t ion ~ Update ,

1 3 Rec ip ien t ~ Me)
1 4 Send Out_Mess To Gas ton About Key

1 5 Receive In_Mess from Gas ton About Key
1 6 I f In_Mess . Ac t ion ~ Reject
1 7 Then Send message (Act ion ~ Unlock , A ~ 0, B ~ 0) To

Gas ton About Key
1 8 Else C o m m e n t whatever ;

1 9 End

example, consider the problem of maintaining consist-
ency in a multiply-accessed database.

First let us consider a simple exclusion problem:
Suppose a module Alphonse wants to swap and negate
two integers A and B in another module Gaston, which
we can think of as a global data structure. Alphonse must
get the values of A and B, swap and negate them, and
put them back. The problem is to do this without unduly
locking Gaston and in such a way that no inconsistencies
can arise. One rather elaborate PASCAL-PLITS solution
to this problem is shown in the next example (Figure 5).
The module Alphonse first sends a message to Gaston to
lock A and B except for messages using transaction Key.
It then fetches the two values, swaps and negates them,
sends them back and waits for a response. When Gaston
has completed the internal update, a message is returned
to Alphonse. If all went well, Alphonse will send an
unlock message to Gaston to complete the transaction.
There are simpler ways to accomplish this, but this
program above makes much of the discipline explicit.

The module Gaston, which we are viewing as a global
data structure, must have a way of locking A and B
during the critical period when their values are not
stable. The easiest way is to delay response to any
message involving A or B which does not have the magic
key. Notice here that we are assuming that the public
slot names A and B each correspond to a single "global
variable" which we wish to regulate. This is a specialized
use of public slot names, but an important one and one
which naturally gives rise to exclusion problems.

As before, the key for this transaction can be passed
from module to module. The pair of send's on lines 8
and 9 could be made into a single fetch and lock state-
ment, either by adding such a primitive action or adding

C o m m u n i c a t i o n s June 1979
o f Vo lume 22
the A C M N u m b e r 6

a postaetion slot to the message. Similarly, one could
simplify lines 14-17 by using an update and unlock
construct. There is no difficulty making these constructs
indivisible, because a module (e.g. Gaston) is never in-
terrupted. There can be no deadlock (in this simple case)
because Alphonse locks all the resources that it needs (A
and B) before starting. The module Gaston can receive
and process other messages while waiting for A lphonse--
the entire module is not locked.

There is a potential problem of code in Gaston using
the local variables associated with A and B but not
mentioning them in messages. If one really wants a
variable to be totally protected in PLITS, one must make
it a module. A more plausible solution is that any module
which allows locking of particular variables must main-
tain internal consistency by not modifying these variables
itself while they are locked. The potential deadlock
situations are internal to the module and should be easily
avoidable.

More commonly, one is concerned with the exclusion
problem in large complex data structures. One very clean
analysis of this problem can be found in [9]. They
develop a notion of a sufficient discipline for locking and
extend it to "predicate" locks which are logical condi-
tions set up by one module to guarantee the integrity of
its modifications. The PLITS implementation of this
algorithm is a straightforward extension of the ideas
developed above [32].

The coding of the structure-monitoring module Gas-
ton could be done in a number of different ways. We
have suggested that Gaston could simply ignore messages
that involve A or B. This could be done using a
Smart_Receive function call of the form

Mess3 := Smart_Receive (Transaction = Key V
(Absent(A) A Absent(B)))

We have already discussed some of the alternative ways
of coding a Smart_Receive, for example, using a filtering
front end module. It is almost equivalent to have Gaston
accept all messages and only process the appropriate
ones, but there are advantages and disadvantages to each
method. If Gaston deals with all messages, it must have
an internal data structure which duplicates much of the
system function of queuing messages. On the other hand,
by looking at all messages, Gaston has the opportunity
to detect high priority messages, time-critical situations,
contradictions, etc. This discussion suggests the kind of
issue that arises in the design of a system that is based
on PLITS. We are attempting to provide a set of primi-
tives that will support a variety of solutions to problems
like the monitoring of global variables.

3. Implementation Considerations

The implementation of PLITS ideas has proceeded
in parallel with the formulation of the general concepts
described above. The development of an operating sys-
tem for RIG (Rochester's Intelligent Gateway) [2] used
the message-module paradigm, but no higher level lan-

guage forms. A serviceable SAIL-PLITS with essentially
the features described in Section 2 was written by Jim
Low in the summer of 1976 and has been used for
experimental and student work. One outgrowth of this
effort is an "advanced compiler" project, which is dis-
cussed briefly in Section 4. The other major current
effort is the implementation of a uniform framework for
multimachine, multilanguage distributed user jobs
("D JOBs") in the PLITS style. This is being carried out
in the context of our local network which currently
contains four Altos, two Eclipses, and a DEC KL 10 and
is described in [12]. The discussion here is intended to
point out the issues arising in the implementation of
PLITS or any similar high level language for distributed
computing. Once arrangements for starting a D JOB are
made, the underlying system should be invisible to a
PLITS user who will program as described in Section 2.

We first look more carefully at the process of sending
and receiving messages. Even on a single machine, there
will have to be some underlying programs which handle
messages and schedule modules for execution. We will
call such a collection of programs a Kernel A Kernel is
a conventional multiprogramming monitor which se-
quences through the modules on its "ready" queue. A
Kernel also maintains data structures describing modules
which are "suspended" waiting to Receive a message of
a specified sort. These data structures, together with
analogous ones for messages which result from Send
statements, suffice to implement the PLITS message
primitives.

With an underlying operating system like TOPS/10
or TENEX, it may be convenient to group modules into
a single job if they communicate mainly with one an-
other, or comprise a package, or share code. Such a
group is called a Site. In general, each site will have its
own kernel. A problem arises if the modules of a D JOB
are written in different body languages. It may be the
case that languages differ in their representation of prim-
itive data types (e.g. real). We require that the represen-
tation of primitive data types be uniform within a site.
This, as well as other considerations, may give rise to the
situation where there is more than one site on a given
machine involved in an individual distributed job.

A D JOB might consist of modules on several com-
puters. For example, a distributed vision application
might consist of an image processing site on the PDP-10,
an interactive site on an Alto, a site on an Eclipse for
managing a color display, and file servers on both the
PDP-10 and on the Eclipse. One of the modules in each
D JOB is designated the "controlling module" for the
D JOB. In this example, the controlling module might be
one on the Alto. The controlling module for a D JOB is
responsible for initializing and terminating the D JOB
and for taking appropriate action when one of the other
modules of the D JOB fails.

Figure 6 is a graphic representation of the breakdown
of functions and terminology which we have adopted. It
is convenient to divide the PLITS support functions into

361 Communications June 1979
of Volume 22
the ACM Number 6

Fig. 6.

Djob A

_ Link <

Djob B

Machine 1 Machine 2

two subsets carried out by the site Kernel and by the
Host Control Program (HCP) respectively. In Figure 6,
there are two D JOBS, A and B, which have no connec-
tion but happen to be both distributed over Machines l
and 2. DJOB A consists of three sites: Sl 1 and Sl2 on
Machine 1 and $21 on Machine 2. Each site has a Kernel
assigned to it as described above. The Kernel performs
the following functions:

(1) distributes messages to and from modules within
the site;

(2) forwards messages to and from other sites;
(3) carries out needed representation shifts for inter-

site messages;
(4) allocates resources within the site;
(5) generates unique (world-wide) module and

transaction identifiers;
(6) checks for errors and assertion violations.

We have discussed the first three functions briefly
and will give more details on them below. The fourth
function, resource allocation within the site, is concerned
with storage allocation and reclamation, scheduling of
ready modules, etc. The fifth function is discussed later
in this section. Error and assertion checking are discussed
in Section 4.

Each HCP is an extension of its machine's operating
system. It performs four main functions:

(l) distributes messages among sites local to this
machine;

(2) forwards messages to and from other machines;
(3) starts and stops DJOBS, and provides access to

other operating system services;
(4) checks for intersite errors and assertion viola-

tions.

When a PLITS message is sent by a module, its
destination is checked. If it is within the sender's site, the
site Kernel handles it; if not, it is given to the local HCP.
If the destination is within another site on the same
machine, it is given to the Kernel for that site; if not, the
HCP has it forwarded to the appropriate machine-- the
job of HCP functions 1 and 2 above. To do this effec-
tively requires quite a lot of mechanism beneath the
surface. Problems faced include reliable transmission,

362

flow control, error handling, and providing user services
for distributed computations. This has led us to view the
underlying support facilities as a distributed operating
system (DSYS).

Each machine HCP has two parts: a "DSYS Job
Manager" (for distributed jobs) and a "DSYS Commu-
nications Manager." This organization reflects the two
separate facilities of DSYS: operating system support
and services for PLITS D JOBS, and basic message com-
munication in the PLITS style.

Each Job Manager:

(1) provides services for DJOBS (i.e. start, stop,
access to services of the local operating system);

(2) remembers which local services are allocated to
which D JOBs, and which module is the con-
trolling module for each DJOB;

(3) arranges to recover resources used by such ser-
vices when a D JOB finishes.

In addition, each Job Manager keeps track (for each
D JOB whose controlling module is local) of the other
computers that are involved in the D JOB. The Job
Manager for the controlling module of a D JOB knows
which other HCP's to notify when the D JOB finishes (or
dies).

Consider the problem of setting up a D JOB. If there
are two sites on the same machine with the same primi-
tive data representations, the HCP must check that the
use of public slot names is compatible--essentially the
same process as binding the externals of two load mod-
ules. If two sites have incompatibility in representation
of a primitive data type, then some conversion routines
will be automatically invoked for inter-site messages
when they are sent. The ARPA network voice protocol
[7] presents a good model of a scheme in which a
dialogue between machines is used to reconcile represen-
tation differences before messages containing data are
sent. All of this is fairly messy, but should only be
necessary when a new PLITS language processor is
brought up on a machine. In the usual case, the standard
conversions between sites will have been established and
the negotiations between machines will be simple.

The DSYS Communications Manager (DCM) on
each computer is responsible for forwarding messages to
and from modules on other local sites and on other
computers. The DCM accepts messages to be forwarded
to remote modules from local ones, and passes messages
to local modules that arrive from remote ones. In addi-
tion to dealing with communications I /O devices, the
DCM controls the flow of messages from local senders
based on the rate of acceptance by intended receivers
and the availability of buffer space. The DCM also
provides a "reliable transmission" service.

The DCM allocates buffer space for messages on a
"destination" basis. Each (receiving module, transaction)
pair is considered a "destination" for messages. A de-
scriptor which includes a "destination queue" exists for
each destination. Each such queue has its own allotment

Communications June 1979
of Volume 22
the ACM Number 6

of buffer space for messages. This space is not committed
a priori, but is rather a (changeable) estimate of how
much of a backlog of messages should be allowed for
the destination. The basic flow control mechanism is
simple: a sending module is kept suspended until space
on the destination queue becomes available. If the des-
tination is in the same site as the sender, the site Kernel
controls message flow. If the destination is at a different
site, the message is passed to the DCM, which arranges
to forward it.

A destination descriptor is a distributed data struc-
ture. The destination's site Kernel has a portion, and
each computer upon which there is at least one module
sending messages to the destination has a portion (main-
tained by the sender's DCM). One can view the portions
on remote computers as queue extensions. The primary
job of each DCM is to maintain its part of this distributed
data structure to support module-to-module communi-
cation across computer boundaries. The system is de-
signed in such a way that a DCM can "forget" about its
part of a remote destination descriptor if there is no
message activity for a while. A scheme for "implicit
connections" is the basis for this design: local knowledge
about remote destinations is acquired when needed,
automatically. There is purposely no requirement that
state information about a remote module be maintained
arbitrarily long.

There is a question of how to identify modules in a
distributed system. If there were a central source of
identifiers, it might take a long time to get one and the
central source might be sometimes inaccessible. If each
module created its own, there would either have to be a
lot of handshaking or there would be a danger of dupli-
cations. Our solution is simple and quite general: an
identifier (in the present design) is a 32-bit number
composed of four fields: a computer number, an "incar-
nation number," a site number, and a "local module
number." Such an identifier is a network "address"
[33]. The computer number uniquely identifies one of
the computers in our network. The incarnation number
is used to distinguish old incarnations of the operating
system on the indicated computer from the most recent
one. DSYS uses this information to trap references to
defunct operating system incarnations. The site number
identifies a site on the indicated computer, and the local
module number identifies a module at the site. Thus a
module address uniquely identifies a module in the
distributed system.

One consequence of this definition is that a given
module always resides on the same machine, somewhat
contrary to current fantasies about distributed comput-
ing. In our view, a module will be compiled to take full
advantage of the hardware and software resources of its
machine. There may be equivalent modules on various
machines, and programs will be able to choose between
them, but each will have a distinct unique address, hence
machine of residence.

There is one additional question that should be ad-

Fig. 7.

12
2
real
Rel
Iml
2
real
Re2
IM2
1
action
Update

dressed at this t ime--sending structured data objects in
messages. As defined, PLITS allows only single elements
to be the value of a message slot. This is defensible in a
one-site system where one can assume that access to
arrays, for example, can be by message, with an advanced
compiler (Section 4) making the simple cases efficient.
This model simply breaks down in the case of remote
sites and we are forced to consider sending blocks of
information in messages. This also means that a PLITS
user cannot, in practice, totally ignore the location of his
modules, but one would hardly expect it to be otherwise.

There are several possible ways to add structured
types to PLITS messages. The most general would be to
allow for constructed modes (as in Algol 68) and the use
of these modes as data types for public slot names. In
this case, the initial connection dialogues would also
have to come to agreement about all the publicly defined
modes, but there does not seem to be any inherent
difficulty about this (we already require checking enu-
meration types). One would not, of course, allow the use
of references or pointers in the defined modes. General
structured types are omitted from this version of PLITS
for simplicity and because our ideas on a universal
structure mechanism are just beginning to take shape
[16].

We are using a somewhat simpler extension--a single
additional public type: bundle. A bundle object is a self-
describing collection of objects of primitive type. We will
first present the syntax of bundle and then disouss its use.

(group) ::= (repetition) (elementary type) (repetition values of type)
(bundle) ::= (total length) (group) I (bundle) (group)

Thus a bundle is a collection of one level structures. For
example, a bundle of two complex numbers followed by
an action update would be of t~ae form given in Figure
7 (where action is a public enumeration type). The idea
is that bundles are relatively simple and are handled by
relaUvely few modules at each site. If two sites wanted
explicitly to include the information that a pair of reals
was a complex number rather than a 2-vector, they
would use another enumeration type to provide descrip-
tors in bundles. Similarly, one could have bundle descrip-
tors either in the bundle or in accompanying slots. Our
current interest in bundles is primarily for passing very

363 Communications June 1979
of Volume 22
the ACM Number 6

large collections of data such as images [40] and, to a
lesser extent, for buffer management within a site. In
connection with this, one probably wants to add a
Sendoff construct which asserts that the sending module
has no further need for the data in this message. It is too
early to tell how much elaboration of the bundle mech-
anism will prove worthwhile.

4. Related Issues

The overall aims of the PLITS project go well beyond
the distributed computing proposals presented above.
The project originated as an attempt to look very care-
fully at programming languages and their use in a very
broad context. There is a great deal that we do not yet
understand, but a surprising number of questions do
seem to yield to mutually compatible solutions, such as
the module-message paradigm. The first technical report
[10] on the PLITS project contains a loose overview of
our ideas on a variety of topics. Some of these are being
treated in detail in current reports [11, 16, 39], and others
will follow. We include here just enough discussion of
these issues to show how the material of the first three
sections fits into the overall project.

A major focus of effort in PLITS is the use of
declarative information in programming languages. Our
concerns cover a broad range of issues, ranging from a
careful study of type mechanisms [16] to general nonpro-
cedural programming. We are attempting to develop a
uniform solution, involving a general notion of assertions

and very sophisticated compilers that will encompass
conventional optimizations, language extension, verifi-
cation and automatic programming within a single
framework. We will outline the issues most closely re-
lated to distributed computing, starting with the issue of
primitive data types.

In current programming languages, data types and
the associated type machinery are used for a variety of
purposes. In some cases alternatives to ordinary data
types may serve better, providing language facilities
which are more expressive and more extensible. At the
simplest level, data types are used to indicate a particular
hardware representation for variables. The compiler
must have this information in order to generate correct
code. Real and integer are common examples, directly
related to the difference in code generated for real and
integer variables. In a tagged architecture where the reals
and integers were not distinguished, there might be a
single type number, which combined both.

Given that the number of types which have a distinct,
direct hardware representation is small and fixed, it
seems appropriate to regard them as primitive. The
present data type machinery is perfectly adequate for
this purpose, if we accept that for a given site, each
simple variable has a single particular hardware repre-
sentation which we wish to specify. The compiler will
ensure that we do not mix different representations in a

364

meaningless way. It is central to the present conception
of data type that the compiler checks type correctness.

This has led to the unfortunate notion that if the
compiler is to check something, then it must be a data
type. Data types are now being used to encode all those
properties of a variable which the compiler checks.
Strong typing (e.g. PASCAL) attempts to provide for
assertional information and consistency checking, but
uses much too weak an expressive mechanism. A strong
type is essentially the logical AND of a set of properties,
with the OR of these conjunctions expressible as a union
type. This does not allow the programmer a convenient
way of asserting the desired consistency checks. The use
of union types also gives rise to some subtle aliasing
effects [38].

As a simple case of the difficulty, suppose that a
programmer would like to have three independent prop-
erties, such as

small(x) ~ Ixl < 15; odd(x) ~- m o d 2 = 1; posi t ive(x) =- x > 0

In a strongly typed language, he can do this only by
defining composite properties like small odd or odd
positive. Unless a coercion is defined, one cannot, for
example, use a small odd variable in a procedural call
which requires a small argument. Composite types can
be combined using the union construct, which has the
effect of oring properties together.

Even with three basic properties over a hundred
different plausible types can be produced. For example:

un ion (small , odd)
un ion (small posit ive, odd)
un ion (smal l positive, small odd)

where presumably any property may also be negated.
This creates even greater problems with generic op-

erators, which are operators associated with different
function procedures for arguments of different type. For
example:

small + small
odd + odd
positive + positive

might each invoke a different procedure. This might be
adequate if three procedures were all that are needed,
but what about:

small + small odd

small + odd

Perhaps the first can use the same procedure as

small + small

by invoking the coercion of small odd to small, but what
about the second? The variable of type small might be
odd, so that the odd + odd would be correct, or perhaps
the variable of type odd is small, or perhaps they are
both positive! A profusion of composite and union types
could not possibly help; it would multiply the number of
cases to be considered alarmingly.

The problem rests on two fundamental assumptions
of the type mechanism: that a variable has just one type;

C o m m u n i c a t i o n s J u n e 1979
o f V o l u m e 22
the A C M N u m b e r 6

and that types match only if they are identical or can be
coerced to be so. But neither assumption is necessary to
do the job that property types are here being required to
do. If a programmer wants to declare that a variable
always satisfies some predicate P, or that the actual
argument to a procedure must satisfy another, then it
should be possible to say just that.

The solution to this and a number of related problems
is to add a simple property mechanism to the primitive
type facilities of a language. For problems involving only
simple variables such as that described above, the use of
separate properties for small, odd, and positive make it
quite easy to specify the "type" requirements for varia-
bles and functions. For composite data structures, such
as arrays or records, the property mechanism becomes
more complex. Our current ideas on this are given in
[16].

Even with the property mechanism, we are restricted
to specifying only conditions involving one variable or
argument. There is no way, for example, to specify that
the arguments to a procedure sum to one (or approxi-
mately one). For this and a number of other reasons we
propose to include a more general assertion facility in
PLITS.

An assertion is a predicate which the compiler will
guarantee to be true at run time. It will either prove it
true (at compile time), or generate code to check the
assertion. Assertions may be used to describe important
properties of variables and data structures. A property is
a special kind of assertion that applies to only one
variable and holds throughout the lifetime of that vari-
able. They help the programmer to write provably cor-
rect code, and can be used for error checking. Assertions
may be used by the compiler to generate more efficient
code. Since they have to be proved or checked, they
function as "hints" as to what program properties the
optimizer might use. There is no attempt, however, to
coerce the programmer into providing enough assertions
to allow formal verification of all programs.

We will present assertions and their uses more con-
cretely, continuing the use of PASCAL-PLITS as a basis.
Certainly the notion of (assertion) will include the ex-
isting (Boolean) expressions, but may be more extensive.
As a first example, consider the reception of messages by
a module. One would like to be able to Assert that a
given Receive will acquire only certain kinds of mes-
sages. With our definitions, the obvious thing is to ac-
company the Receive statement with
Assert Slots Must Be (set of Public slot names)

This assertion allows the compiler to assume that no
other public slot names known to this module will appear
in any message picked up at this point. One could also
assert, e.g. that the action slot of incoming messages at
this point could not have the value Update; the compiler
should then be able to generate much better code for this
read-only access. A well-written PLITS program will
have every Receive statement accompanied by one or
more assertions. Since modules are otherwise totally self-

365

contained, the compiler can then analyze the receiving
module for consistency, code-optimization, etc. The ex-
ecution-time truth of an assertion might be provable at
compile time, but otherwise it will require a compiled-in
check. The idea here is that we can develop proofs of
conditional correctness of individual modules given their
assertions with errors being detected as run-time viola-
tion of specific assertions. The problem of verifying the
correctness of a collection of modules is more complex
and is addressed in [11]. The method proposed there is
to characterize each module as a finite-state machine
and to establish the properties of the system by reacha-
bility theorems in the vector space of states of the mod-
ules. The propagation of information among modules
which communicate only by messages is addressed in
I37].

The specifications of a module in PLITS should
include the assertions on its incoming and outgoing
messages. Assertions will enable us to capture easily
constructs like the pre, post, invariants, and requires of
Alphard [29]. For automatic programming, the specifi-
cation of a module must also include other information,
like the resource utilization [31] of the module.

More formally, there are two (statement) constructs
involving assertions proposed for PASCAL-PLITS.

(a) Assert (assertion)
(b) Under (assertion) Do (statement)

The first of these is the basic form which generates an
exception condition if the assertion fails to hold. Con-
struct (b) specifies that the (assertion) is to hold through-
out the (statement). This idea has also been called
"invariants" or "continuously evaluating expressions"
and is extremely powerful. Unfortunately, it is not easy
to specify or to implement in a general and useful way.
There are two difficulties: efficiency and the grain of
evaluation. The efficiency question is easy to under-
s tand--how can we implement invariants without un-
duly slowing down the computation. It is our claim that
standard flow analysis and value propagation techniques
can make this feasible in the usual cases. This is a good
example of what we would like from an advanced com-
piler.

The grain problem for invariants is much deeper.
Should the semantics of Under specify that the (assertion)
must hold at every individual machine cycle or at some
coarser grain? Our current definition is that the (assertion)
must hold at the end of each first level substatement of
the (statement) which is the body of the Under.

In addition to their use in verification, assertions play
a central role in our work on code optimization. One of
the key problems in bringing PLITS-style programming
into widespread use is the development of techniques for
producing efficient code from the decoupled and pro-
tected constructs of PLITS. The idea here is to have the
compiler understand those cases where certain checks
are not needed at execution time.

One can get a feeling for this problem by considering

Communications June 1979
of Volume 22
the ACM Number 6

the implementation of standard variables and arrays in
PLITS. It is certainly true that we could have array (even
individual variable: cf. [20]) modules which took mes-
sages and returned values. Doing this in the obvious way
would cause an unacceptable slowdown of about a
hundred in the execution of simple programs. One so-
lution to this "grain" problem is to make modules be
rather large subsystems, coded in the usual way. The
better solution is to use a more sophisticated compiler.
In general, there are times when one would want the full
PLITS paraphernalia for accessing a global array. For
example, one might want to have critical sections or
check the range of values or trace the updates or change
the internal representation of the array or lots of other
things. What we would like is to be able to close [45] a
collection of PLITS modules and get very good code for
the simple cases.

This module integration problem is the direct exten-
sion of the standard procedure integration task which is
an important aspect of current optimization efforts. One
encouraging initial result is that the narrow message-
based interface among modules makes global flow anal-
ysis much less costly than in other proposed schemes for
parallelism [37]. Similar module integration problems
would arise in any of the proposed data abstraction
languages like Alphard [29] or CLU [27] or EUCLID
[241.

Debugging calls for some new techniques in a PLITS
(or any Distributed Computing) environment. A direct
ancestor of PLITS was the Stanford Hand-Eye System
[15] in which some of these problems were addressed.
The major additional debugging tools there were time-
labeled selective message tracing and the ability to inter-
act separately with individual modules. A major diffi-
culty was that the user console handled everything se-
quentially, merging all communication streams. The use
of multiple streams was developed by Swinehart [43] and
is a central feature of the Rochester RIG system [2]
which has a PLITS-Iike message basis.

Another important set of issues arises from the fact
that message switching systems manifest errors in char-
acteristic ways. Since modules are self-contained, careful
coding can guarantee that a module never process a
message that would force it into a bad state. Messages
that violate assertions can be found and reported. The
difficult error conditions come from situations like dead-
lock, flooding, starvation, etc.

A deadlock in PLITS arises when two (or more)
modules are in a situation where each is attempting to
receive a message which must be sent by another. Flood-
ing occurs when a module generates too many messages
and starvation where a module does not receive messages
intended for it. There are a variety of other error condi-
tions that can arise in a multiprocessing environment
involving critical race conditions, inconsistent shared
data, etc., but these will not normally be detectable as
problems in queue management. The hope is that the
message discipline and the use of assertions will make it

366

easier and more natural to write correct programs and
find errors.

We have developed two kinds of solutions to error
conditions arising in queue management. The first kind
of solution involves having the PLITS kernel use more
sophistication in its management of message queues in
order to minimize the number of avoidable deadlocks,
etc. These techniques were described briefly in Section
3 and are treated more thoroughly in [39].

The second class of solution to error conditions in-
volves the use of system-generated exception conditions.
The system (DSYS) underlying a PLITS implementation
will have a great deal of information about the message
state of the various modules. It is straightforward to have
the system detect a variety of illegal and dangerous
situations. It is also possible (cf. [10]) to provide for the
checking of user-provided assertions on message behav-
ior. Errors or assertion violations can be treated as types
of exception conditions.

In PLITS, exception conditions can be clearly divided
into two classes: those that arise within a module and
those that are external to the module. Since much PLITS
programming is event driven, exception conditions will
cover much more than the usual error conditions. Typical
internal conditions include overflow, type violations,
message arrival, and absent slots. External exception
conditions include invalid messages, time-out notifica-
tions and the availability or demise of other modules. In
the PLITS environment, the notification for an external
exception condition will be through messages. Although
it is not strictly necessary, it is preferable to have the
notion of priority message for exception conditions
(among other things). In our proposal, a priority message
will be received (if present) immediately before the next
Send or Rece ive statement executed by the module. This
is equivalent to having a statement of the form:

1 While Pending About (priority transaction) Do
2 Begin Message M l;
3 Receive M 1 About (priority transaction)
4 Cause (priority_message, M l)
5 End

before each Send and Receive statement. The Cause
statement in line 4 triggers an internal exception condi-
tion within the module. Thus, an external exception
condition is announced as a priority message to the
module; this could be explicitly checked for at any time,
but will normally be converted to an internal exception
condition of type priority_message.

The treatment of internal exception conditions will,
of course, be different in different body languages. The
following proposal for PASCAL-PLITS is a simplifica-
tion of ideas of [26] made possible by the elimination of
data sharing across modules. A PASCAL-PLITS pro-
gram has a fixed set of named exception conditions and
a (generally larger) set of procedures, called handlers.
Following Levin, we assume that the handler to be
invoked for a given condition can be declared as part of
the declaration of a block by a statement of the form:

Communicat ions June 1979
of Volume 22
the ACM Number 6

On (condition) Invoke (handler)

The record of which handler is currently appropriate for
each condition follows the PASCAL dynamic nesting
structure. When invoked, a handler runs as a normal
procedure called in the block where its condition was
caused. This is all straightforward--the difficult prob-
lems are how to pass information to the handler and how
the handler should complete. We expect the following
simple solutions to suffice for PASCAL-PLITS.

There are two basic completion paths commonly
needed for exception handlers--ei ther the handler re-
turns to the point of invocation or it must exit to some
higher level. It might also need to pass on the situation
to another handler. The following four statements:

Return {Causing ((condition), (arg))}
Exit {Causing ((condition), (arg))}

cover the possibilities. A handler might call other rou-
tines, change global data within its module, send mes-
sages, etc. while operating. When it is finished, it must
either Return to the point of invocation or Exit from the
block in which it was declared. Optionally, it can also
cause another condition after it completes.

A thorough discussion of exception handling and the
advantages of this design are beyond the scope of this
paper. The astute reader will have observed that the (arg)
accompanying a Cause was a (message) (A-set) in the
previous example. The use of sets of name ~ value pairs
as arguments to condition handlers seems particularly
appropriate, because various handlers might deal with
different slots. As was mentioned in Section 2, we are
currently exploring the use of A-sets in a number of
programming contexts.

Acknowledgments. The ideas presented here owe
their present form to continual discussions and interac-
tions. I would especially like to acknowledge the help of
J. Low and P. Rovner, the students of CSC 400 and 520,
and the former friends and captive seminar audiences
who had to listen to various partial formulations.

We have had enough experience with PLITS to
understand that it behaves as a mirror in which each
observer sees a reflection of something different--this
indicates the presence of many unacknowledged intellec-
tual debts. The most direct ancestor of PLITS is the
message procedure facility [15] which was put into SAIL
for robotics work and which no one remembers.

Received March 1977; revised December 1978

References
(Note. References [4, 6, 8, 13, 14, 17, 21, 23, 25, 30, 34--36, 41, 42, and
44] are not cited in the text.)
1. Astrahan, M.M., et al. System R.: A relational approach to data
base management. IBM Res. Lab., Feb. 1976.
2. Ball, E., Feldman, J., Low, J., Rashid, R., and Rovner, P. RIG,
Rochester's intelligent gateway: System overview. IEEE Trans.
Software Eng. SE-2, 4 (Dec. 1976), 321-328.
3. Ball, J., Williams, G., and Low, J. Preliminary ZEI':O language
description. TR41, Comptr. Sci. Dept., U. of Rochester, Rochester,
N.Y., Dec. 1978.

367

4. Birtwistle, G., et al. Simula Begin. Auerbach, Philadelphia, Pa.,
1973.
5. Bobrow, D.G., and Raphael, B. New programming languages for
artificial intelligence. Computing Surv. 6, 3 (Sept. 1974), 155-174.
6. Bolt, Beranek and Newman, Inc. Interface message processor:
Specifications for the interconnection of a host and an IMP. Rep.
1822, BBN, Cambridge, Mass., 1978 (revised).
7. Cohen, D. Specifications for the network voice protocol. ISI/
RR-75-39, Inform. Sci. Inst., U. of S. Calif., Los Angeles, March
1976.
8. Demers, A., Donahue, J., and Skinner, A. Data types as values:
Polymorphism, type checking, encapsulation. Conf. Record Fifth
Annual ACM Symp. on Principles of Programming Languages, 1978,
pp. 23-30.
9 Eswaran, K.P., et al. The notions of consistency and predicate
locks in a database system. Comm. ACM 19, 11 (Nov. 1976), 624-
633.
10. Feldman, J.A. A programming methodology for distributed
computing (among other things). TR9, Comptr. Sci. Dept., U. of
Rochester, Rochester, N.Y., Jan. 1977.
11. Feldman, J.A. Synchronizing distant cooperating processes.
TR26, Comptr. Sci. Dept., U. of Rochester, Rochester, N.Y., 1977.
12. Feldman, J.A., Low, J.R., and Rovner, P.D. Programming
distributed systems. Proc. 1978 Annual ACM Conf., Washington,
D.C., Dec. 1978, Vol. 1, pp. 310-316.
13. Feldman, J.A., Low, J.R., Swinehart, D., and Taylor, R. Recent
developments in SAIL, an Algol-based language for artificial
intelligence. Proc. AFIPS 1972 FJCC, AFIPS Press, Montvale, N.J.,
pp. 1193-1202.
14. Feldman, J.A., and Rovner, P.D. An Algol-based associative
language. Comm. ACM 12, 8 (Aug. 1969), 439~49.
15. Feldman, J.A., and Sproull, R.F. System support for the Stanford
hand-eye system. Proc. Second Int. Joint Conf. on Artif. Intell.,
London, Sept. 1971.
16. Feldman, J.A., and Williams, G.J. Some comments on data
types. TR28, Comptr. Sci. Dept., University of Rochester, Rochester,
N.Y., 1977.
17. Floyd, R.W. Assigning meanings to programs. Proc. Symp. Appl.
Math., Vol. 19, 1967, pp. 19-32.
18. Geschke, C.M., and Mitchell, J.G. On the problem of uniform
references to data structures. IEEE Trans. on Software Eng. SE-3
(June 1975), 207-219.
19. Goldberg, A., and Kay, A., Eds. SMALLTALK-72 Instruction
Manual. SSL 76-6, Xerox PARC, Palo Alto, Calif., 1976.
20. Hewitt, C.E., and Smith, B. Towards a programming apprentice.
IEEE Trans. Software Eng. SE-I, 1 (March 1975), 26-45.
21. Hoare, C.A.R. Communicating sequential processes. Comm.
ACM 21, 8 (Aug. 1978), 666-677.
22. Hoare, C.A.R., and Wirth, N. An axiomatic definition of the
programming language Pascal. Acta lnformatica 2 (1973), 335-355.
23. Jones, A.K., and Liskov, B.H. A language extension for
controlling access to shared data. IEEE Trans. Software Eng. SE-2, 4
(December 1976).
24. Lampson, B.W., et al. Report on the programming language
Euclid. S1GPLAN Notices (AOM) 12, 2 (Feb. 1977).
25. Lampson, B.W., and Sturgis, H. Crash recovery in a distributed
data storage system. Unpublished paper, Xerox PARC, submitted to
Comm. A CM.
26. Levin, R. Program structures for exceptional condition handling.
Ph.D. Th., Carnegie-Mellon U., Pittsburgh, Pa., 1977.
27. Liskov, B., et al. Abstraction mechanisms in CLU. Comm. ACM
20, 8 (Aug. 1977), 564-576.
28. Liskov, B., and Zilles, S. Programming with abstract data types.
Proc. Symp. Very High Level Languages, S1GPLAN Notices (ACM)
9, 4 (April 1974), 50-59.
29. London, R.L., Shaw, M., and Wulf, W.A. An introduction to the
construction and verification of Alphard programs. IEEE Trans.
Software Eng. SE-2, 4 (Dec. 1976), 253-264.
30. Low, J.R. Automatic Coding: Choice of Data Structures.
Birkhauser-Verlag, Basel und Stuttgart, 1976.
31. Low, J.R., and Rovner, P.D. Techniques for the automatic
selection of data structures. Conf. Rec. Third ACM Symp. on
Principles of Programming Languages, Atlanta, Ga., Jan. 1976, 58-
67.
32. Mitchell, J.A., and Wegbreit, B. Schemes: A high level data
structuring concept. CSL-77-1, Xerox PARC, Palo Alto, Calif., Jan.
1977.

Communications June 1979
of Volume 22
the ACM Number 6

33. McQuillan, J.M., and Walden, D.C. The ARPA network design
decisions. Computer Networks 1, 5 (Aug. 1977), 243-290.
34. Owicki, S.S., and Gries, D. Verifying properties of parallel
programs: An axiomatic approach. Comm. A C M 19, 5 (May 1976),
279-285.
35. Parnas, D.L., Shore, J.E., and Weiss, D.M. Abstract types defined
as classes of variables. S1GPLAN Notices (ACM) 8, 2 (1976), 149-
154 (Vol. I1, 1976 Special Issue).
36. Peterson, G.L., and Fischer, M.J. Economical solutions for the
critical section problem in a distributed system. Proc. Ninth Annual
ACM Symp. on Theory of Comptng., Boulder, Colo., May 1977, pp.
91-97.
37. Reif, J. Data flow analysis for communicating Modules. TR30,
Comptr. Sci. Dept., U. of Rochester, Rochester, N.Y., 1978; also
available as Data flow analysis of communicating processes, Conf.
Rec. Sixth Annual ACM Symp. on Principles of Programming
Languages, Jan. 1979, pp. 257-268.
38. Reynolds, J. On the syntactic control of interference. Conf. Rec.
Fifth Annual ACM Symp. on Principles of Programming Languages,
Jan. 1978, pp. 39-46.
39. Rovner, P.D. Message flow control in a local network. Comptr.
Sci. Dept., U. of Rochester, Rochester, N.Y., 1978.
40. Selfridge, P.G. A flexible data structure for accessory image
information. TR45, Comptr. Sci. Dept., U. of Rochester, Rochester,
N.Y., Nov. 1978.
41. Sproull, R.F., and Thomas, E.L. A network graphics protocol.
SIGGRAPH 8, 3 (Aug. 1974).
42. Sturgis, H.E. A postmortem for a time-sharing system. Ph.D.
Diss., U. of California, Berkeley, 1974.
43. Swinehart, D.C. Copilot: A multiple process approach to
interactive programming systems. Ph.D. Diss., Stanford U., Stanford,
Calif., 1974.
44. Thomas, R.H. A solution to the update problem for multiple
copy data bases which uses distributed control. Rep. No. 3340, Bolt,
Beranek and Newman, Cambridge, Mass., July 1976.
45. Wegbreit, B., and Spitzen, J.M. Proving properties of complex
data structures. J. A C M 23, 2 (April 1976), 389-396.

Artificial Intelligence/
Language Processing

C. Montgomery
Editor

The Cyclic Order
Property of Vertices
as an Aid in Scene
Analysis
R. Shapira and H. Freeman
Rensselaer Polytechnic Institute
Troy, New York

A cyclic-order property is defined for bodies
bounded by smooth-curved faces. The property is shown
to be useful for analyzing pictures of such bodies,
particularly when the line data extracted from the
pictures are imperfect. This property augments
previously known grammatical rules that determine the
existence of three-dimensional bodies corresponding to
given two-dimensional line-structure data.

Key Words and Phrases: Scene analysis, cyclic
order, artificial intelligence, three-dimensional
reconstruction, picture processing, computer graphics,
pattern recognition

CR Categories: 3.2, 3.6, 8.2

Corrigendum. Programming Techniques

Robert Sedgewick, "Implementing Quicksort Pro-
grams," Comm. AC M 21, 10 (October 1978), 847-857.

On page 851, first column, line 30 and Program 2,
line 8, change l + 1 to l.

On page 852, first column, lines 7-8, change while
A [j] < v andj _< N to whilej _< N and A [j] < v. (Here
and is a so-called conditional which does not evaluate
the second argument if the first is false.)

The first of these errors was pointed out by Nelson
H.F. Beebe. The published version has a running time
proportional to N 2 for a file in reverse order. This
problem has appeared in other Quicksort implementa-
tions (see Knuth, Sorting and Searching, p. 614).

The second error was pointed out by Burton L.
Leathers, who suggests that the conditional and could be
avoided by searching the rightmost subtile for the largest
element in the array, and using it in A IN] as a sentinel
rather than oo in A[N + 1].

368

Introduction

When we look at a good-quality picture of a scene
containing a number of three-dimensional objects, we
are usually able to "understand" the scene; that is, we
are able to perceive the real physical nature of the
objects. The reason for this is that we have seen similar
scenes before and at those times were able, by a combi-
nation of touching and viewing, to develop the ability of
relating pictures of three-dimensional objects to the ob-
jects themselves. The same applies--perhaps with the
need for slightly more specialized learning--to the un-
derstanding of scenes depicted in terms of line drawings,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

The work described here was supported by the Directorate of
Mathematical and Information Sciences, Air Force Office of Scientific
Research, AFSC, under grant AFOSR 76-2937.

Authors' addresses: R. Shapira, 23 Sweden Street, Dania, Haifa,
Israel; H. Freeman, Rensselaer Polytechnic Institute, Troy, NY 12181.
© 1979 ACM 0001-0782/79/0600-0368 $00.75

Communications June 1979
of Volume 22
the ACM Number 6

