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Active disk systems leverage the aggregate processing power of
networked disks to offer greatly increased processing throughput for

large-scale data mining tasks.

s processor performance increases and mem-
ory cost decreases, system intelligence con-
tinues to move away from the CPU and into
peripherals. Storage system designers use this
trend toward excess computing power to per-
form more complex processing and optimizations in-
side storage devices. To date, such optimizations take
place at relatively low levels of the storage protocol.
Trends in storage density, mechanics, and electronics
eliminate the hardware bottleneck and put pressure on
interconnects and hosts to move data more efficiently.
We propose using an active disk storage device that
combines on-drive processing and memory with soft-
ware downloadability to allow disks to execute appli-
cation-level functions directly at the device. Moving
portions of an application’s processing to a storage
device significantly reduces data traffic and leverages
the parallelism already present in large systems, dra-
matically reducing the execution time for many basic
data mining tasks.

TECHNOLOGY

As Figure 1 shows, current disk drives include all
the components of a simple computer: a microproces-
sor, RAM, and a communications subsystem (SCSI), in
addition to the specialized servo and signal processing
hardware to handle drive control. Until 1999, this col-
lection of chips formed the electronic backplane of a
standard 3.5-inch disk drive. Most current-generation
drives fit all these core drive-control and communica-
tions functions into a single application-specific
integrated circuit (ASIC). If we extrapolate to the next
generation of silicon process technology in .35 or .25
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micron feature sizes, the specialized drive circuitry
occupies approximately one-quarter of the chip, leav-
ing sufficient area to include a 200-MHz ARM core
or similar embedded microprocessor.

Disk drive and chip manufacturers are already pur-
suing this processor-in-ASIC technology. Infineon (for-
merly Siemens Microelectronics) markets a chip called
the TriCore that includes a 100-MHz 32-bit micro-
controller, up to 2 Mbytes of on-chip RAM, and cus-
tomer-specific logic—such as the disk functions of
Figure 1, upper right—in a .35 micron process. Cirrus
Logic offers an integrated system-on-chip hard disk
drive controller called 3Ci that includes a 25-MHz
ARM core in the first generation, with promise of 200
MHez in the next generation.

Taking a larger system view, Table 1 shows details
of several large database systems that manage trans-
action and data mining workloads. These trends and
ratios in CPU versus aggregate processing power have
remained roughly steady since we compiled this data
in 1998 using information from the Transaction
Processing Performance Council, Microsoft’s Terra-
Server project, and vendor data sheets. Assuming a
conservative 25 MHz of host-equivalent computing
power available at the individual drives, a collection of
50 or 100 disk drives contains two to three times more
aggregate computing power than even a powerful SMP
server. Perhaps even more important for data-inten-
sive applications, the aggregate server I/O subsystem
transfer rates fall far below the maximum data band-
width this number of drives can provide.

Processing power and memory inside disk drives cur-
rently optimize functions behind standardized interfaces
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such as SCSI or ATA, but limiting the interface to low-
level, general-purpose tasks also limits the possible ben-
efits of that processing power. With active disks, the rigid
interface is broken and the excess computation power
in drives is directly available for application-specific
functions. The most compelling use of such processing
power that scales with data size is large parallel scans.

APPLICATIONS

An increasing number of data-intensive applica-
tions require exactly this type of processing. Richer
database structures, new content, new data sources,
and novel applications for collected data have
resulted in the development of a new class of data-
intensive algorithms that require large amounts of
disk space and high data-transfer rates for a variety
of processing tasks. For example, an hour of video
requires approximately 1 Gbyte of storage.

Hardware
support for
security
and
network

Integrated 200-MHz
StrongARM

Carnegie Mellon’s Informedia project uses a video
database that holds more than 1 Tbyte of video from
broadcast news sources, searchable by video, text, or
audio content. In a search-by-content application, the
user provides an image, text fragment, or audio seg-
ment and requests a set of similar images, pages, or
sounds. The system then extracts feature vectors such
as keywords, image edges, or color histograms from
every image, then searches these feature vectors for
nearest neighbors.!

The number of feature vectors for multimedia data
types often exceeds several dozen properties of a par-
ticular image. In this case, two scan-intensive appli-
cations—the extraction of particular sets of features
and the searching itself—often require a full scan.

Experience-on-demand applications collect sensor
data from video cameras, microphones, and GPS
transmitters to register experiences such as a firefighter

Table 1. Representative data mining servers and their aggregate processor and disk processing power.

System Processors  On-disk processing  System bus  Storage throughput
Compagq ProLiant TPC-C 1,600 MHz 3,525 MHz 133 Mbyte/s 1,410 Mbyte/s
4 x 400-MHz Pentiums, 1 PCI,
141 disks
Microsoft TerraServer 3,520 MHz 8,100 MHz 532 Mbyte/s 3,240 Mbyte/s
8 x 440-MHz Alphas, 2 x 64-bit PCI,
324 disks
Digital AlphaServer TPC-C 500 MHz 1,525 MHz 266 Mbyte/s 610 Mbyte/s
500-MHz Alpha, 2 x 64-bit PCI,
61 disks
Digital AlphaServer TPC-D 7,344 MHz 13,025 MHz 532 Mbyte/s 5,210 Mbyte/s

12 612-MHz Alphas, 2 x 64-bit PCI,
521 disks
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Figure 1. Hard drive
processing architec-
tures: Left: 1997 (3.5
x 6.5 inches)—All
the control chips are
separate. Upper
right: 1999 (74 mm?)
—The architecture
combines many indi-
vidual specialized
chips into a single
ASIC. Lower right:
2000 (74 mm?)
—Advances in silicon
process technology
shrink the ASIC to a
fraction of the origi-
nal size, leaving
room for a general-
purpose RISC core
and additional spe-
cialized functions.
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Figure 2. A model of an application’s throughput running in
an active disk system compared to running in a traditional
single server system (line A: disk bandwidth; line B: proces-
sor performance). To the left of point Y, the traditional system
is disk-bound. Below crossover point X, the active disk sys-
tem is slower than the server due to its less powerful CPUSs.
Above point Z, even active disks saturate their interconnects.
The traditional server system exhibits either interconnect or
server bottlenecks above line D and can scale no further.

on a rescue mission. Users can apply this information
later for training, planning, or data mining.

In medical image databases, a typical 3D brain
image can consume between one and 100 Mbytes
depending on the spatial resolutions and image depths.
A medium-size hospital typically performs about
120,000 radiological imaging studies each year, includ-
ing x-rays, producing more than 2 Tbytes of imaging
data per year—with both the resolution and quantity
of images increasing each year.

Data mining applications harvest massive amounts
of customer data. For example, a large Pennsylvania
retailer uses a data mining application that generates
5 Gbytes of point-of-sale data per week. Large telecom-
munication companies maintain tens of terabytes of
historical call data. These databases must support ad
hoc queries, and algorithms such as association dis-
covery and classification require repeated scans of this
data.

ACTIVE DISK APPROACH

Successful active disk functions possess several basic
characteristics. They

e leverage the parallelism available in systems with
many disks;

e operate with a small amount of state, processing
data as it streams off the disk; and

e execute relatively few instructions per byte of
data.

These traits help develop an intuition about active disk
system behavior relative to a traditional server with
dumb disks. Figure 2 shows the basic trade-offs for
active disk systems if we assume, for simplicity of
analysis, that we can pipeline and overlap disk trans-
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fer, disk computation, interconnect transfer, and host
computation with negligible start-up and postpro-
cessing costs and that interconnect transfer rates
always exceed single-disk rates. The slope of line A
represents the raw disk limitation in both systems. The
slope of line B represents the active disk CPU limita-
tion, which may be less than the raw disk transfer rate
for some applications.

The ratio of active disk to server processor speed is
the most important system parameter. Near term, we
expect 100- and 200-MHz microprocessors in drives
and individual server CPUs of 500 to 1,000 MHz, a
ratio of about 1 to 5. In this case, the aggregate active disk
processing power exceeds the server processing power
once more than five disks are working in parallel.

Prevailing technology trends predict processor per-
formance (line B) continuing to improve by 60 per-
cent per year and disk bandwidth (line A) improving
by 40 percent per year. This will improve the ratio of
processing power to disk bandwidth by 15 percent per
year, narrowing the gap between lines A and B, and
bringing active disks closer to the ideal of running at
total storage bandwidth.

PROTOTYPE AND EXPERIMENTS

Our experimental testbed contained 10 prototype
active disks, each emulated with a six-year-old 133-
MHz DEC Alpha 3000/400 with 64 Mbytes of RAM,
two 2.0-Gbyte Seagate Medalist disks, and the Digital
Unix 3.2g operating system. For the server case, we
used a single 500-MHz DEC AlphaStation 500/500
with 256 Mbytes of RAM, four 4.5-Gbyte Seagate
Cheetah disks on two ultrawide SCSI buses, and the
Digital Unix 3.2g operating system. An Ethernet switch
and a 155-Mbps OC-3 ATM switch connected all
these machines. Our experiments compared the per-
formance of a single server with fast, directly attached
SCSI disks against the same machine with network-
attached active disks, each of which consisted of a
workstation with two slower, directly attached SCSI

disks.

Nearest-neighbor search in high-dimensionality data

First, we attempted a search variation that deter-
mines the k items in a database that are closest to a
particular input item. Many classification and mem-
ory-based learning tasks require this kind of search.
We used synthetic data that contains individual loan-
applicant records with several independent attributes
such as age, education, salary, make of car, and cost of
house. Our test used a single target record as input
and processed records from the database, maintain-
ing a list of the k closest matches so far and adding
the current record to the list if it was closer to the tar-
get than any record already in the list.

For the active disks system, we assigned each disk



an integral number of records and performed the com-
parisons directly at the drives. The server sends the
target record to each of the disks to determine the &
closest records in their portions of the database. The
system returns these lists to the server and combines
them to determine the overall k closest records. This
application reduces the records in a database of arbi-
trary size to a constant-sized list of k records (k = 10
in our experiments), resulting in an arbitrarily large
selectivity (data reduction). The state required at each
disk equals the storage for the list of k closest records.

Figure 3 compares the performance of the tradi-
tional server against a system with active disks as the
number of disks increases. For a small number of
disks, the server performs better. The server is four
times as powerful as a single active disk processor and
can perform the computation at full disk rate.
However, the server CPU saturates at 25.7 Mbytes/s
with two disks, while the active disks system contin-
ues to scale linearly to 58 Mbytes/s using 10 disks (the
maximum size of our experimental testbed).
Extrapolating the data from the prototype to a larger
system with 60 disks—the smallest system in Table
1—would provide a throughput of nearly 360
MbyteS/s.

Association rule discovery in retail data

For our second application, we implemented an
algorithm to discover association rules in sales trans-
actions.> We used a database containing hypothetical
point-of-sale data in which a record contains a trans-
action identifier, a customer identifier, and a list of
items purchased on a particular shopping trip. Our
use of frequent sets extracts rules in the form of “if a
customer purchases items A and B, they are also likely
to purchase item X”, which merchants can use for
inventory or store layout decisions. Our computations
required several passes, first determining the items that
occur most often (the 1-itemsets), then using this infor-
mation to generate pairs of items that occur often (2-
itemsets) and larger groupings (k-itemsets). We
determined itemsets by making successive scans over
the data in which each phase uses the k-itemset counts
to create a list of candidate (k + 1)-itemsets until no
k-itemsets met the desired support.

Active disk systems perform the counting portion
of each phase directly at the drives. The server pro-
duces the list of candidate k-itemsets and provides this
list to each disk. Each disk counts its portion of the
transactions locally and returns these counts to the
server. The server combines the counts, produces a list
of candidate (k + 1) itemsets, and sends the list back
to the disks. The application reduces an arbitrarily
large number of transactions into a single, variably
sized set of summary statistics. The state the disks
require is the storage for the candidate k-itemsets and
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Figure 3. Performance of a search application running on a traditional server compared

with an active-disks system: (a) compares systems with a few disks, while (b) compares

systems with many disks.
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Figure 4. Throughput results for traditional and active disk
systems running frequent sets applications: With more disks,
the active disk system achieves a much higher throughput
than the traditional server system.

their counts at each stage. Figure 4 shows the results
for the first two passes of the frequent sets applica-
tion—those for the 1- and 2-itemsets. Again, the
crossover point is at four drives, where the server sys-
tem bottlenecks at 8.4 Mbytes/s and performance no
longer improves, while the active disks system con-
tinues to scale linearly to 18.9 Mbytes/s.

Preprocessing for mixed-media
mining with image data

For our first image-processing application, we
looked at an application that detects edges and corners
in a set of gray-scale images. Using real images, we
attempted to detect cows in the landscape near San
Jose, California.

The application processes a set of 256-Kbyte images
and returns only the edges it finds in the data using a
fixed 37-pixel mask. The tracking, feature extraction,
and positioning applications operate on only a small
subset of the original image data, focusing on a partic-
ular set of features such as the edges of objects rather
than the entire image.
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Figure 5.Edge detec-
tion scan using land-
scape image: (a) the
raw image, and (b)
the edges detected
with a brightness
threshold of 75.

(b)

The active disk system performs edge detection for
each image directly at the drives, and the search
returns only the edges to the server. A request for the
raw image returns only the identified edges in Figure
5b, which the scan can represent much more com-
pactly, reducing the amount of data transferred to the
server for this particular image from 256 Kbytes to 9
Kbytes. Edge detection bottlenecks the server CPU at
1.4 Mbytes/s, while the active disk system scales to 3.2
Mbytes/s with 10 disks.

Image registration in medical data

Our second image processing application—the
most computationally intensive we have studied—
analyzed the image-processing portion of a magnetic
resonance imaging brain scan. This analysis deter-
mined the set of parameters necessary to register—
rotate and translate—an image with respect to a
reference image to compensate for subject movement
during the scan. The application processes 384-Kbyte
images and returns a set of registration parameters
for each image. The algorithm performs a fast Fourier
transform, determines the parameters in Fourier
space, and computes an inverse-FFT on the resulting
parameters.

For the active disk system, this application is simi-
lar to edge detection. The system provides the refer-
ence image to all the drives and registers each image
directly at the drives, returning only the final para-
meters—1.5 Kbytes for each image—to the server.

Figure 6 shows the results for the two image pro-
cessing applications. Both required more CPU time
than the simple comparisons of the search, counting,
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and frequent sets applications, leading to much lower
throughput. Image registration achieves only 225
Kbps on the server system and 650 Kbps with 10
active disks.

Active disks or PC clusters?

A collection of commodity PCs with directly
attached storage that are connected by high-speed net-
works offers performance improvements similar to
active disks. The University of Tokyo® prototyped such
an architecture, and variants of it exist in many com-
mercial clustered database servers. PC clusters differ
from active disks primarily in the level of integration.
In a PC cluster, each individual disk contains a proces-
sor, an I/O bus to connect the disk or disks to a PC, the
PC processor and memory, and a second interconnect
that connects the PC to the rest of the cluster. An active
disk system has only a single disk processor that places
data directly on the cluster interconnect.

The active disk approach eliminates the need for
the PC processor, PC memory subsystem, and I/O
backplane, making active disks inherently less expen-
sive than a PC solution. Active disks leverage the pro-
cessing power that already exists on commodity disk
drives by extending their interface and capabilities.

Active disks provide a means for accelerating an
existing database system by moving data-intensive
processing to the disks and off-loading the server CPU.
However, a centralized processor is still required for
some data operations such as those that merge the
results of parallel computation—which means that
active disks will always pass data they process to a
central server, just as disks do today. Centralized pro-
cessing eliminates the need for potentially complex
disk-to-disk communication. Active disks can accel-
erate all existing database servers, whether large mul-
tiprocessors or clustered solutions.

RELATED WORK

Active disks offer the parallelism available in large
storage systems. Although processing power on disk
drives remains less than top-of-the-line server CPUs,
more aggregate CPU power often resides in the disks
than in the server. Partitioning applications across
server nodes to take advantage of this parallelism
results in a much higher total computation power than
running applications only on the server.

Active disks also dramatically reduce interconnect
bandwidth by filtering at the disks. Interconnect band-
width, often the most significant bottleneck, remains
ata premium compared to processing cycles. Whether
scanning large objects to select specific records or fields
or gathering summary statistics, disk-based filtering
discards a fraction of the data that would otherwise
move across the interconnect, dramatically reducing
the bottleneck and greatly increasing the apparent



storage data rate. These two advantages promise
order-of-magnitude improvements.

Our work inspired the adoption of active disks for
several data mining applications, where large data sets
are scanned for patterns of varying complexity.
Subsequent work has shown that active disks efficiently
support the core operations of a traditional database
system, often with improvements comparable to purely
scan-based functions.® This allows a large class of data-
intensive applications to take advantage of active disks
with changes to only a few database primitives. VLSI
technology has evolved to the point that significant
additional computational power comes at negligible
cost. The “Embedded Processing” sidebar provides
more information about these developments.

We have also demonstrated novel optimizations that
take advantage of the improved scheduling knowledge
available when applications operate close to the disk
drives.® As disk drive manufacturers rethink the inter-
faces to storage devices, we are already moving closer
to the general-purpose programmability that active
disks support.

Related work on Network-Attached Secure Disks at
Carnegie Mellon addresses making disk drives first-
class network citizens, removing the server bottleneck
for data access, and providing the necessary security
functions.® More recent development efforts include
the Internet Engineering Task Force iSCSI working
group, which is developing a standard to apply com-
modity Ethernet networking and greatly simplify the
networking of storage devices. In addition, the ANSI
T10 standards body is considering an object-based
storage proposal that evolves storage interfaces to
allow individual disk drives more control and knowl-
edge over data organization. These advances are lead-
ing the way for deployment of active disks so that any
host on the network can leverage both the computa-
tion resources and the bandwidth reduction promised
by operating closer to the data.

Further work at Carnegie Mellon* and by research
groups at Berkeley,” Maryland, and Santa Barbara®
provides additional details on the use of active disks
for data-intensive operations. Our work on pro-
grammable devices also has led to discussions and
expressions of interest in the data-storage industry.”!°

are rapidly becoming a reality. Active disks will

facilitate more efficient processing of large data
sets, scaling well beyond terabyte and petabyte stores
using commodity components. Efficient processing
greatly broadens the scope of data mining and other
data-intensive applications as it eliminates the need
for expensive, specially optimized systems designed
exclusively for such processing. %
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Figure 6. Results of (a) the edge detection test and (b) the image registration test. Even
in CPU-hound tasks, active disks show linear or near linear improvement with increas-
ing numbers of disks, whereas the traditional server’s throughput flatlines in both tests.

Embedded Processing

The old lines between embedded and server processors are beginning to
blur into a spectrum where power consumption and cost are the main dif-
ferentiating factors, and raw performance is sufficient across the board.

The markets for embedded processors and desktop/server processors have
traditionally been far apart. They represent different requirements, users,
and research communities. Advances in technology have closed this gap con-
siderably, and the differences between the two arenas are narrowing.

The first version of Cirrus Logic’s 3Ci mass-storage processor contains a
standard ARM7 RISC core. The second-generation product includes an
ARMO core that provides 220 MIPS at 200 MHz while consuming less than
500 mW of power. These contrast with the 25 W or more that a standard
Pentium or the Alpha chip we used in our prototype consumes. To achieve
these savings, the ARM core relies on a simpler design that lacks specula-
tive execution, branch prediction, or floating-point processing. However,
at 220 MIPS, the embedded processor remains more than sufficient for
many core data mining application codes.

Embedded processors are typically strong in the digital signal processing
that forms the basis of many multimedia functions, which are also increas-
ingly important in many classes of data mining applications.
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