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Abstract

A quorum system is a collection of subsets of nodes, called quorums,
with the property that each pair of quorums have a non-empty intersection.
Quorum systems are the key mathematical abstraction for ensuring consis-
tency in fault-tolerant and highly available distributed computing. This pa-
per is a brief overview of the evolution of quorum systems, with emphasis
on their role in two fundamental applications: distributed storage and repli-
cation.

1 Introduction
The very etymology of the word quorum (‘of whom’, Latin genitive plural of qui,
who), is an indication of its importance, as it denotes a selected group. Quorums
have been used for centuries in, e.g., legislative terminology, to denote the number,
usually a majority, of ‘officers or members of a body that when duly assembled is
legally competent to transact business’ [2]. A historical example of such a ‘busi-
ness’ is the process of voting. Intuitively, requiring majorities to reach decisions in
a voting process is critical in preventing (obviously undesirable) inconsistencies
and partitioning in a legislative process.

This historical use of quorums has arguably inspired their use in computer
science. Namely, in distributed computing, quorums come in groups, forming
quorum systems. Given a set of nodes, typically servers, a quorum system is a
collections of subsets of nodes, called quorums, every two of which intersect. A
set of majorities is both a fundamental and obvious example of a quorum system.

Moreover, following the historical path further, it should not be surprising that
the raison d’être of quorum systems in distributed computing is to guarantee con-
sistency. Here, the key property of quorum systems is that of non-empty pair-wise
intersections. The other important aspect of quorums, namely that they are (typi-
cally strict) subsets of a set of nodes, relates to the goals of higher availability [56],
better load balancing [37] and fault-tolerance [13] in distributed systems. The key
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idea here is that a client accessing a (replicated) service does not necessarily need
to communicate with all the nodes, but only with the nodes belonging to some
quorum, which is itself often a strict subset of nodes. This leads to relaxation of
the load on nodes that reside outside of a quorum and/or enables tolerance of their
failures, resulting in higher availability.

In this context, quorum systems have been used to implement a wide variety
of distributed objects and services. Typical examples include replicated databases
[26, 35, 62], mutual exclusion [6, 45], read/write registers [11, 47] and group
communication [9, 18], to name only a very few.

A comprehensive survey of all the protocols and techniques that rely on the
notion of quorums would probably require a dedicated book and is most certainly
beyond the scope of this paper. On the other hand, the goal of this paper is to
briefly overview the evolution of quorum systems in distributed computing lit-
erature, with particular emphasis on refinements of the original quorum notion.
Specifically, our goal is to overview how the simple non-empty intersection prop-
erty has evolved in time and to attempt to explain different quorum access meth-
ods of a given quorum system, in terms of different model assumptions and design
goals. The key applications we have in mind are two fundamental ones that have
significantly benefitted from the evolution of quorum systems: distributed stor-
age and replication. In addition, we overview some of the main quorum systems
measures such as load and availability.

The remainder of the paper is organized as follows. Section 2 introduces some
of the definitions and terminology used in the paper. Section 3 overviews classical
quorum systems as well as few fundamental measures typically used to evaluate
quorum systems and protocols that use them. Then we describe three refinements
of the classical quorum systems. Section 4 describes Byzantine quorum systems,
which are designed to provide consistency in presence of Byzantine failures. Sec-
tion 5 describes probabilistic quorum systems that probabilistically depart from
classical quorum system to provide better availability. Section 6 presents refined
quorum systems, which further refine classical and Byzantine quorum systems,
with the goal of designing strongly consistent distributed protocols with optimal
latency. Finally, Section 7 concludes the paper.

2 Preliminaries

Basics. Given a set S , a set system (or a hypergraph) H is a subset of the pow-
erset of S , i.e., H ⊆ 2S . In other words, a set system is a set of subsets of S . We
denote by m(H) the minimal cardinality of some element in H, m(H) = min

Q∈H
|Q|.

Strategy σ is a probabilistic function that takes a (non-empty) set system H as



input, and outputs some Q ∈ H with probability σH(Q), such that
∑
Q∈H

σH(Q) = 1.

Registers. In this paper we also discuss different read/write storage [22] seman-
tics implemented using different quorum systems. For completeness, we infor-
mally define these storage semantics here (precise definitions can be found in,
e.g., [12, 41, 44]).

We consider the notions of safe, regular and atomic storage (also called read/write
register) introduced by Lamport in [41]. All three semantics behave in the same
consistent way in the absence of read/write concurrency (also called contention);
in this case, a read returns the last value written. In the case of contention, a read
in safe storage may return an arbitrary value, whereas in regular storage, it may
return either the last value written prior to the read or some of the values written
concurrently. Finally, atomic storage has the strongest semantics and provides the
reader with an illusion of a sequential access to storage.

3 Classical Quorum Systems
In this section, we first provide some background and a basic definition of quorum
systems. This is followed by exemplifying some of the classical quorum systems
used in literature. Finally, we introduce some important quorum system measures.

3.1 Background
In 1979, Thomas proposed [62] a majority approach to solving consensus [44] to
maintain concurrency control over multiple copies of a replicated database. This
paper, along with that of Gifford [26], has marked the dawn of quorum systems
in distributed computing. Perhaps unsurprisingly, both papers used quorums in
the context of voting. In short, Thomas used a majority voting scheme in which
database copies vote on the acceptability of update requests. To write data to the
database, the writer would timestamp the data and write it to a majority of servers.
Then, to read the data, the reader would contact a (possibly different) majority,
and return the data having the highest timestamp.

In this scheme, the majority-intersection property guarantees that the reader
will obtain the latest value. This property is critical in preserving consistency in
presence of potential network partitions.

Quorum systems can be defined in a more general context, refining the concept
of majorities to allow arbitrary quorum sizes while maintaining the requirement
for non-empty pair-wise quorum intersections. The basic definition we use in this
paper is a variation of the definition given in [25]:



Definition 1 (Quorum System). Given a set S = {s1, s2 . . . sn} (n ≥ 1), a set system
QS is a quorum system over S , if and only if

(Intersection) ∀Q1,Q2 ∈ QS : Q1 ∩ Q2 , ∅.

Elements of a quorum system are simply called quorums. When S is under-
stood, we omit it for simplicity.

It is worth noting that the definition of Garcia-Molina and Barbara [25] differs
somewhat, as it defines coteries (i.e., ‘exclusive groups’ [1]) in place of quorum
systems. Coteries (see also, e.g., [38]) can be seen as minimal quorum systems,
with the minimality property stating that there are no two quorums in a coterie
such that one is the strict subset of the other. In this paper, unless stated otherwise,
we will consider a more general, non-minimal notion of a quorum system, as
defined in Definition 1.

In contrast to the work of Thomas, Gifford [26] introduced a weighted voted
scheme and was also the first to refine the concept of majority-based quorums by
separating the notions of read and write quorums. In this fundamental refinement,
the Intersection property is relaxed so as not to require all quorums to intersect.
Gifford separates quorums into two classes: read and write quorums, and requires
only quorums belonging to different classes to intersect. In principle, this refine-
ment with its distinctions between read and write quorums can be applied to any
quorum system. Therefore, for simplicity and unless stated otherwise, the quorum
systems surveyed in this paper will not account for the read/write distinction.

For a comprehensive survey of early approaches to consistency using quorum
systems, the reader is referred to [24]. Classical quorum systems have also been
extensively used in the context of storage simulations in message-passing systems.
The seminal example of such is the ABD atomic storage simulation by Attiya,
Bar-Noy and Dolev [11]. The original majority-based ABD simulation along with
the survey of the subsequent work were discussed in a recent article by Attiya [10].

In the following, we briefly instantiate classical quorum systems through few
classical examples (beyond majorities).

3.2 Examples

Singleton. The simplest quorum system is the one containing a singleton: Singl =

{{si}}, for some si ∈ S .

Finite projective planes (FPP). If set S contains n = k2 + k + 1 nodes, where k
is a prime power, then a finite projective plane of order k is a quorum system, in
which every quorum has exactly k + 1 = O(

√
n) nodes, every node is contained in



exactly k + 1 quorums and every two quorums intersect in exactly one node. This
quorum system was used by Maekawa [45] in his mutual exclusion algorithm.

The simplest example of an FPP quorum system is given by Fano plane, an
order 2 FPP over a set of n = 7 nodes (see Fig. 1).
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s7

s3

Figure 1: Fano plane (an order 2 FPP).

Grid. Assume |S | = k2, for some integer k and nodes arranged in a square matrix
(i.e., a grid). Then, a set of subsets of S of the form Qi, j, such that each Qi, j

contains all elements in row i and column j (1 ≤ i, j ≤ k) forms the quorum system
over S . Such a quorum system has k2 = n quorums, each of size 2k − 1 = O(

√
n)

and every quorum intersects with every other quorum in at least 2 nodes.

To minimize the size of quorum intersection we can construct a slightly dif-
ferent quorum system containing k =

√
n quorums Qi (1 ≤ i ≤ k) such that Qi

contains all nodes from row i and exactly one node from each row j > i [46]. It is
not difficult to see that the quorum size in this quorum system (we refer to as the
Grid) remains O(

√
n), whereas the size of pair-wise intersections among quorums

is 1. The first grid-like quorum system was used in the replication protocol of
Cheung et al [21].

B-Grid. A generalized grid-like quorum system, called B-Grid, was proposed
by Naor and Wool [56]. This quorum system assumes a rectangular grid of R
rows and c columns, such that rows are grouped into b bands of r rows (R = br),
where band j (1 ≤ j ≤ b) contains rows ( j − 1)r + 1 . . . jr. Moreover, denote
the intersection of column c and band j as mini-column (c, j). Then, the B-grid
quorum system consists of b quorums Q j (1 ≤ j ≤ b), each containing one mini-
column from each band (i.e., b mini-columns (ci, i), where 1 ≤ i ≤ b and 1 ≤ ci ≤

c) and one node from each column in band j (see also Fig. 2). It is not difficult
to see that B-Grid is a quorum system in which every quorum contains exactly
br + c − 1 nodes.



Figure 2: The B-Grid quorum system over a set of n = brc = 120 nodes, with
c = 15 columns, b = 4 bands and r = 2 rows per band.

3.3 Measures
Two fundamental quorum system measures are load and availability, studied by
Naor and Wool [56] and Peleg and Wool [57], respectively.

3.3.1 Load

In principle, a protocol using a quorum system will need to access some quorum.
In the best case, a process accessing a quorum will be able to select a given quo-
rum Q and access all nodes that belong to Q. Such usage of a quorum system
will induce load, which, in short, measures the minimal access probability of the
busiest node in the system. The load measures the quality of a quorum system:
low load translates to the busiest node being accessed rarely, which allows it to
perform other, unrelated tasks. Intuitively, the lower the load of a quorum system,
the better.

With each strategy (see Sec. 2), there is an associated load induced on each
node as well as the load on the entire quorum system. Given strategy σ, the
load on a given node si is the probability that si will belong to a quorum selected
according to strategy σ. The load of σ on a quorum system is defined as the
maximum load of each individual node. Finally, the (system) load of a quorum
system is the minimum load across all possible strategies.

Definition 2 (Load). Let QS be the quorum system over S . Then, we define the
following:

1. Load induced by strategy σ on node si ∈ S : lσ(si,QS) =
∑
si∈Q

σQS(Q).

2. Load induced by strategy σ on QS: Lσ(QS) = max
si∈S

lσ(si,QS).

3. Load of QS: L(QS) = min
σ
Lσ(QS) (minimum over all strategies σ).



In [56], Naor and Wool also prove the lower bound on the load of any quo-
rum system. Namely, they show that L(QS) ≥ max

{
1

m(QS) ,
m(QS)

n

}
, which implies

L(QS) ≥ 1/
√

n.
It is very important to highlight that a load of a given quorum system is inde-

pendent of any given protocol that might use this quorum system. On the other
hand, a given protocol might come with a given strategy σ and the associated load
induced by this strategy.

In a sense, the above definition of load is a best-case one because the con-
nection between strategies and load assumes that a quorum selected by a strategy
will always be accessed. This obviously does not account for possible failures
and/or asynchrony, which may prevent a selected quorum from being accessed.
The reader is referred to [56] for an extended definition of load that accounts for
failures. Moreover, Yu [65] proposes a definition of the load measure that extends
its scope beyond the best case, by studying the load under asynchrony where prob-
ing [59] of multiple quorums is typically needed before a quorum can be acquired,
which intuitively makes servers busier.

3.3.2 Availability

Resilience. A fundamental availability measure of quorum systems is the re-
silience (sometimes also referred to as node vulnerability [13] or fault-tolerance
[48]). The resilience R(QS) of a quorum system QS is defined as the maximal
integer t such that, despite a failure of any t nodes in the system, there is a quorum
Q ∈ QS such that no node belonging to Q fails. Note that the Intersection property
implies R(QS) < m(QS). Namely, the failure of all nodes in any single quorum
implies at least one node failure in every quorum. Therefore, the resilience is
bounded by the minimal quorum cardinality.

Of particular importance are optimally resilient quorum systems. It is straight-
forward to show that no quorum system can have a resilience greater than

⌊
n−1

2

⌋
.

This is exactly the resilience of a majority coterie. We say that a quorum system
is t-resilient if and only if its resilience is at least t.

Finally, the definition of resilience can be extended beyond threshold failures
[17]. A quorum system QS is said to be resilient to set system F, if and only if
∀F ∈ F,∃Q ∈ QS : Q ∩ F = ∅.

Failure probability. Another availability measure, introduced by Peleg and Wool
in [57], is the global failure probability, or simply the failure probability. In fact,
the failure probability (a.k.a. non-availability) of a quorum system QS, denoted
by Fp(QS), is in a sense dual to availability. In short, Fp(QS) is the probability
that no quorum in QS will have a non-faulty node. Here, p is the probability of



failure of each of the nodes in S , where it is assumed that failures are independent
with a uniform probability distribution. Moreover, here a failure is assumed to be
a detectable crash-stop failure.

More precisely, for each quorum Q ∈ QS denote by Fp(Q) the probability that
some node in Q fails. Clearly, as we assume p to be uniformly distributed, we
have Fp(Q) = 1 − (1 − p)|Q|. Then, failure probability is defined simply as

Fp(QS) =
∏

Q∈QS

Fp(Q).

In general, quorum system QS is considered to have good failure probability
if Fp(QS) tends to 0 for large values of n assuming p < 1/2.

Peleg and Wool also relate two availability measures, namely the resilience
and failure probability, by showing that Fp(QS) is at least e−Ω(R(QS)) [57]. More-
over, sinceR(QS) < m(QS) and m(QS) ≤ nL(QS), the tradeoff between resilience
and load is expressed as R(QS) < nL(QS). Finally, we can express the tradeoff

between the failure probability and the load [56]. Clearly, the failure probability is
at least the probability that all the nodes from the quorum containing the smallest
number of nodes fail, i.e., Fp(QS) ≥ pm(QS) ≥ pnL(QS).

3.3.3 Comparison

In Table 1 we overview the quality measures of the quorum systems presented in
Section 3.2 [46, 56].

QS L(QS) R(QS) Fp(QS)
Singleton 1 0 p
Majorities

⌈
n+1

2

⌉ ⌊
n−1

2

⌋
e−Ω(n)

FPP O( 1
√

n ) O(
√

n) 1*
Grid O( 1

√
n ) O(

√
n) 1*

B-Grid O( 1
√

n ) O(
√

n) O(e−
n1/4

2 )

* For large values of n.

Table 1: Comparison of the load, resilience and failure probability for different
quorum systems.

Singleton is interesting when the individual node probability failure is high
(p > 1/2), when this simple quorum system offers the best failure probability.
Otherwise (assuming p < 1/2), Majorities has the best availability but poor load.
On the other hand, FPP and Grid have optimal load, yet their failure probability is
poor for large value of n. This is corrected by B-Grid, which has asymptotically



optimal failure probability. The data in Table 1 for B-Grid are given assuming
c =
√

n, r = ln(c) and p ≤ 1
3 .

Other quorum systems that combine optimal load with optimal failure proba-
bility include CWalls proposed by Peleg and Wool [58], Paths by Naor and Wool
[56] and Bazzi’s Triangle Lattice [15].

4 Byzantine Quorum Systems
So far we have discussed classical quorum systems, applicable in the context of
crash failures. However, if node failures can be arbitrary, also called Byzantine
[43], simple non-empty quorum intersections are not sufficient to guarantee con-
sistency. Intuitively, if an intersection between two quorums contains, for exam-
ple, a single node, and this node can be Byzantine, the Byzantine node can simply
violate consistency. As an illustration, assuming the Byzantine node is the sole
node in the intersection of a write and a read quorum, it can simply “forget” seeing
the write and cause inconsistencies in a read.

Although it has been known for some time that tolerating Byzantine failures
in, e.g., replication requires a larger fraction of correct nodes than tolerating crash
failures only does (see e.g., the seminal work by Lamport et al. [43]), the first
formal treatment of the problem of defining quorum systems in Byzantine context
was done by Malkhi and Reiter [47]. They define several types of Byzantine
quorum systems depending on the type of data the targeted application is designed
to store, as we explain in the following.

Byzantine quorum systems are specified not only with respect to a given set
of nodes S , but also assuming a given set system over S called adversary (also
called adversary structure [36] or fail-prone set [47]).

Definition 3 (Adversary). Given a set S , a set system B is an adversary for S if
and only if B ∈ B ∧ B′ ⊆ B⇒ B′ ∈ B.

Intuitively, the adversary is defined to capture all possible combinations of
simultaneously Byzantine nodes. In the following, we assume that an adversary
for S contains as its elements all possible subsets of nodes whose elements can be
simultaneously Byzantine. Armed with the above definition of the adversary, we
are ready to define Byzantine quorum systems.

4.1 Dissemination Quorum Systems

One of the families of Byzantine quorum systems proposed in [47] are dissemina-
tion quorum systems.



Definition 4 (Dissemination quorum systems). Given a set S and an adversary B
for S , a quorum system (over S ) DQS is a dissemination quorum system over S if
and only if

(Byzantine intersection) ∀Q1,Q2 ∈ DQS,∀B ∈ B : Q1 ∩ Q2 * B.

Dissemination quorum systems were proposed in [47] with the aim of storing
self-verifying, also called authenticated, data. In short, authenticated data are data
that cannot be forged by a Byzantine node; in practice this feature is typically
implemented using digital signatures. We further discuss the use of dissemination
quorum systems in Section 4.3.

In [47], Malkhi and Reiter define a dissemination quorum system with an ad-
ditional availability property requiring resilience to B (see Sec. 3.3.2). While this
is clearly a necessary condition for the availability of a disseminating quorum sys-
tem and the liveness of an underlying service, it may prohibit some applications
which require a service to be safe, but not always live [61]. Therefore and to
maintain generality, in this paper, we choose to separate the definitions of quorum
systems (i.e., their intersection properties) from the availability considerations.

Denote by Bt a threshold adversary that contains all subsets of S of cardinality
at most t (Bt = {Q ⊆ S : |Q| ≤ t}). A special and particularly important case of
a dissemination quorum system, is a t-dissemination quorum system. Given the
adversary Bt, a dissemination quorum system is a t-dissemination quorum system
if its resilience is at least t.

It is straightforward to show that no t-dissemination quorum system can be
constructed if n ≤ 3t. On the other hand if, e.g., n = 3t + 1, an example of a
t-dissemination quorum system is a two-thirds majority quorum system: Maj 2

3
=

{Q ⊆ S : |Q| = n − t = 2t + 1}. In this context, Maj 2
3

is optimally resilient, with

the resilience expressed as a function of n: R(Maj 2
3
) =
⌊

n−1
3

⌋
. More generally, it

can be shown that, for n > 3t, DQSt =
{
Q ⊆ S : |Q| =

⌈
n+t+1

2

⌉}
is a t-dissemination

quorum system.
It can be also shown, along the lines of [50], that the lower bound on the load of

any t-dissemination quorum system tDQS is given byL(tDQS) ≥ max
{

t+1
m(tDQS) ,

m(tDQS)
n

}
,

which impliesL(tDQS) ≥
√

t+1
n . More concretely, the load of the t-dissemination

quorum system DQSt defined above is L(DQSt) = 1
n

⌈
n+t+1

2

⌉
.

4.2 Masking Quorum Systems
In [47], Malkhi and Reiter also proposed masking quorum systems with the goal
of storing unauthenticated data. As we discuss in Section 4.3, relying on mask-
ing quorum systems to store unauthenticated data revealed not to be necessary,



because unauthenticated data can be stored in a consistent manner using dissem-
ination quorum systems only. However, designing storage protocols for storing
unauthenticated data is arguably much simpler when using masking instead of
dissemination quorum systems.

Masking quorum systems are defined as follows:

Definition 5 (Masking quorum systems). Given a set S and an adversary B for S ,
a quorum system (over S ) MQS is a masking quorum system over S if and only if

(M-Byzantine intersection) ∀Q1,Q2 ∈MQS,∀B1, B2 ∈ B : Q1 ∩ Q2 * B1 ∪ B2.

Given the above definition, it is straightforward to see that masking quorums
are a further refinement of disseminating quorums: all masking quorum systems
are also disseminating quorum systems, but, the opposite does not hold. Anal-
ogously to t-dissemination quorum systems, we can define t-masking quorum
system [47] as masking quorum systems for the threshold adversary Bt with the
resilience of at least t. It is straightforward to show that no t-masking quorum
system tMQS can be constructed if n ≤ 4t. For n > 4t, it can be shown [47]
that MQSt =

{
Q ⊆ S : |Q| =

⌈
n+2t+1

2

⌉}
is a t-masking quorum system. The load of

this quorum system is L(MQSt) = 1
n

⌈
n+2t+1

2

⌉
and is achieved by the strategy that

assigns uniform probabilities across all quorums.
More generally, the lower bound on the load of any t-masking quorum sys-

tem tMQS is given by L(tMQS) ≥ max
{

2t+1
m(MQS) ,

m(tMQS)
n

}
, implying L(tMQS) ≥√

2t+1
n .

Opaque masking quorum systems. In [47] Malkhi and Reiter also propose
a specific variant of masking quorum systems designed for the case where the
adversary is opaque, in a sense that the adversary is fixed, yet not known to cor-
rect nodes. Roughly speaking, this quorum system provides an invariant stating
that the count on the number of correct nodes in an intersection of any two quo-
rums will be higher (or equal) to the number of stale nodes in any given quorum
plus the number of Byzantine nodes. One of the main results in [47] related to
opaque masking quorums is that no Bt-resilient opaque quorum systems can be
constructed with less than 5t nodes. An example of an implicit use of an opaque
masking quorum system is the safe storage implementation of Jayanti et al. [39].
For more details on opaque masking quorum systems the reader is referred to [47].

4.3 Usage
Byzantine quorum systems have been widely used in asynchronous read/write
storage emulations, typically projected to the threshold failure model. In [47],



Malkhi and Reiter also proposed a single-writer multi-reader regular storage con-
struction for storing authenticated data using dissemination quorum systems in
which both reads and writes access a given quorum only once. This approach
was further extended by the same authors in [49] to implement multi-writer multi-
reader atomic storage relying again on dissemination quorum systems and data
authentication. The improvement in terms of supporting multiple writers and pro-
viding stronger semantics came at the price of having to access quorums twice in
each read and write.

In contrast to dissemination quorum systems, masking quorum systems were
designed to store unauthenticated data. In this setting, Malkhi and Reiter proposed
in [47] a single-writer multi-reader safe storage construction in which read and
write operations accessed a quorum only once.

However, Martin and Alvisi showed an atomic storage implementation in [53]
that stores unauthenticated data but uses only dissemination quorums. Not sur-
prisingly, the protocol of Martin and Alvisi, called SBQ-L (Small Byzantine Quo-
rums with Listeners), used much more involved techniques than its counterpart of
Malkhi and Reiter that stores authenticated data [49]. Following the work by Mar-
tin and Alvisi, many storage constructions that use disseminating quorum systems
to store unauthenticated data were proposed, typically with the goal of reducing
complexity. These include safe and regular storage constructions of Abraham et
al. [5] and Guerraoui and Vukolić [32], as well as the atomic storage construction
of Aiyer et al. [8].

However, masking quorum systems are arguably simpler to use in unauthen-
ticated storage constructions. This was formally proved by Abraham et al. [5],
who showed that, in our terminology, any consistent (i.e., safe) storage that stores
unauthenticated data in a disseminating, non-masking, quorum must have write
operations access a quorum more than once in the worst case. The same re-
sult was also shown for read operations [5, 32]. Using masking quorums helps
achieve simpler design (recall here the safe implementation of Malkhi and Reiter
[47]), but it comes with the price of lower resilience and higher load, as we already
discussed. In this context, masking quorum systems were used in the atomic stor-
age construction of Bazzi and Ding [14] and the regular one of Abraham et al
[4]. Bazzi used a variation of masking quorum systems in the synchronous model
[16].

Disseminating quorum systems, in particular Maj 2
3

(assuming Bb n−1
3 c

), underly
many other Byzantine fault-tolerant protocols beyond storage, including replica-
tion protocols. Examples include the seminal work of Castro and Liskov [19], or
the replication protocols of Cowling et al. [23].

Martin et al. proposed in [51] variants of dissemination and masking quo-
rum systems that account for the distinction between read and write quorums.
They also proposed the construction of threshold-based disseminating and mask-



ing quorum systems with as few as 2t+1 and 3t+1 nodes, respectively. To achieve
this, these quorum systems sacrifice the resilience of write quorums but maintain
read quorums t-resilient. Bazzi [17] also extends the notion of Byzantine quo-
rum systems, defining non-blocking quorum systems in the context of studying
the asynchronous access cost of quorum systems.

5 Probabilistic Quorum Systems

Brewer’s CAP theorem [27] states that, in short, no distributed system can provide
consistency, high availability and partition tolerance. As we already discussed,
the defining point of quorum systems is consistency. Moreover, quorum systems
aim at providing high availability. However, this means that quorum systems
cannot imply partition tolerance (this is intuitive from the requirement for the
non-empty quorum intersections). This is one of the reasons modern large-scale
distributed systems, including cloud computing systems, for which availability
and partition tolerance are of paramount importance, relax consistency guarantees
only to provide eventual consistency [63]. The natural question that arises is, how
do quorum systems fit into this picture? Did they become obsolete?

The answer to the first question is twofold. First, systems that rely on eventual
consistency must provide consistency, albeit only eventually, when a partition in
the system is repaired. To achieve this, these systems resort to some quorum
systems even if only eventually (this also gives a negative answer to the second
question above).

Second, quorum systems researchers have been aware of such issues associ-
ated with the limited availability of classical, strongly consistent, quorum systems
for a long time [64]. Recall here that, for any quorum system QS: a) the resilience
R(QS) is at most

⌊
n−1

2

⌋
(where n is the number of nodes in the system), and b) the

failure probability Fp(QS) tends to 1 when the individual failure probability p is
greater than 1/2.

To cope with this, probabilistic quorum systems were proposed. In short,
these quorum systems aim to improve availability by relaxing probabilistically
the Intersection property. In the following, we first discuss ε-intersecting quorum
systems of Malkhi et al. [48], and then briefly overview more recent work on
highly available quorum systems.

5.1 ε-Intersecting Quorum Systems

The pioneer work in the context of probabilistic quorum systems was that of
Malkhi et al. [48]. This work introduced ε-intersecting quorum systems with



a subtle refinement of the Intersection property of classical quorum systems that
allows non-intersection with a certain probability ε. 1

More precisely, ε-intersecting quorum systems can be defined as follows:

Definition 6 (ε-intersecting Quorum System). Given a set S = {s1, s2 . . . sn} (n ≥
1), let εIQS be a set system and let σ be a strategy for εIQS with an associated
probability εσ. Then, a tuple 〈εIQS, σ〉 is an ε-intersecting quorum system over S
if and only if

(ε-intersection) ∀Q1,Q2 ∈ εIQS : P(Q1 ∩ Q2 , ∅) ≥ 1 − εσ.

While ε-intersecting quorum systems cannot guarantee consistency, they can,
often transparently, substitute classical quorums in existing implementation if
strong consistency is not mandatory. Malkhi et al demonstrate this by giving
a simple safe single-writer multi-reader storage implementation as an illustra-
tion [48] in which both read and write access a given probabilistic quorum only
once. As expected, such an implementation violates consistency with probability
εσ [48].

The load of an ε-intersecting quorum system 〈εIQS, σ〉 is simply the load
induced by strategy σ on εIQS, i.e., L(〈εIQS, σ〉) = Lσ(εIQS). In [48], Malkhi
et al. generalize the lower bound on load given by Naor and Wool in [56] (see
Sec. 3.3.1) by showing that L(〈εIQS, σ〉) ≥ max

{ 1−
√
εσ

Eσ[|Q|] ,
Eσ[|Q|]

n

}
, where Eσ[|Q|] is

an expectation of accessed quorum size for quorums Q ∈ εIQS taken over strategy
σ.2 Then, it is simple to show that L(〈εIQS, σ〉) ≥ 1−

√
εσ

√
n .

Clearly, with εσ small, ε-intersecting quorum systems provide marginally bet-
ter load than classical quorum systems, in general. However, ε-intersecting quo-
rum system allow construction of quorum systems that combine both (close to)
optimal load and Ω(n) resilience, which is not possible with classical quorum
systems. Namely, Malkhi et al. suggest in [48] an ε-intersecting quorum system
(denoted by εIQSl

√
n) in which the quorums are all sets of size l

√
n, with a strategy

chosen uniformly at random and where constant l is chosen to make ε sufficiently
small. It can be shown [48] that the probability of two such probabilistic quorums
have an empty intersection is:

P(Q ∪ Q′ = ∅) =
(n−l

√
n

l
√

n )
( n

l
√

n)
≤ e−l2 ,

1Note that, strictly speaking, probabilistic quorum systems are not classical quorum systems
(as they may violate the Intersection property), unlike Byzantine quorum systems.

2In other words, Eσ[|Q|] =
∑

Q j∈QS

σ j|Q j|.



which makes εIQSl
√

n an e−l2-intersecting quorum system. Since εIQSl
√

n can tol-
erate up to n − l

√
n crashes its resilience is Ω(n) (notice here how the probabilis-

tic intersection property relaxes the m(QS) upper bound on resilience). Finally,
failure probability of εIQSl

√
n is less than e−Ω(n) for p ≤ 1 − l

√
n [48], which is

asymptotically optimal and if p ≥ 1/2 strictly better than failure probability of
any classical quorum system.

5.2 Related Work

Besides the crash variant of ε-intersecting quorum systems, Malkhi et al. present
in [48] the application of ε-intersection property to Byzantine quorum systems,
namely to dissemination and masking quorum systems. Merideth and Reiter [55]
complement this work by analyzing probabilistic intersections in the context of
opaque masking quorum systems.

One issue with ε-intersecting quorum systems is that they do not account for
the network adversary that controls the system scheduler in, e.g., asynchronous
system. Intuitively, such an adversary could always violate the probabilistic inter-
section guarantees by, e.g., partitioning the writer and the reader and two quorums
eQ1 and eQ2 by arbitrarily delaying messages sent by the writer to nodes in eQ2

and by the reader to eQ1.
Yu [65] explicitly acknowledges this issue, and proposes an alternative def-

inition of probabilistic quorum systems, called signed quorum systems. Signed
quorum system are not defined around access strategies (for these can be dis-
turbed by the scheduler); in Yu’s approach, a strategy is implicit and dictated by
the scheduler and failures in the system. In short, signed quorum systems allow
both positive and negative node ids in a quorum, where negative ids denote nodes
that are suspected to be faulty and cannot be accessed.3 Signed quorum systems
require quorums to intersect, or non-intersecting quorums to differ in at least 2α
node states (signs) for some integer α. The probability of having an empty in-
tersection between two quorums is then the probability that two clients assess at
least 2α nodes in different states which is lower for larger values of α.

Finally, we note that Aiyer et al. [7] argue that Yu’s approach remains vulner-
able to the adversarial scheduler issue and propose k-quorum protocols to boost
availability of classical quorum systems. In short, k-quorum protocols use classi-
cal quorum systems yet allow the writer to lazily contact the writer quorum such
that all nodes from a quorum are contacted during k ≥ 1 consecutive writes (vs.
k = 1 in the classical approach), which allows the reader to return one of the last
k ≥ 1 written values.

3In other words, signed quorum systems assume a failure detector [20].



6 Refined Quorum Systems

A lot of attention in distributed computing is focused on optimizing common-case
system behavior. The typical research goal in this context is to provide reliable, ro-
bust and consistent service under worst-case system conditions, i.e., asynchrony,
large number of failures and high contention, and at the same time have such a
service perform efficiently in the common-case, characterized by synchrony, few
failures, and possibly even low contention. Distributed protocols proposed in this
context include (i) replication protocols, both crash-tolerant ones such as Lam-
port’s Fast Paxos [42] and Byzantine fault-tolerant ones such as Q/U [3], Zyzzyva
[40] or Aliph [30]; (ii) atomic read/write storage protocols of Goodson et al. [29]
and Guerraoui et al. [31]; (iii) consensus protocols of Martin and Alvisi [52] and
Zielinski [66], and (iv) the atomic broadcast protocol of Ramasamy and Cachin
[60]. A typical goal of such protocols is to minimize the number of quorum ac-
cesses in the common case. Ideally, a given quorum should be accessed only once,
in particular in the common case.

It turns out that these protocols, in particular those that target optimal re-
silience, rely in the worst case on classical (e.g., majorities) and dissemination
quorum systems (e.g., Maj 2

3
). However, in the common case, these protocols

typically require quorums that are to be accessed only once to have larger inter-
sections with other quorums to maintain consistency. In general, the nature of
such larger quorum intersections is not captured by classical, dissemination or
even masking quorum systems.

A general characterization of such quorum systems, called refined quorum
systems, was proposed by Guerraoui and Vukolić [33]. Refined quorum systems
refine classical and Byzantine quorum systems further and distinguish three dif-
ferent quorum classes. Intuitively, in the common case, a distributed object imple-
mentation can expedite an operation accessing a first-class quorum by allowing it
to access such a quorum only once, whereas quorums of the second and the third
class must be accessed at least twice and three times, respectively. Refined quo-
rum systems are designed for use both in the Byzantine failure model (assuming
unauthenticated data) and in the simple crash failure model (assuming adversary
B = {∅}).

Refined quorum systems are defined as follows [33]:

Definition 7 (Refined quorum systems). Given a set S and an adversary B for S ,
a set system (over S ) RQS is a refined quorum system over S , if and only if there
are two set systems QC1 and QC2, such that QC1 ⊆ QC2 ⊆ RQS and

(Class-1 inters.) ∀Q1,Q′1 ∈ QC1,∀Q ∈ RQS,∀B1, B2 ∈ B : Q1∩Q′1∩Q * B1∪B2,



(Class-2 inters.) ∀Q1 ∈ QC1,∀Q2 ∈ QC2,∀Q ∈ RQS,∀B1, B2 ∈ B :
(Q2 ∩ Q * B1 ∪ B2)

∨
(Q1 ∩ Q2 ∩ Q * B1), and

(Class-3 (Byzantine) inters.) ∀Q,Q′ ∈ RQS,∀B ∈ B : Q ∩ Q′ * B.

Note that the Class-3 intersection property is the Byzantine intersection prop-
erty of dissemination quorum systems (see Def. 4) and it is required to hold for
all refined quorums. There are also two special classes of refined quorums: class
1 quorums, that belong to QC1 and class 2 quorums that belong to QC2 \ QC1.
Moreover, the remaining quorums from RQS \ QC2 are called class 3 quorums.
The above definition is given for the special (yet the most interesting) case where
QC1 , ∅.

Refined quorum systems were used in [33] to implement common-case la-
tency optimal SWMR atomic storage and consensus protocols. As we already
intuited, these protocols have the property that when a class 1 quorum is available
they require such a quorum to be accessed only once in the common case (in the
case of storage this subsumes synchrony and no contention). Otherwise, the pro-
tocols gracefully degrade to require 2 (resp., 3) accesses in case a class 2 (resp., 3)
quorum is available. An important aspect of the intersection properties of refined
quorum systems is that they are also necessary which makes the implementations
of [33] optimal.

The intuition behind the Class-1 intersection property can roughly be summa-
rized in the requirement that the intersection X between two class 1 quorums Q1

and Q′1 accessed only once by e.g., the writer and the reader, must have enough in-
formation for a subsequent reader accessing quorum Q, so that the latter does not
return the stale value. Intuitively, X and Q should intersect here just like masking
quorums do since data is not authenticated.

The intuition behind the Class-2 intersection property is more involved: we
explain it here assuming a write accessing a class 1 quorum Q1 and a read rd that
accesses a class 2 quorum Q2, followed by another read rd′ that accesses a class
3 quorum Q. The key idea here is that rd is allowed to access class 2 quorum Q2

twice. Moreover, in the common case, the reader will know which value it should
return already after the first access of Q2. Then, in the second access, the reader
can ‘confirm’ the value by writing it back to quorum Q2. In case Q2 has a masking-
like intersection with class 3 quorums, including Q (see the first condition in the
disjunction), this is sufficient for rd′ not to miss the value read by rd. On the other
hand, such a masking-like quorum intersection of class 2 quorums is not always
necessary. Namely (see the second condition in the disjunction), if intersections
between class 1 quorums and Q2 act like dissemination quorums with respect to
class 3 quorums, it is sufficient that the reader “authenticates” the data by writing
the value for the second time in the intersection X = Q1 ∩ Q2 when it accesses



Q2 for the second time. Here, roughly speaking, writing the value in nodes in
X (at least) twice (once by the writer and once by the reader) has the effect of
strengthening and confirming unauthenticated data so the masking intersection is
no longer required.

For the full details behind refined quorum systems, the reader is referred to
[33]. Here, we give two important instantiations of refined quorums that assume
the threshold adversary Bt.

First, assume that all quorums are class 1 quorums. Then the Class 1 inter-
section property implies the other two. Moreover, it is not difficult to see that no
t-resilient refined quorum system can be constructed unless n > 5t. Assuming
n = 5t + 1, we can construct a refined quorum system in which all subsets of size
n− t = 4t + 1 are quorums. This is exactly the quorum system used in latency effi-
cient replication protocols that require 5t +1 servers [3, 52]. These protocols were
one of the very first to provide a latency-optimized service requiring a quorum to
be accessed only once.

However, it turns out that paying the price of 5t+1 servers is not necessary. Fix
t, assume n = 3t + 1 and consider a refined quorum system in which QC1 = {S }
and QC2 = {Q ⊆ S : |Q| ≥ n − t = 2t + 1}. It is not difficult to show that such
quorum system indeed satisfies the properties of Definition 7: the set of all nodes
is a class 1 quorum whereas any two-third majority is a class 2 quorum. This
quorum system was used in, e.g., Zyzzyva [40] to allow an optimally resilient
replication protocol expedite a common-case operation accessing all servers. In
refined quorum system terminology, the set of all servers is in this case a class 1
quorum; therefore, it can safely be accessed only once.

7 Concluding Remarks
In this paper, we gave a brief overview of the evolution of quorum systems, re-
flected through the refinements of the original non-empty intersection property of
quorums. We also emphasized the impact these refinements have on two funda-
mental applications: distributed storage and replication.

Bearing in mind that our goal was not to provide a comprehensive overview of
all aspects of quorum systems, let alone all protocols that make use of the quorum
notion, we highlight some of these additional aspects not addressed in this paper.

One practical problem that arises when quorums are cast from into a real sys-
tem is the problem of quorum deployment introduced by Gilbert and Malewitz
[28]. This problem raises the question of using quorums optimally, with the goal
of determining the mapping from the real nodes in the network to the abstract
nodes in the quorum specification. This is tightly related to the problem of quorum
placement in networks as discussed by Gupta et al. [34]. For more information



on these aspects, the reader is referred to a recent related survey of Merideth and
Reiter [54].
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