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Abstract

This paper defines relational global predicates and presents efficient algorithms to detect them in
a distributed program which uses unordered asynchronous messages for inter-process communica-
tion. We use relational global predicates of the form (z0+ z1 < C) where z0 and z1 are integer
values at processes PO and P1 in a system of N processes. We present a fully decentralized
algorithm that runs concurrently with the target program, uses constant size message tags (four
integers), and generates one debug message for each message received by P0 and P1. We also
describe a centralized algorithm that can be used as a checker process which runs concurrently
with the target program, or after the target program terminates. We generalize our results to
an algebra (D, %, +) where % and * are binary operators in domain D, % is commutative, asso-
ciative and idempotent, and * distributes over %. In this algebra we can calculate value of the
expression (vl % v2%..% vn) where {v1,v2,...on} is the set which contains the value of 20 + z1
in each consistent cut. For example if (D, %, *) = (Integers, min, +) then we could calculate the
minimum value of £0 + z1 over all consistent cuts. This generalization opens up many useful
variants of our algorithm, including detection of weak conjunctive boolean predicates.

1 Introduction

A condition that depends on the state of multiple processes in a distributed system is called a global predicate.
Detection of global predicates is a fundamental problem in distributed computing; it arises in many contexts
such as design, testing and debugging of distributed programs. There are two types of global predicates:
stable and unstable. A stable predicate is one that remains true once it becomes true. An unstable predicate
may alternate between true and false.

Chandy and Lamport {CL85] give an algorithm to detect stable predicates that uses global snapshots.
Bouge [Bou87], and Spezialeiti and Kearns {SK86] extend this method for repeated snapshots. Spezialetti
and Kearns [SK88] discuss methods for recognizing monotonic event occurrences without taking snapshots.
These approaches do not work for unstable predicates because the predicate may become true and then false
again in between two snapshots. An estirely different approach is required for unstable predicates.

Earlier work shows how todetect unstable predicates which can be expressed as a conjunction, disjunction
or sequencing of local predicates. Garg and Waldecker [GW92, GWar) define strong and weak conjunctive
predicates and present efficient algorithms for detecting them. Hurfin, Plouzeau and Raynal [HPR93] discuss
methods for detecting atomic sequences of predicates.

Cooper and Marzullo [CM91], and Haban and Weigel [HW88] give algorithms for detection of general
global predicates. Detection of such predicates is intractable since the number of global states is exponential
and each state must be explicitly checked.

In this paper we continue the study of detection of unstable predicates by considering relational global
predicates which cannot be decomposed into a conjunction, disjunction or sequencing of local predicates.
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The predicate (zp + 21 < C) belongs to this class, where zo and z; are integers in different processes and C'
is a constant.

Relational global predicates are useful for detecting potential violationsof a limited resource. For example,
consider a server which can handle at most 5 connections at a time. Client processes Py and P, each have a
variable zg and z; which indicates the number connections it has with the server. The predicate (zo+z; > 5),
which can be reformulated as ((—zo) + (—z1) < —5), indicates a potential error. Although the ability to
detect relational global predicates with N terms would be more useful, it is currently not known how to do
this efficiently.

We present two algorithms for detecting relational global predicates. The decentralized algorithm runs
concurrently with the target program and can be used for online detection of the predicate. The centralized
version is decoupled from the target program and can run concurrently with the target program or post-
mortem (i.e., after the target program terminates). We formally prove that both algorithms are sound (if
the predicate occurs, then it is detected) and complete (if the predicate is detected, then it has occurred).

2 Model and Notation

We use the following notation for quantified expressions: (Op FreeVars : Range of FreeVars : Expr). Op can
be any commutative associative operator (eg, min,U, +). For example (mini: i € R : f(4)) is the minimum
value of f(z) for all ¢ such that i € R.

Any distributed computation can be modeled as a decomposed partially ordered set (deposet) of process
states [Gar92, Fid88]. A deposet is a tuple (So, S1,...Sn,~+) such that:

1. S; is a finite sequence of local states. We say that a o b if and only if a immediately precedes b in S,.
Thus, S; is an irreflexive totally ordered set under transitive closure of .

2 Let S=(Ui:0< i< N :S,) and let — be the transitive closure of > U ~+. Then (S,—) is an
irreflexive partial order.

An execution that consists of processes Py, Py,... Py can be modeled by a deposet where S, is the set
of local states at P, which are sequenced by o; the ~+ relation represents the ordering induced by messages,
and — is Lamport’s happened-before relation[Lam78)].

If (v — v) then maz(u,v) = v and min(u,v) = u. Since maz and min are commutative and associative,
the maximum and minimum element of any chain in (S, —) 1s well defined The unit elements of the maz
and min operators are L and T respectively. Thus maz applied to a zero length chain returns 1. We require
that (Vu:u€S:1L —>u A u—T),and alsothat L — L and T — T.

The predecessor and successor functions are defined as follows for u€ Sand 0 < i < N:

predui=(maxv:vE€S Av—>u:v)

succudi=(minv:vES Au—v:v)

Thus if (pred.u.i = v) then v is the maximum element in (S;, —) which happened before u, or L if no element
in S, happened before u.

An external event is the sending or receiving of a message. The n*? interval in P, (denoted by (z,n)) is
the subchain of (S,,—) between the (n — 1)** and n'* external events. For a given interval (i,n), if n is
out of range then (i, n) refers to L or T. The notion of intervals is useful because the relation of two states
belonging to the same interval is a congruence with respect to —. Thus, for any two states s, s’ in the same
interval and any state u: (s — u <= s’ — u) and (u = s <= u — 5'). We exploit this congruence in
our algorithms by assigning a single timestamp to all states belonging to the same interval.

The concurrency relation on S is defined as u || v = (u /4 v) A (v /+ u). Using this relation, a state cut
15 defined to be a set ¢ of N states such that (Vu,v : u,v € ¢. u || v). Note that a state cut must contain
exactly one state from each process.

Due to the congruence mentioned above, the pred and suce functions and the || relation are well defined
on ntervals Similarly, the notion of state cuts can be extended to interval cuts
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Proof: Proof of = :

Assume (0,%) || (1, 7); thus (0,¢) /4 (1,7) and (1,7) /4 (0,4).

Case A: succ.(0,7).1 £ suce.(1, §).0.

Let KEY = suce.(l,5).0; then (1,7) — KEY. Since KEY is in Py and (0, hip) = pred. KEY.0, then
KEY = (0, hip + 1). Thus (1, 5) — (0, hip + 1). :

1 (L,7) = (0,hig + 1) A (1,5) A (0,9)
{ transitivity of — }

(0, hio+1) £ (0,4) A i# hig+1

Figure 1: Relationship among intervals when K EY isin Fp. Arrows with solid (dashed)

lines represent the pred (succ) function. i < hip
2. 1,kiy) = pred. KEY.1 A (L,
The value of a variable z in a state o € S is denoted by o.z. The predicate to be detected, previously = g lel:lll’gla ZP;C A (1,7)—~ KEY
expressed as {zo + 21 < C), can be stated formally as: (Vk: k> hiy : (1, k) £ KEY) A v(l,j) — KEY
(300,01:00 €S0 A 01 ES) A ag|jo1:00.z401.2<C) =
(1,hir+1) A KEY A (1,§) — KEY
. . = { transitivity of — }
3 Preliminary Results (1,hiy +1) A (1,5) A j#hip+1
: =
The following lemma is important in developing efficient algorithms for detecting relational global predicates. § < hiy
It indicates that we need not maintain the value of z in every state, but instead we can maintain the minirum -
value of z in each interval. We use the notation minz.(i, m;) to represent the minimum value of z in interval 3. (1,101) = pred.(0, hip).1 A (0, hig + 1) = succ.(1,5).0
(i, m;). Formally, minz.(i,m;) = (mino : o € (i,m) : 0.z). ' = { definition of pred, and lemma 3 }
Lemma 1 (300,01 :00 €S0 A 01 €81 A dollor: 002+ 01.2<C) N (1101} — (0, hio) A (k :k < hio+1:(1,5) /> (0,k))
= (Fmo,my : (0,mg) || (1, mq) : mina.(0, mg}+ minz.(1,m:1) < C) ‘ @, loy) — (0, ﬁio) A (L,7) (0, hio)
Proof: Follows from congruence between intervals and states and from properties of addition over integers. =  { transitivity of — }
. | ] (1,]')7/-)(1,101) Aloyr#j
Lemma 2 (p,i) = pred.(¢,j)p <= (k:k>i:(p,k)# (q,4)) loy < j
Proof: . .
S red ) 4, suce.(0,4).1 4 KEY A (1,hiy) =pred. KEY.1 A (0,loo) = pred.(1, hi ).0
(p,) = pred.(q,)-p = { definiti ] :
| ion of pred, and let (1, s) = suce.(0,i).1 }
<=> {definition of pred} .
05) = (maxk + (oK) = (@,3) : (5, B) (1,5) » KEY A (1,hiy) — KEY A (0,log) — (1, hiy)
— ! ! ’ ’ = { transitivity of — }
] . 1,5) & (1, hiy) A (1,8) # (1,ki1) A (0,l00) — (1, hiy)
Vkk>d:(pk) A (0, (1,5) > (1, hix : by »l00) — (1, hiy
( i:(p,k) £ (¢,9) = =  { simplify, and apply lemma 3 to (1, s) = succ.(0;4).1 }
' i ) hity<s A (Vk:k<s:(0,¢ 1,k N 1
Lemma 3 (p,i) = suceq,i)p <= (Vk:k<i:(g,5) (2.k) Lo ( 3:(0,9) 4 (LE) A (0,lo0) — (1, his)
Proof: Similar to the proof of lemma 2. L] (0,9) 7+ (L, ki) A (0,l00) — (1, hiy)
Lemmas 2 and 3 are used in the proof of lemma 4, which provides the insight needed to understand the = { transitivity of — }
algorithms for detecting the relational global predicate. It provides a mechanism for monitoring all intervals (0,3) £ (0,100) A i#log
= ,

in Pp and P; which are concurrent. The lemma states that two intervals (0,4) and (1, ) are concurrent if

and only if there exists a sequence of intervals in Py which includes (0,), and a sequence of intervals in P, lop<i |

which includes (1,5) such that every interval in the sequence at Po is concurrent with every interval in the .50 B. 54 ee(0,1).1 — suce.(1,5).0 :

sequence at P;. Note that these are sequences of intervals, which themselves are sequences of states. See The proof for case B is abbreviated due to its simil arity with case A. Let KEY = suce.(0, i).1

figure 1 for a graphical representation of the case (in the proof) where KEY isin Fo. ’ - A
L (0,i) = (Lhiy+1) A (0,§) A~ (1,5) = j<hi

Lemma 4 Two intervals (0,4) and (1, 5) are concurrent if and only if there ezist an interval KEY in process .
2. (0, hip) = pred.KEY.0 A (0,i) — KEY = i<hi

Py or Py such that log < i < hip and log < j < hiy, where

(0,hig) := pred.KEY.0 3. (0,l00) = pred.(1,hi1).0 A (1,hiy +1) = suce.(0,i).1 = log<i

(1,hiy) = predKEY.1 4. (0, hig) = pred KEY.1 A KEY — succ.(1,5)0 A (1,lo1) =pred(0,hip).l1 = loy<j
(0,l09) := pred.(1,hi).0 Endproofof o

(1,l01) := pred.(0,hig).1

23 24



Proof of <= :

1. (0,lop) = pred.(1,hi1).0 A log <i A j<hi;
= {lemma2}
(Yk: k> loo: (0,k) /4 (1,hi1)) A log<i A §<hiy
=
(0,4) A (L ki) A § < hiy
=

(0,9) A (1,3)
2. Similatly, (1,5) / (0, 3). Thus (0,) || (1, 7).

End proof of «. =

A corollary to lemma 4 is that the KEY interval is initiated by a message receipt. Intervals that are
initiated by a message receipt will be referred to as receive intervals, and receive intervals that satisfy the
requirements of KEY in lemma 4 will be referred to as key intervals.

Corollary 1 If an interval is a key interval, then 1t is also a receive interval.

Proof: Proof follows from the fact that K EY is always defined to be the successor of some interval on
another process. If the previous external event was not a message receive, then K EY could not be a successor
to any interval on another process. n

4 Overview of Algorithms

The centralized and the decentralized algorithms gather the same information as the tar get program executes.
They differ in what they do with the information. This section explains what the information is, and how it
1s gathered. Everything in this section applies to both algorithms.

Each process P, for 7 € {0,1}, must be able to evaluate minz.(i, m) for each interval (3, m). Implementa-
tion of the minz function is straight forward. Additionally, for the algorithms to be complete, it is required
that: 1) Py sends a <FINAL> message to P, immediately before P, terminates, 2) delivery of this message
is delayed until immediately before Py terminates, and 3) Pp must receive the message before terminating.
This triggers the algorithm at Py and ensures that detection is complete. In order for these requirements
to be met, both Py and P; must eventually terminate. This requirement can be removed by adding an
additional requirement that Py periodically send a message to Py to trigger the algorithm.

The algorithms are based on lemma 4. Each message received at Py or P begins a receive interval which
is a potential key interval (i.e., satisfies lemma 4). Each key interval defines values for log, hig, loy, and hi;.
The values of log and hig define a sequence of intervals at Py. Every interval in this sequence is concurrent
with every interval in the corresponding sequence at P;. Since lemma 4 uses an if and only ifrelation, every
pair of concurrent intervals at P, and P; will appear in the sequences that result from receive interval. Thus
if both Py and P; check the predicate for all pairs of states in these sequences each time a message is received,
then the predicate is detected soundly and completely.

We must show how to determine values for log, hig, lo, and hi; in each receive interval. From lemma 4
it can be seen that for any receive interval KEY:

pred.(pred. KFY.1).0

(0, hig) (0, log)
pred.(pred. KEY.0).1

(1, hiz) (1,101)

This information can be obtained by using a 2 x 2 matrix clock as described by Raynal [Ray92]. Let M;
denote the matrix clock at P;. The following description applies to an N x N matrix clock in a systern with
N processes. The 2 x 2 mairix is the upper left submatrix of the N x N matrix.

Row k of My (i.e. Mglk, ]) is equivalent to a traditional vector clock [Mat89, Fid88). (In the following
explanation, the phrase “P;’s vector clock” refers to row i of P;’s matrix clock.) M;i[k, k] is the local
clock of Py which is incremented at the beginning of each interval. Therefore the current interval is given
by (k, Mi[k,k]). Since the vector clock implements the pred function, row k of Mj can be used to find

pred. KEY.0
pred KEY.1

([

I
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Figure 2: Matrix clock example: Note that for 0 <1 £ 1, row i of P;’s matrix is a
traditional vector clock restricted to indices 0 and 1, and row (i+1) mod 2 equals the
value of Pli41) mod 2's vector clock at an interval in the “past” of P;.

predecessors of (k, Mi[k, k]). Furthermore, row k of M equals the diagonal of My, and row i # k is the
value of P’s vector clock when P; was in interval (i, Mi[i,4]). Therefore, row i # k can be used to find
pred.pred.() of the current interval at P,. The meaning of a matrix clock is formally stated below, and
figure 2 shows values of the matrix clock and message tags on an example run.

¢ The current interval is given by (k, Mi[k, k])
o (V5,518 j 2 (J, Mili, §]) = pred.(i, Mi[3, ]).5)
o (Vi M[i,i] = Mi[k,d])

We can now determine how to evaluate log, hig, lo1, and hi;. Let (0, n) be any interval in Py and M, be
the value of Py’s matrix clock in interval (0, n):

(0,hip) = pred.(0,n).0 = (0,n-1) = (0, Mo[0,0] - 1)
(1,he1) = pred.(0,n).1 = pred.(0, Mo[0,0]).1 = (1, Mo[0,1))
(0,lo0) = pred.(1, Mo[0,1]).0 = pred.(1, Mo[1,1).0 = (0, Mp[1,0])
(Lloy) = pred(0,n—1).1 = pred(0,M>"0,0).1 = (1, M3, 1))

where M(,"_1 is the value of My in the previous interval (0,1 —1). Expressions for the values of log, hig, loy,
and hi) in Py can be determined similarly.

The algorithm for maintaining the matrix clock is presented below. The algorithm is easier to understand
by noticing the vector clock algorithm embedded within it: If the row index is held constant, then it reduces
to the vector clock algorithm.

Maintaining M[0..1,0..1) at P, 0 <k <N

To initialize:

Mk [', ] = O;

if (k=0 V k=1) then My[k, k] ++
To send a message:

tag message with M;[.,-];

if (k=0 V k=1) then My[k, k] ++

Upon receipt of a message tagged with W[., :
for i:=0to1do
if (Mi[i,i] < Wi, i]) then M[i, ] := Wi, ]
if(k=0V k=1) then
Mk, K]+ +
My [k, -} := diagonal(M})

wmcerement local clock

mcrement local clock
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We have shown how to determine the values of log, hig, lo1, and hi) in any interval at Pp or Py. Thus in
the remainder of the paper we refer directly to log, hig, lo1, and hiy instead of referring to the vector clock
or the pred function.

5 Decentralized Algorithm

We describe the algorithm ‘from Py’s point of view. The algorithm at Py is symmetrical. Each time a
message is received we evaluate log, loy, hio, and hi; as shown in section 4. These values define a sequence
of intervals at Py and at P;. The sequence at P, starts at (1,0; + 1) and ends at (4, bi;). By lemma 4, every
interval in the sequence at Py is concurrent with every interval at Py. Thus we can find the minimum value
of minz.(0,) over all intervals (0, 1) in the sequence at Py; call this value min_zo, and similarly for min.z;.
If the sum of these two values is less than C, then the predicate occurred. Furthermore, since lemma 4 is
stated with the if and only if relation, if the predicate occurs then this method will detect it.

min_zo = ( mini : log < i< hio : minz.(0,i))
min_z; = (ming : loy < j < hiy : minz.(1,5)) ‘
if (min_zo + min_z; < C) then PREDICATE.DETECTED

"To implement this, min_zo can be computed locally. Then Po can send a message to P, containing
(min_zg, loy, hi1), and Py can finish the calculation. This message is a debug message and is not considered
an external event (i.e., does not initiate a new interval). Messages that are not debug messages are application
messages.

5.1

Let M; be the number of intervals at P; (also equals the number of application messages sent and received
by P;), and let R; be the number of receive intervals at P; (also equals the number of application messages
received by F;).

The message overhead consists of the number and size of the debug messages, and the size of message
tags on application messages. Py sends one debug message to Py in each of the Rg receive intervals at Pp.
Similarly, P; generates Ry debug messages. Thus the total number of debug messages generated by the
decentralized algorithm is Ro+ Rj. The size of each debug message is 3 integers. Each application message
carries a tag of 4 integers. The debug messages can be combined to reduce message overhead, however this
will increase the delay between the occurrence of the predicate and its detection.

The memory overhead in Py arises from the need to maintain minz.(0,-) for each of My intervals. This
can be reduced (for the average case) by a smart implementation since the elements of the array are accessed
in order (i.e., the lower elements can be discarded as the computation proceeds). Likewise, the memory
overhead for P, is M;. Other process incur only the overhead needed to maintain the matrix clock (i.e., 4
integers).

The computation overhead at Py consists of monitoring the local variable which appears in the relational
global predicate, and evaluation of the expression (mini : log < i < hip : minz.(0,1)) for each debug message
sent (Ro) and received (R;). The aggregate complexity of this is at most Mo(Ro + Ry) since there are Mo
elements in minz.(0,-). Pi has similar overhead. Other processes have neither the overhead of monitoring
local variables or computing the expression.

Overhead and Complexity

6 Centralized Algorithm

This version of the algorithm can be used as a checker process which runs concurrently with the target
program, or which runs posi-mortem. We describe the post-mortem version which reads data from trace
files generated by Py and P,. Since the trace files are accessed sequentially, the algorithm can be easily
adapted to run concurrently with the target program by replacing file I/O with message 1/0. First we
explain what data is stored in the trace files, then we show how the predicate can be detected by one process
which has access to both trace files. ‘
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Let R be the number of receive intervals in Py and Let QO[k], 1 < k < Ro, be a record containing the
values of log,hig,lo1, and hiy in the kth receive interval. Define Ry and Q1[1 ... Ry] similarly. The elements of
both Q0 and Q1 must be checked to determine if one of the elements represents a key interval (i.e., satisfies
the requirements of KEY in lemma 4.

Both QO and Q1 are sorted in terms of all their fields. That is, for Q = Q0 or Q = Q1, and for every
component z € {log, lo1, hip, ki1 }, @[]z is sorted. This results from the fact that the elements are generated
in order on a single process; thus the receive interval represented by Q[k) “happened before” Q[k + 1].

Po’s trace file contains two arrays of data: minz.(0,) for each interval (0, ), and QO[1..Rg]. Likewise
Py’ trace file contains minz.(1, §) and Q1[1..Ry]. In section 4 we demonstrated how to evaluate log,his,l01
and hi; for any interval in Py or P;. Generating the values for the minz function is straight forward.

The trace files are analyzed in two independent passes. We describe a function check(Q1...R]) such
that the predicate has occurred if and only if check(QO[L. .. Ro]) or check(Q1[1...Ry]) returns true. Check
uses two heaps: heapo and heapy. Heap, contains tuples of the form (n,minz.(p,n)) where (p,n) is an
interval in P,. The first elément of a tuple h is accessed via h.interval; the second element is accessed via
h.value. The heap is sorted with the value field.

The algorithm maintains the following properties (HEAP holds at all times. 11 and I2 hold between
statements $4 and S5. k is a program variable):

HEAP = (Yh,p:h € heap, : heapy top().value < h.value)
n = (Yi,p: Qfk)do, < i< Qklhip : i, minz.(p,i)) € heap,)
I2 = (Vp: Qlk]lo, < heap,.top().interval < Q[k].hip)

HEAP is an inherent property of heaps: the top element, heap.top(), is the minimum element in the heap.
Heaps are designed to efficiently maintain the minimum element of an ordered set. Statements S1 and 52
ensure I1, which states that in the Eth jteration of the for loop, all intervals in the sequences defined by QK]
are represented in the heaps. Statements S3 and S4 ensure I2, which states that the top of heap, is in the
sequence defined by @[k]. The text of the check function is shown below.

function check(Q[l...R])

ng:=1 ny:=1

fork:=1to R {
Si: while (no < Q[k].hio)
heapo.insert( (ng, minz.(0,n0)) ); no:=no+1;
S2: while (n; < Q[k].hiz)

heap insert( (ny, minz.(1,m1)) }; m=nm+1;

S3: while (heapo.top().interval < Qfk].loo)
heapo.removetop();
S4: while (heap; .top().interval < Q[k].lo1)

heap; .removetop();
S5: if (heapg top().value + heap top().value < C)
return TRUE;

}
return FALSE;,
The following lemma proves the correctness of this algorithm.

Lemma 5 There exists a value for program variable k such that at statement S5 (heapo.top().value +
heapy top().value < C) if and only if (3oo0,01:00€ 50 A 71 €51 A 00 lor:o0z+01.2<C)
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Proof:
Proof of =>: Let (i, minz.(0,4)) = heapo.top() and (j, minz.(1,5)) = heap;.top().

heapg.top().value + heapy top().value < C

= { simplify and I2 }
minz.(0,i) + minz.(1,7) < C A Q[kl.log < i < Q[F].hip A Q[k].lo: < j < Q[k].hi;
= {lemma4}
minz.(0,i) + minz.(1,7) < C A (0,i) ] (1,5)
= {lemmal}
(Foo,01:00 €S0 A 61 €81 A ap|| 01 :00.2401.2 < C)
Proof of < :
(30’0,0’1 t00ESy AL €S A g ” oy:00.z+01.2<C)
= {Lemmal}
(34,5 :(0,9) )} (1,7) : minz.(0,i) + minz.(1,5) < C)
Referring to lemma 4, if KEY is in P then let Q = Q0 and let k equal the number o
= { messages received at Py before KEY . Likewise for KEY in P;. Then Q[k] corresponds t(f}
KEY.
Qlkllog < i < Q[k].hio A Q[R].I0; < j < Q[k].hiy A minz.(0,4) + minz.(1,5) < C
= { Invariant I1 }
(,minz.(0,1)) € heapo A (j, minz.(1,5)) € heapy A minz.(0,1) + minz.(1,5) < C)
= { Invariant HEAP }
heapo.top().value < minz.(0,i) A heap.top().value < minz.(1,7) A minz.(0,i)+ minz.(1,5) < C
=

heapo.top().value + heap; .top().value < C

6.1 Overhead and Complexity

If we consider each record written to a trace file to be a debug message then the message complexity analysis
is identical to the decentralized algorithm (except that the debug messages have a different destination).

Py and P, do not need to maintain minz.(-,-), thus the only memory overhead for each application
processes is the 4 integers needed for the matrix clock.

The computation overhead consists of monitoring the local variables. The rest of the computation is
offloaded to the checker process which uses the following data: QO[1...Ry], Q1[1... Ry}, minz.(0,7) for
1< i< My, and minz.(1,7) for 1 < j < My. R; and M; are defined in section 5.1.

Consider the call check(QO[1...Ro]). On a heap of N elements, insert() and removetop() each cost
Qlg N) and top() costs Q(1). Each element of minz.(0, -) is inserted at most once and removed at most once
from heapy for a total cost of (Mg lg Mp). Similarly, the total cost of operations on heap; is Q(M;y g My).
The outer loop executes Ry times but is added to the cost of the heap operations since the heap operations
are spread out through all Ry iterations. Thus the total cost of check(QO[1...Ro]) is Q(Ro + Mo lg Mg +
M;1g Mi). Since Ry < Mo, this simplifies to Q(M lg M) where M = max(M,, M;). Since check is only
called twice, the total complexity is Q(M lg M).

7 Generalization

In this section, let o; represent a state in S;. The algorithm given in this paper detects the predicate
(300,01 : 00 || 01 : 00.7 + 1.z < C). Our approach was to compute the minimum values of 0¢.z and 0;.z
and compare their sum to C. Since + distributes over min (ie a + min(b,c) = min(a + b,a + c)), this is
equivalent to computing

(mineog, 01 : 0g || 01 : 00.2 + 01.7)
and comparing it to C. The algorithm presented in this paper repeatedly calculates the above expression
for different segments of a run; due to the idempotency of min it could be easily modified to determine the
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value of the expression for the entire run. The above expression uses min and + over integers. This can be
generalized to two operators, @ and ®, over a domain D which meet the following requirements:

Domain D

Addition ®&:DxDw— D
Multiplication ® :DxDw— D
Commutativity a®b=0da

Associativity ad(bdc)=(adb)Dec
Idempotency aPa=a

Distributivity e®(b®c)=(a®b)d(a®¢)

Let 0.z denote the value of a variable z with domain D in state o; € S;. Then our algorithm calculates
(®00,01: 00| 01 : 00.2® 01.2)
This generalization is very useful as shown by the following examples.
Example 1 (D, ®,®) := (Integers, min, +).

The resulting calculation is (minog, ey : oo || o1 :
presentation of the algorithm.

00.z + o1.x). This is the construction used in the

Example 2 (D, ®,®) := (Reals, max, *).
The resulting calculation is (max g, 0 : 0p || 01 : 09.2 % 01.2) which is the maximum value of og.z * ¢z in
any consistent cut.

Example 3 (D,®,®) :=({T,F}, v, A).
The resulting calculation is { V 60,41 : 00 || 01 : 00.2 A ¢1.z). This is equivalent to weak conjunction [GWar}
and “possibly 0g.2 A ¢y.2” [CM91].

Example 4 (D,®,®) :=({T,F}, A, V).
The resulting calculation is ( A 09,01 : 0g || 01 : 0.2 V 0,.z). This is the dual of example 3 and could be
called strong disjunction: in every cut either og.z or oy z is true.

Example 5 (D,®,Q) := ({T,F}, A, A).
The resulting calculation is ( A ¢g,0;1 : 09 || 01 ¢
mvariant,

00.2 A 01.z) which states that both 0g.z and 0.z are

8 Conclusion

Relational global predicates (as defined in this paper) are of the form (zg + 21 +... 4+ 2, < C) where z; is
an integer valued variable in process P;. We presented decentralized and centralized algorithms to efficiently
detect the occurrence of a restricted form of relational global predicates (i.e., zo + z; < C) in a distributed
system of N processes.

The algorithms are developed and formally proven with a model presented in the paper. The model makes
extensive use of intervals (sequences at a single process in between message activity) and of the successor
and predecessor functions (maps local states to the “next” or “previous” local states at another process).
We assume unordered asynchronous message channels.

The decentralized algorithm runs concurrently with the target program and can be used for online
detection of the predicate. It uses constant size message tags (4 integers) and has low message overhead.

The centralized version is decoupled from from the target program and can be run concurrently with the
target program or after it terminates. This version uses the same message tags as the decentralized version
and has O(M log M) complexity, where M is the number of messages received P0 and P1.

Relational global predicates cannot be efficiently detected online (i.e., while the target program executes)
by algorithms presented in earlier work. Earlier work suffers from one or more of the following problems:
cannot express relational global predicates, cannot detect them online, or has exponential complexity.
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We generalized our results to an algebra (D, ®, ®) where @ and ® are binary operators in domain D, &
is commutative, associative and idempotent, and ® distributes over ®. In this algebra we can calculate the
value of the expression (©0g,01:00 || 01 :00.2® 01 .z). This generalization opens up many useful variants
of our algorithm, including detection of weak conjunctive predicates and their duals, which we call strong
disjunctive predicates.
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' Abstract ‘

This paper deals with a class of unstable non-monotonic global predicates, called herein atomic

q of predicates. Such global predicates are defined for distributed programs built with message-

passing communication only (no shared memory) and they describe global properties by causal com-

position of local predicates augmented with atomicity constraints. These constraints specify forbidden

properties, whose occurrence invalidate causal sequences. This paper defines formally these atomic se-

quences of predicates, proposes a distributed algorithm to detect their occurrences and gives a sketch of
a proof of correctness of this algorithm.

1 Introduction

Analyzing a distributed program and checking it against behavioral properties are two difficult topics [11].
Such an analysis may be done statically, i.e. by structural analysis [11] or dynamically by examining a set of
behaviors exhibited during executions. The current paper deals with this second kind of analysis, and focus
on detecting unstable non-monotonic properties specified as atomic sequences.

Most properties useful to the computer scientist interested in distributed program analysis refer to global
states of distributéd computations. But evaluating global predicates (i.e. predicates on global states) is
notoriously a difficult task in a distributed context, because there is no real global state but only a set of
local states whose evaluation cannot be done instantaneously . Research efforts in the distributed program
analysis and debug field have produced interesting results for evaluating stable properties [2, 6].

While detecting unstable properties is notably more difficult than in the case of stable ones, since their
occurrences are transient, interesting results have been obtained, for instance by Haban and Weigel [5],
Miller and Choi [12], Garg and Waldecker {4], and Cooper and Marzullo [3]. The current paper exposes
results belonging to a context similar to the first three ones, but focuses on a new class of global predicates,
named hereafter atomic sequences. Informally speaking, such sequences are defined by a pair of sequences of
local predicates: expected properties and unwanted properties, which should not occur during a computation.
Miller and Choi [12], as well as Garg and Waldecker [4] have published a solution for detecting sequences when
the unwanted properties sequence is omitted, in other words these works focus on detecting occurrences of
expected sequences of local predicates. Haban and Weigel in {5] give an implementation for detecting atomic
sequences of length two.

When atomicity constraints are omitted, sequences exhibit a kind of monotonicity property with respect
to prefix occurrence detection [15]: if a sequence is made of three predicates then it is sufficient to detect
each predicate in turn, with no need to discard solutions later; the length of predicates already satisfied is a
non-decreasing function of time. Atomic sequences do not have this monotonicity property [15}; a prefix of
predicate sequence may have been found satisfied by a computation at some time and is then invalidated by
occurrence of a forbidden event. .

The current paper answers this problem: detecting a sequence of m local predicates, while other predicates
continuously evaluate to false. Moreover, our algorithm is able to count how many times the atomic sequence
was satisfied by the computation. Before this new algorithm is exposed in Section 4, formal definitions of
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