Frangipani: A Scalable Distributed File System

Chandramohan A. Thekkath
Timothy Mann
Edward K. Lee

Systems Research Center
Digital Equipment Corporation
130 Lytton Ave, Palo Alto, CA 94301

Abstract

The ideal distributed file system would provide all its useith co-
herent, shared access tothe same set of files, yet woulditraish
scalable to provide more storage space and higher perfaeran
a growing user community. It would be highly available inteuif
component failures. It would require minimal human adntiais
tion, and administration would not become more complex agmo
components were added.

Frangipaniis a new file system that approximates this igedal,
was relatively easy to build because of its two-layer strrect The
lower layer is Petal (described in an earlier paper), aidiged
storage service that provides incrementally scalabldhigvail-
able, automatically managed virtual disks. In the uppeeilay
multiple machines run the same Frangipani file system codigmn
of a shared Petal virtual disk, using a distributed lock serto
ensure coherence.

Frangipaniis meantto run in a cluster of machinesthat adeun
a common administration and can communicate securely. fhleus
machines trust one another and the shared virtual disk apbiie
practical. Of course, a Frangipani file system can be exgdade
untrusted machines using ordinary network file access potto

We have implemented Frangipani on a collection of Alphas
running DIGITAL Unix 4.0. Initial measurements indicateath
Frangipani has excellent single-server performance aaddswell
as servers are added.

1 Introduction

File system administration for a large, growing computstaiia-

tion built with today’s technology is a laborious task. Tddwmore

files and serve more users, one must add more disks, attached t
more machines. Each of these components requires human-admi
istration. Groups of files are often manually assigned ttiqudar
disks, then manually moved or replicated when componeihts fil
up, fail, or become performance hot spots. Joining multifd
drives into one unit using RAID technology is only a partial s
lution; administration problems still arise once the sgstgrows

large enough to require multiple RAIDs and multiple serverm
chines.

Frangipaniis a new scalable distributed file systemthatagas
a collection of disks on multiple machines as a single shpoed
of storage. The machines are assumed to be under a common
administration and to be able to communicate securely.€Thave
been many earlier attempts at building distributed fileeystthat
scale well in throughput and capacity [1, 11, 19, 20, 21, &, 2
31, 33, 34]. One distinguishing feature of Frangipani ig thiaas
a very simple internal structure—a set of cooperating nreehi
use a common store and synchronize access to that store with
locks. This simple structure enables us to handle systeovegy,
reconfiguration, and load balancing with very litle maarin
Another key aspect of Frangipaniis that it combines a setaiffres
that makes it easier to use and administer Frangipani thiatirex
file systems we know of.

1. All users are given a consistent view of the same set of files

2. More servers can easily be added to an existing Frangipani
installation to increase its storage capacity and throughp
without changing the configuration of existing servers, or
interrupting their operation. The servers can be viewed as
“bricks” that can be stacked incrementally to build as laage

file system as needed.

. A system administrator can add new users without concern
for which machines will manage their data or which disks
will store it.

. A systemadministrator can make a full and consistentigack
of the entire file system without bringing it down. Backups
can optionally be kept online, allowing users quick access t
accidentally deleted files.

5. Thefile systemtolerates and recovers from machine, metwo

and disk failures without operator intervention.

Frangipaniis layered on top of Petal [24], an easy-to-atit@n
distributed storage system that providérsual disksto its clients.
Like a physical disk, a Petal virtual disk provides stordu tan
be read or written in blocks. Unlike a physical disk, a viftua
disk provides a sparsé“byte address space, with physical stor-
age allocated only on demand. Petal optionally replicases fibr
high availability. Petal also provides efficient snapsliptd.0] to
support consistent backup. Frangipani inherits much ofdtda-
bility, fault tolerance, and easy administration from timelarlying
storage system, but careful design was required to extezsbth

User User User
program program program
Frangipani Frangipani
file server file server

Distributed
: Petal
lock service distributed virtual
disk service
Physical disks

Figure 1: Frangipani layering. Several interchangeable Frangi-
pani servers provide access to one set of files on one PetahVir
disk.

properties to the file system level. The next section dessiibe
structure of Frangipani andits relationship to Petal iratgedetail.

Figure 1 illustrates the layering in the Frangipani syst&tulti-
ple interchangeable Frangipani servers provide accebs waime
files by running on top of a shared Petal virtual disk, coaat}in
ing their actions with locks to ensure coherence. The filéesys
layer can be scaled up by adding Frangipani servers. It aehie
fault tolerance by recovering automatically from serveiufas
and continuing to operate with the servers that survivetavtides
improved load balancing over a centralized network file seby
splitting up the file system load and shifting it to the maeisithat
are using the files. Petal and the lock service are also lulisl
for scalability, fault tolerance, and load balancing.

Frangipani servers trust one another, the Petal servaitghan
lock service. Frangipani is designed to run well in a clustier
workstations within a single administrative domain, ailtbh a
Frangipani file system may be exported to other domains. ,Thus
Frangipani can be viewed aghister file system

We have implemented Frangipani under DIGITAL Unix 4.0.
Due to Frangipani’s clean layering atop the existing Petalise,
we were able to implement a working systemin only a few manths

Frangipani is targeted for environments with program dgwvel
ment and engineering workloads. Our tests indicate thauch s
workloads, Frangipani has excellent performance and scgi¢o
the limits imposed by the network.

2 System Structure

Figure 2 depicts one typical assignment of functions to rimeesh

The machines shown at the top run user programs and the Frangi

pani file server module; they can be diskless. Those showreat t
bottom run Petal and the distributed lock service.

The components of Frangipani do not have to be assigned to

User programs User programs

File system switch File system switch

Frangipani
file server module

Frangipani
file server module

Petal
device driver

Petal
device driver

| Network |
/7‘ “\
\ Petal viftual disk /
P e
Lock Lock Lock
Petal | se™e" Petal | %™ Petal | %™
server server server

/@
@&

Figure 2: Frangipani structure. In one typical Frangipani con-
figuration, some machines run user programs and the Framdipa
file server module; others run Petal and the distributed leek-
vice. In other configurations, the same machines may plaly bot
roles.

on different machines all see the same files, and their viees a
coherent; thatis, changesmade to afile or directory on ocaima
are immediately visible on all others. Programs get essigntine
same semantic guarantees as on a local Unix file system: ebang
to file contents are staged through the local kernel bufferl po
and are not guaranteed to reach nonvolatile storage uatihext
applicablef sync or sync system call, but metaddtahanges
are logged and can optionally be guaranteed non-volatilthéy
time the system call returns. In a small departure from |fitzal
system semantics, Frangipani maintains a file's last-secktime
only approximately, to avoid doing a metadata write for g\data
read.

The Frangipanifile server module on each machine runs within
the operating system kernel. It registers itself with thenkés file
system switch as one of the available file system implemientat
The file server module uses the kernel’s buffer pool to cacite d

machines in exactly the way shown in Figure 2. The Petal and from recently usedfiles. It reads and writes Petal virtuskslusing

Frangipani servers need not be on separate machines; idwoul

make sense for every Petal machine to run Frangipani as well,

particularly in an installation where the Petal machines raot
heavily loaded. The distributed lock service is independéthe
rest of the system; we show one lock server as running on esteah P
server machine, but they could just as well run on the Fraamdip
hosts or any other available machines.

2.1 Components

As shown in Figure 2, user programs access Frangipani throug
the standard operating system call interface. Programsinmgn

the local Petal device driver. All the file servers read anitevthe
same file system data structures on the shared Petal diskablt
server keeps its own redo log of pending changes in a distinct
section of the Petal disk. The logs are kept in Petal so thanhwh
a Frangipani server crashes, another server can accesgthed
runrecovery. The Frangipani servers have no need to conuamieni
directly with one another; they communicate only with Petadi
the lock service. This keeps server addition, deletionracadvery
simple.

The Petal device driver hides the distributed nature of [Peta

We definemetadataas any on-disk data structure other than the contents of an
ordinary file.

making Petal look like an ordinary local disk to higher layef
the operating system. The driver is responsible for comgdthe
correct Petal server and failing over to another when necgss
Any Digital Unix file system can run on top of Petal, but only
Frangipani provides coherent accessto the same files frdtiprau
machines.

The Petal servers run cooperatively to provide Frangipdthi w
large, scalable, fault-tolerant virtual disks, implensghbn top of
the ordinary physical disks connected to each server. Eatal
tolerate one or more disk or server failures, as long as arityajd
the Petal servers remain up and in communication and atdeast
copy of each data block remains physically accessible. thuatdil
details on Petal are available in a separate paper [24].

The lock service is a general-purpose service that provides

multiple-reader/single-writer locks to clients on theweitk. Its
implementation is distributed for fault tolerance and absd per-
formance. Frangipaniuses the lock service to coordinatessto
the virtual disk and to keep the buffer caches coherent a¢hes
multiple servers.

2.2 Security and the Client/Server Configuration

In the configuration shown in Figure 2, every machine that$os
user programs also hosts a Frangipani file server modules Thi
configuration has the potential for good load balancing aatirsg,
but poses security concerns. Any Frangipani machine cahaea
write any block of the shared Petal virtual disk, so Frangipaust
run only on machines with trusted operating systems; it doul
not be sufficient for a Frangipani machine to authenticatdfito
Petal as acting on behalf of a particular user, as is doneniote
file access protocols like NFS. Full security also requiresaP
servers and lock servers to run on trusted operating systamls
all three types of components to authenticate themselves¢o
another. Finally, to ensure file data is kept private, useosisl be
prevented from eavesdropping on the network interconmg ttie
Petal and Frangipani machines.

One could fully solve these problems by placing the machines
in an environment that prevents users from booting modified o
erating system kernels on them, and interconnecting thetim wi
a private network that user processes are not granted aftcess
This does not necessarily mean that the machines must bedock
in a room with a private physical network; known cryptogreph
techniques for secure booting, authentication, and etetylmks
could be used instead [13, 37]. Also, in many applicatioastigl
solutions may be acceptable; typical existing NFS indialts are
not secure against network eavesdropping or even data wedifi
tion by a user who boots a modified kernel on his workstatioa. W
have not implemented any of these security measures tolulgte,
we could reach roughly the NFS level of security by having the
Petal servers acceptrequests only from a list of networkesdes
belonging to trusted Frangipani server machines.

Frangipani file systems can be exported to untrusted maghine
outside an administrative domain using the configuratiostitated
in Figure 3. Here we distinguish between Frangipani clierdt a
servermachines. Only the trusted Frangipani servers coriuante
with Petal and the lock service. These can be located in dctest
environment and interconnected by a private network asid&sd
above. Remote, untrusted, clients talk to the Frangipanese
through a separate network and have no direct access to tile Pe
servers.

Clients can talk to a Frangipani server using any file access p
tocol supported by the host operating system, such as DCE/DF

User programs . .
preg Frangipani
File system switch | client
machine
NFS or DFS client
Network
NFS or DFS server|
File system switch .)
Frangipani
Frangipani server
file server module machine
Petal
device driver

¢To lock service
and Petal

Figure 3: Client/server configuration. A Frangipani server can
provide file access not only for the local machine, but alsade

mote client machines that connect via standard networkyfgéesn
protocols.

NFS, or SMB, because Frangipanilooks just like a local filtamn
on the machine running the Frangipani server. Of coursepa pr
tocol that supports coherent access (such as DCE/DFS)tisses
that Frangipani's coherence across multiple servers ishmotvn
away at the next level up. Ideally, the protocol should algzp®rt
failover from one Frangipani server to another. The pro®opst
mentioned do not support failover directly, but the tecleiepf
having a new machine take over the IP address of a failed mechi
has been used in other systems [3, 25] and could be applied her
Apart from security, there is a second reason for using this
client/server configuration. Because Frangipani runserkéirnel,
itis not quickly portable across different operating syster even
different versions of Unix. Clients can use Frangipani fram
unsupported system by accessing a supported one remotely.

2.3 Discussion

The idea of building a file system in two layers—a lower level
providing a storage repository and a higher level providiames,
directories, and files—is not unique to Frangipani. Theiesir
example we know of is the Universal File Server [4]. However,
the storage facility provided by Petal is substantiallfediént from
earlier systems, leading to a different higher level strrectis well.
Section 10 contains detailed comparisons with previouesys

Frangipani has been designed to work with the storage @bstra
tion provided by Petal. We have not fully considered the de-
sign changes needed to exploit alternative storage ahistratike
NASD [13].

Petal provides highly available storage that can scaleautih-
put and capacity as resources are added to it. However Retab
provision for coordination or sharing the storage amondipial
clients. Furthermore, most applications cannot directly Betal’s
client interface because it is disk-like and not file-likeakgipani
provides a file system layer that makes Petal useful to agtjuits
while retaining and extending its good properties.

A strength of Frangipani is that it allows transparent serve
addition, deletion, and failure recovery. It is able to dis #masily
by combining write-ahead logging and locks with a uniformly
accessible, highly available store.

Another strength of Frangipani is its ability to create dens The fifth region holds small data blocks, each 4 K&*@ytes)
tent backups while the system is running. Frangipani's bpck in size. The first 64 KB (16 blocks) of a file are stored in small

mechanism is discussedin Section 8. blocks. If a file grows to more than 64 KB, the rest is storedria o
There are three aspects of the Frangipani design that can bdarge block. We allocate®? bytes for small blocks, thus allowing

problematic. Using Frangipani with a replicated Petalnattdisk up to Z° of them, 16 times the maximum number of inodes.

implies thatlogging sometimes occimsce, once to the Frangipani Theremainder of the Petal address space holds large dakasblo

log, and once again within Petal itself. Second, Frangigaes not One TB of address space is reserved for every large block.

use disk location information in placing data—indeed itratr— Our disk layout policy of using 4 KB blocks can suffer from

because Petal virtualizes the disks. Finally, Frangipzaokid entire more fragmentation than a policy that more carefully husisan

files and directories rather than individual blocks. We da¢ no disk space. Also, allocating 512 bytes per inode is somewhat
have enough usage experience to evaluate these aspects of ouvasteful of space. We could alleviate these problems bynstor
designin a general setting, but despite them, Frangipaeigsured small files in the inode itself [29]. What we gain with our dgsi
performance on the engineering workloads we have testemis.g is simplicity, which we believe is a reasonable tradeofitfar cost

of extra physical disk space.

The current scheme limits Frangipani to slightly less th&h 2
(16 million) large files, where a large file is any file biggeath
64 KB. Also, no file can be larger than 16 small blocks plus one
large block (64 KB plus 1 TB). If these limits prove too small,
we could easily reduce the size of large blocks, thus making a
larger number available, and permit large files to span nioaa t
one large block, thus raising the maximum file size. Shoudd th
2% byte address space limit prove inadequate, a single Franigip
server can support multiple Frangipani file systems on pialti
virtual disks.

We have chosenthese file system parameters based on our usage
experience with earlier file systems. We believe our choidés
serve us well, but only time and usage can confirm this. The
design of Frangipani is flexible enough that we can experimen
with different layouts at the cost of a backup and restoréefile
system.

3 Disk Layout

Frangipani uses the large, sparse disk address space bftdPeta
simplify its data structures. The general idea is remimsacd
past work on programming computers with large memory addres
spaces [8]. There is so much address space available tlaat litec
parcelled out generously.

A Petalvirtual disk has%bytes of address space. Petal commits
physical disk space to virtual addresses only when they diten
Petal also provides decommitprimitive that frees the physical
space backing a range of virtual disk addresses.

To keep its internal data structures small, Petal commits an
decommits space in fairly large chunks, currently 64 KB.{liBa
each 64 KB range of addresses 2'°, (a 4 1) - 2') in which
some data has been written and not decommitted has 64 KB of
physical disk space allocated to it. Thus Petal clients ctafford
to make their data structuréso sparse, or too much physical disk
space will be wasted through fragmentation. Figure 4 shawms h
Frangipani divides up its virtual disk space.

The first region stores shared configuration parameters and
housekeeping information. We allow one terabyte (TB) of vir
tual space for this region, but in fact only a few kilobytestafre
currently used.

The second region stores logs. Each Frangipani servemabtai
a portion of this space to hold its private log. We have resgrv
one TB (Z° bytes) for this region, partitioned into 256 logs. This
choice limits our current implementation to 256 serverd,this
could easily be adjusted.

The third region is used for allocation bitmaps, to desasihizh
blocks in the remaining regions are free. Each Frangipamese
locks a portion of the bitmap space for its exclusive use. #Vhe
a server’s bitmap space fills up, it finds and locks anothesedu
portion. The bitmap region is 3 TB long.

The fourth region holds inodes. Each file needs an inode to
hold its metadata, such as timestamps and pointers to thédoc
of its data? Symbolic links store their data directly in the inode.
We have made inodes 512 bytes long, the size of a disk block
thereby avoiding the unnecessary contention (“false sggrbe-
tween servers that would occur if two servers needed to acces
different inodes in the same block. We allocate one TB of énod
space, allowing room for®3 inodes. The mapping between bits in
the allocation bitmap and inodes is fixed, so each Franggeawer
allocates inodes to new files only from the portions of thedmo
space that correspondsto its portions of the allocationdpt But
any Frangipani server may read, write, or free any existie(sfi
inode.

4 Logging and Recovery

Frangipani uses write-ahead redo logging of metadata tpl&jm
failure recovery and improve performance; user data isogged.
Each Frangipani server has its own private log in Petal. When
a Frangipani file server needs to make a metadata updatestit fir
creates a record describing the update and appends it tmiia |
memory. These log records are periodically written out ttaPe
in the same ordethat the updates they describe were requested.
(Optionally, we allow the log records to be written synctoosly.
This offers slightly better failure semantics at the coshofeased
latency for metadata operations.) Only after a log recovdtigen
to Petal does the server modify the actual metadata in itmger
nent locations. The permanent locations are updated peaityd
(roughly every 30 seconds) by the Unipdat e demon.
Logs are bounded in size—128 KB in the current implementa-
tion. Given Petal’s allocation policy, a log will be compdsef
two 64 KB fragments on two distinct physical disks. The space
allocated for each log is managed as a circular buffer. When t
" log fills, Frangipani reclaims the oldest 25% of the log spface
new log entries. Ordinarily, all the entries in the reclaiharea
will refer to metadata blocks that have already been written
Petal (in a previousync operation), in which case no additional
Petal writes need to be done. If there are metadata blocks tha
have not yet been written, this work is completed before diged
reclaimed. Given the size of the log and typical sizes of §ran
pani log records (80-128 bytes), the log can fill up betweenm tw
periodicsync operations if there are about 1000—1600 operations
that modify metadata in that interval.
2In this section the woréile includes directories, symbolic links, and the like. If a Frangipani server crashes, the system eventually tetec

264

0 1T 2T 5T 6T 134T 135T 136T
01]..[25%
Param- Logs Allocation Inodes Small blocks Large blocks
eters bitmaps 512 B each 4 KB each 1 TB each

Figure 4: Disk layout. Frangipani takes advantage of Petal’s large, sparse diglrass space to simplify its data structures. Each server

has its own log and its own blocks of allocation bitmap space.

the failure and runsecoveryon that server’s log. Failure may be
detected either by a client of the failed server, or when o |
service asks the failed server to return a lock it is holdind gets
no reply. The recovery demon is implicitly given ownership o
the failed server’s log and locks. The demon finds the logist st
and end, then examines each record in order, carrying ohtdsac
scribed update that is not already complete. After log pssicey
is finished, the recovery demon releases all its locks ares filee
log. The other Frangipani servers can then proceed unatestiu
by the failed server, and the failed server itself can opatilgrbe
restarted (with an empty log). As long as the underlying Reta
ume remains available, the system tolerates an unlimitecbeu
of Frangipani server failures.

To ensure thatrecovery can find the end of the log (even wieen th
disk controllers write data out of order), we attach a monizially
increasing log sequence number to each 512-byte block ¢dghe
The end of the log can be reliably detected by finding a sequenc
number that is lower than the preceding one.

Frangipani ensures that logging and recovery work cosrémtl
the presence of multiple logs. This requires attention teese
details.

First, Frangipani’s locking protocol, described in the thec-
tion, ensures that updates requested to the same data énediff
servers are serialized. A write lock that covers dirty darachange
owners only after the dirty data has been written to Pet#ieei
by the original lock holder or by a recovery demon runningtsn i
behalf. This implies that at most one log can hold an uncoragle
update for any given block.

Second, Frangipani ensures that recovery applies onlytepda
that were logged since the server acquired the locks thatrcov
them, and for which it still holds the locks. This is needed to
ensure that the serialization imposed by the locking pat

not violated. We make this guarantee by enforcing a stronger

condition: recovery never replays a log record describimggate
that has already been completed. To accomplish the lattcskeep

Finally, Frangipani ensures that at any time only one regove
demon is trying to replay the log region of a specific servdre T
lock service guarantees this by granting the active regalemon
an exclusive lock on the log.

Frangipani’s logging and recovery schemes assume thaka dis
write failure leaves the contents of a single sector in eithe old
state or the new state but never in a combination of both. dttos
is damaged such that reading it returns a CRC error, Petaltsi
replication can ordinarily recover it. If both copies of at® were
to be lost, or if Frangipani’s data structures were corrditg a
software bug, a metadata consistency check and repairliio®! (
Unix fsck would be needed. We have notimplemented such a tool
to date.

Frangipani’s logging is not intended to provide high-lese}
mantic guarantees to its users. Its purpose is to improvedhe
formance of metadata updates and to speed up failure rgcoyer
avoiding the need to run programs l#sekeach time a server fails.
Only metadata is logged, not user data, so a user has no ¢gemran
that the file system state is consistent from his point of \édisr
a failure. We do not claim these semantics to be ideal, byt the
are the same as what standard local Unix file systems protride.
both local Unix file systems and Frangipani, a user can géget
consistency semantics by calliigync at suitable checkpoints.

Frangipani’s logging is an application of techniques fiestel-
oped for databases[2] and later used in several tdigebasedile
systems [9, 11, 16, 18]. Frangipani is ndbg-structuredile sys-
tem [32]; it does not keep all its data in the log, instead Itaaing
conventional on-disk data structures, with a small log asdnnct
to provide improved performance and failure atomicity. ikkathe
other log-based file systems cited above, but like the log=gtred
file systems Zebra [17] and xFS [1], Frangipani keeps meltipl
logs.

5 Synchronization and Cache Coherence

a version number on every 512-byte metadata block. Metadatawith multiple Frangipaniservers all modifying shared dskdiata

such as directories, which span multiple blocks, have pialti
version numbers. For each block that a log record updates, th
record contains a description of the changes and the nevorers
number. During recovery, the changes to a block are appiigd o

if the block version number is less than the record versianter.

Because user data updates are not logged, only metadaita bloc
have space reserved for version numbers. This creates dicomp
cation. If a block were used for metadata, freed, and thesegu
for user data, old log records referring to the block might @
skipped properly after the version number was overwrittéh ar-
bitrary user data. Frangipani avoids this problem by reysied
metadata blocks only to hold new metadata.

structures, careful synchronization is needed to give sacter a
consistent view of the data, and yet allow enough concuyrenc
to scale performance as load is increased or servers arel.adde
Frangipani uses multiple-reader/single-writer locksnplement

the necessary synchronization. When the lock service tiaten-
flicting lock requests, the current holder of the lock is akke
release or downgrade it to remove the conflict.

A read lockallows a server to read the associated data from disk
and cache it. If a server is asked to release its read lock,ist m
invalidate its cache entry before complying.wAite lockallows a
server to read or write the associated data and cache it.varger
cached copy of a disk block can be different from the on-disk

version only if it holds the relevant write lock. Thus if a ger
is asked to release its write lock or downgrade it to a reak, libc
must write the dirty data to disk before complying. It cammiefits
cache entry if it is downgrading the lock, but must invalelatif
releasing the lock.

Instead of flushing the dirty data to disk when a write lock is

vice implementations in the course of the Frangipani ptogead
other existing lock services could provide the necessamgtion-
ality, perhaps with a thin layer of additional code on top.

The lock service provides multiple-reader/single-writacks.
Locks are sticky; that is, a client will generally retain @kauntil
some other client needs a conflicting one. (Recall that tieaits|

released or downgraded, we could have chosen to bypasssthe di of the lock service are the Frangipani servers.)

and forward the dirty data directly to the requester. We ditl n
do this for reasons of simplicity. First, in our design, Fggrani

The lock service deals with client failure usiteased15, 26].
When a client first contacts the lock service, it obtains adedll

servers do not need to communicate with each other. They com-locks the client acquires are associated with the leaseh [Ease

municate only with Petal and the lock server. Second, ougdes

has an expiration time, currently setto 30 seconds afterétstion

ensures that when a server crashes, we need only procesgthe | or lastrenewal. A client must renew its lease before theratipn

used by that server. If dirty buffers were directly forwaddad the
destination server with the dirty buffer crashed, log estriefer-
ring to the dirty buffer could be spread out across severahinas.
This would pose a problem both for recovery and in reclainiiigg
space as it fills up.

time, or the service will consider it to have failed.

Network failures can prevent a Frangipani server from réngw
its lease even though it has not crashed. When this happens, t
server discards all its locks and the data in its cache. iframg in
the cache was dirty, Frangipani turns on an internal flagthases

We have divided the on-disk structures into logical segment all subsequentrequests from user programs to return am &ire
with locks for each segment. To avoid false sharing, we ensur file system must be unmounted to clear this error conditioe. W

that a single disk sector does not hold more than one datzsteu
that could be shared. Our division of on-disk data strustim®
lockable segments is designed to keep the number of lockemea
ably small, yet avoid lock contention in the common casehsab t
the lock service is not a bottleneck in the system.

Each log is a single lockable segment, because logs argeariva

have chosen this drastic way of reporting the error to make it
difficult to ignore inadvertently.

Our initial lock service implementation was a single, celited
server that kept all its lock state in volatile memory. Suceever
is adequate for Frangipani, because the Frangipani semdtheir
logs hold enough state information to permit recovery evémei

The bitmap space is also divided into segments that are dbcke lock service loses all its state in a crash. However, a lockice

exclusively, so that there is no contention when new filesafioe
cated. A data block or inode that is not currently allocated tile
is protected by the lock on the segment of the allocation dgitm
that holds the bit marking it as free. Finally, each file, dicey,
or symbolic link is one segment; that is, one lock protecth ltwe
inode and any file data it points to. This per-file lock granitas
appropriate for engineering workloads where files rarelgargo
concurrent write-sharing. Other workloads, however, neaire
finer granularity locking.

Some operations require atomically updating several ek-di
data structures covered by different locks. We avoid dezdby
globally ordering these locks and acquiring them in two glsas
First, a server determines what locks it needs. This maylievo
acquiring and releasing some locks, to look up names in atding
for example.

failure would cause a large performance glitch.

Our second implementation stored the lock state on a Petal vi
tual disk, writing each lock state change through to Petédree
returning to the client. If the primary lock server crasteeldackup
server would read the current state from Petal and take oyept
vide continued service. With this scheme, failure recov&mnore
transparent, but performance for the common case is pduaar t
the centralized, in-memory approach. We did not fully inmpant
automatic recovery from all failure modes for this implerzion
before going on to the next one.

Our third and final lock service implementation is fully dis-
tributed for fault tolerance and scalable performance.ottsists
of a set of mutually cooperating lock servers, and a clerk uteod
linked into each Frangipani server.

Second, it sorts the locks by inode address and The lock service organizes locks intablesnamed by ASCII

acquires each lock in turn. The server then checks whether an strings. Individual locks within tables are named by 64iie-

objects it examined in phase one were modified while thekdoc
were released. If so, it releases the locks and loops badptnat
phase one. Otherwise, it performs the operation, dirtyioiges
blocks in its cache and writing a log record. It retains eadk|
until the dirty blocks it covers are written back to disk.

The cache coherence protocol we have just described isasimil
to protocols used for client file caches in Echo [26], the Aswdr
File System [19], DCE/DFS [21], and Sprite [30]. The dea#loc
avoidance technique is similar to Echo’s. Like Frangipaimé
Oracle data base (Oracle Parallel Server), also writeg data to
disk instead of using cache-to-cache transfers betweearessive
owners of the write lock.

6 The Lock Service

Frangipani requires only a small, generic set of functisamfits
lock service, and we do not expect the service to be a perfozena
bottleneck in normal operation, so many different impletagéans
could fill its requirements. We have used three differenk lser-

gers. Recall that a single Frangipani file system uses ondy on
Petal virtual disk, although multiple Frangipani file syatecan

be mounted on the same machine. Each file system has a table
associated with it. When a Frangipani file system is mourite,
Frangipani server calls into the clerk, which opens the tati#e
associated with that file system. The lock server gives thekcl

a lease identifielon a successful open, which is used in all sub-
sequent communication between them. When the file system is
unmounted, the clerk closes the lock table.

Clerks andthe lock servers communicate via asynchronosis me
sages rather than RPC to minimize the amount of memory used an
to achieve good flexibility and performance. The basic mgssa
types that operate on locks aexjuest, grant, revokandrelease
Therequesandreleasenessage types are sentfrom the clerk to the
lock server, whereas thgrant andrevokemessage types are sent
from the lock server to the clerk. Lock upgrade and downgrade
operations are also handled using these four message types.

The lock service uses a fault-tolerant, distributed faildetec-
tion mechanism to detect the crash of lock servers. Thisés th
same mechanism used by Petal. It is based on the timely egehan

of heartbeat messages between sets of servers. It usestynajor
consensus to tolerate network partitions.

lease is still valid (and will still be valid fotmargin SECONS) before
attempting any write to Petal. Petal, however, does no dhgck

Locks consume memory at the server and at each clerk. In our whenawrite requestarrives. Thus, if there is a sufficiemtilelay

current implementation, the server allocates a block of yit2s
per lock, in addition to 104 bytes per clerk that has an ontitey
or granted lock request. Each client uses up 232 bytes perTac
avoid consuming too much memory because of sticky lock&ksle
discard locks that have not been used for a long time (1 hour).

A small amount of global state information that does not ¢fean
often is consistently replicated across all lock serveisgisam-
port's Paxos algorithm [23]. The lock service reuses an émpl
mentation of Paxos originally written for Petal. The globtdte
information consists of a list of lock servers, a list of Ietkat each
is responsible for serving, and a list of clerks that havenepeut
not yet closed each lock table. This information is used toeae
consensus, to reassign locks across lock servers, to relooke
state from clerks after a lock server crash, and to faa@ltatovery
of Frangipani servers. For efficiency, locks are partitibrieo
about one hundred distinictck groupsand are assigned to servers
by group, not individually.

Locks are occasionally reassigned across lock serversie co
pensate for a crashed lock server or to take advantage of lg new
recovered lock server. A similar reassignment occurs wHeola
server is permanently added to or removed from the system. In
such cases, the locks are always reassigned such that theenum
of locks served by each server is balanced, the number cfiggas
ments is minimized, and each lock is served by exactly onle loc
server. The reassignment occurs in two phases. In the fiesteph
lock servers that lose locks discard them from their intestete.

In the second phase, lock servers that gain locks contacteries
that have the relevant lock tables open. The servers retoger
state of their new locks from the clerks, and the clerks gozined
of the new servers for their locks.

When a Frangipani server crashes, the locks that it ownsatann
be released until appropriate recovery actions have betarped.
Specifically, the crashed Frangipani server’s log must begssed
and any pending updates must be written to Petal. When aiFrang
pani server’s lease expires, the lock service will ask tleekcbn
another Frangipani machine to perform recovery and to teen r
lease all locks belonging to the crashed Frangipani servhis
clerk is granted a lock to ensure exclusive access to theTbgs
lock is itself covered by a lease so that the lock service stékt
another recovery process should this one fail.

In general, the Frangipani system tolerates network juartif
continuing to operate when possible and otherwise shutiren
cleanly. Specifically, Petal can continue operation in geefof
network partitions, as long as a majority of the Petal sememain
up and in communication, but parts of the Petal virtual digklve
inaccessible if there is no replicain the majority partitid he lock
service continues operation as long as a majority of lockeser
are up and in communication. If a Frangipani server is jamtd
away from the lock service, it will be unable to renew its pas
The lock service will declare such a Frangipani server deat a
initiate recovery from its log on Petal. If a Frangipani sgris
partitioned away from Petal, it will be unable to read or wiie
virtual disk. In either of these cases, the server will desafurther
user access to the affected file system until the partiti@aisrend
the file system is remounted.

There is a small hazard when a Frangipani server’s leasesxpi
If the server did notreally crash, but was merely out of coniath
the lock service due to network problems, it may still try twess
Petal after its lease has expired. A Frangipani server cteekits

between Frangipani’s lease check and the arrival of theegjuent
write request at Petal, we could have a problem: The leasd cou
have expired and the lock been given to a different serverudie

a large enough error margimargin (15 seconds) that under normal
circumstances this problem would never occur, but we canfot

it out absolutely.

In the future we would like to eliminate this hazard; one rnoeth
that would work is as follows. We add axpiration timestamp
on each write request to Petal. The timestamp is set to therdur
lease expiration time at the moment the write request isrgéea,
MinuStmargin. We then have Petal ignore any write request with a
timestamp less than the current time. This method reliadjgcts
writes with expired leases, provided that the clocks on|Retd
Frangipani servers are synchronized to wittiggin.

Another method, which does not required synchronized dpck
is to integrate the lock server with Petal and include lgese
identifierobtained from the lock server with every write request to
Petal. Petal would then reject any write request with anrexipi
lease identifier.

7 Adding and Removing Servers

As a Frangipaniinstallation grows and changes, the systienira
istrator will occasionally need to add or remove server rreeh
Frangipani is designed to make this task easy.

Adding another Frangipani server to a running system regquir
a minimal amount of administrative work. The new server need
only be told which Petal virtual disk to use and where to finel th
lock service. The new server contacts the lock service taiolat
lease, determines which portion of the log space to use flan t
lease identifier, and goes into operation. The administidoes
not need to touch the other servers; they adapt to the presgnc
the new one automatically.

Removing a Frangipani server is even easier. It is adeqoate t
simply shut the server off. It is preferable for the servefitich
all its dirty data and release its locks before halting, hig is not
strictly needed. If the server halts abruptly, recovent wih on
its log the next time one of its locks is needed, bringing thersd
disk into a consistent state. Again, the administrator do¢seed
to touch the other servers.

Petal servers can also be added and removed transparantly, a
described in the Petal paper [24]. Lock servers are added and
removed in a similar manner.

8 Backup

Petal's snapshotfeature provides us with a convenientovanake
consistent full dumps of a Frangipani file system. Petahala
client to create an exact copy of a virtual disk at any point in
time. The snapshot copy appears identical to an ordinatyalir
disk, except that it cannot be modified. The implementatisesu
copy-on-write techniques for efficiency. The snapshotseash-
consistentithat is, a snapshot reflects a coherent state, one that
the Petal virtual disk could have been left in if all the Frigaai
servers were to crash.

Hence we can backup a Frangipanifile system simply by taking
a Petal snapshotand copying it to tape. The snapshot willdec
all the logs, so it can be restored by copying it back to a new

Petal virtual disk and running recovery on each log. Due & th
crash-consistency, restoring from a snapshot reducetsame
problem as recovering from a system-wide power failure.

We could improve on this scheme with a minor change to Frangi-
pani, creating snapshots that are consistent at the filersyisvel
and require no recovery. We can accomplish this by having the
backup program force all the Frangipani servers into a déarri
implemented using an ordinary global lock supplied by theklo
service. The Frangipaniservers acquire this lock in shawede to
do any modification operation, while the backup processestju
it in exclusive mode. When a Frangipani server receives ag&tg
to release the barrier lock, it enters the barrier by blogleith new
file system calls that modify data, cleaning all dirty datisrtache
and then releasing the lock. When all the Frangipani sehears
entered the barrier, the backup program is able to acquérexh
clusive lock; it then makes a Petal snapshot and releaséscthe
At this point the servers reacquire the lock in shared modd, a
normal operation resumes.

typical workstations. This testbed would allow us to studg t
performance of Frangipani in a large configuration. Siné it
not yet ready, we report numbers from a smaller configuration

For the measurements reported below, we used seven 333 MHz
DEC Alpha 500 5/333 machines as Petal servers. Each machine
stores data on 9 DIGITAL RZ29 disks, which are 3.5 inch fast
SCSI drives storing 4.3 GB each, with 9 ms average seek time
and 6 MB/s sustained transfer rate. Each machine is corthiecte
a 24 port ATM switch by its own 155 Mbit/s point-to-point link
PrestoServe cards containing 8 MB of NVRAM were used onthese
servers where indicated below. The seven Petal serversipalys
data at an aggregate rate of 100 MB/s. With replicated Wirtua
disks, Petal servers can sink data at an aggregate rate oB4&3 M

9.2 Single Machine Performance

This subsection compares how well Frangipani’'s code patico
pares with another Unix vnode file system, namely DIGITAL's

With the latter scheme, the new snapshot can be mounted as aadvanced File System (AdvFS).

Frangipani volume with no need for recovery. The new volume
can be accessed on-line to retrieve individual files, or it be
dumped to tape in a conventional backup format that doesenot r
quire Frangipanifor restoration. The hew volume must bemtexl
read-only, however, because Petal snapshots are curreatly
only. In the future we may extend Petal to support writablgpsn
shots, or we may implement a thin layer on top of Petal to siteul
them.

9 Performance

Frangipani’s layered structure has made it easier to bhie &
monolithic system, but one might expect the layering to erac
cost in performance. In this section we show that Frangipani
performance is good in spite of the layering.

As in other file systems, latency problems in Frangipani can
be solved straightforwardly by adding a non-volatile meynor
(NVRAM) buffer in front of the disks. The most effective pkc
to put NVRAM in our system is directly between the physical
disks and the Petal server software. Ordinary PrestoSemas c
and drivers suffice for this purpose, with no changes to Retal
Frangipani needed. Failure of the NVRAM on a Petal server is
treated by Petal as equivalent to a server failure.

Severalaspects of Frangipaniand Petal combine to provide g
scaling of throughput. There is parallelism at both laydrthe
system: multiple Frangipani servers, multiple Petal ssrvand
multiple disk arms all working in parallel. When many clisaire
using the system, this parallelism increases the aggréyategh-
put. As compared with a centralized network file server, Gigamni
should have less difficulty dealing with hot spots, becalsefis-
tem processing is split up and shifted to the machines theat ar
using the files. Both the Frangipani and Petal logs can comnprit
dates from many different clients in one log write (group coit),
providing improved log throughput under load. Individubénts
doing large writes also benefit from parallelism, due to Reta
striping of data across multiple disks and servers.

9.1 Experimental Setup

We are planning to build a large storage testbed with abduPEgal
nodes attached to several hundred disks and about 50 Faangip
servers. Petal nodes will be small array controllers a#edo
off-the-shelf disks and to the network. Frangipani servélisbe

We used AdvFS for our comparison rather than the more familia
BSD-derived UFS file system [27] because AdVFS is signifigant
fasterthan UFS. In particular, AdvFS can stripe files acmugsiple
disks, thereby achieving nearly double the throughput of @R
ourtest machines. Also, unlike UFS, which synchronoustiatps
metadata, AdvFS uses a write-ahead log like Frangipani.s Thi
significantly reduces the latency of operations like fileatien.
Both AdvFS and UFS have similar performance on reading small
files and directories.

We ran AdvFS and Frangipani file systems on two identical
machines with storage subsystems having comparable /Orper
mance. Each machine has a 225 MHz DEC Alpha 3000/700 CPU
with 192 MB of RAM, which is managed by the unified buffer
cache (UBC). Each is connected to the ATM switch by its own
point-to-point link.

The Frangipanifile system does not use local disks, but aeses
a replicated Petal virtual disk via the Petal device drivéthen
accessed through the raw device interface using block sizes
64 KB, the Petal driver can read and write data at about 16 MB/s
saturating the ATM link to the Petal server. CPU utilizatisn
about 4%. The read latency of a Petal disk is about 11 ms.

The AdVFS file system uses a storage subsystem that has per-
formance roughly equivalent to the Petal configuration we uss
consists of 8 DIGITAL RZ29 disks connected via two 10 MB/d fas
SCSiI strings to two backplane controllers. When accesseddh
the raw device interface, the controllers and disks canlgufgia
at about 17 MB/s with 4% CPU utilization. Read latency is abou
10 ms. (We could have connected the AdvFS file system to a Petal
virtual disk to ensure both file systems were using idensitabge
subsystems. Previous experiments [24] have shown that 3dvF
would have been about 4% slower if run on Petal. To present
AdVFS in the best light, we chose not to do this.)

Itis not our intention to compare Petal's cost/performanitk
that of locally attached disks. Clearly, the hardware resesire-
quired to provide the storage subsystemsfor FrangiparhduBS
are vastly different. Our goal is to demonstrate that thegiani
code path is efficient compared to an existing, well-tunegh-co
mercial file system. The hardware resources we use for Petal a
non-trivial, but these resources are amortized amongdipteul
Frangipani servers.

Tables 1 and 2 compare performance of the two systems on
standard benchmarks. Each table has four columns. IAdRES
Raw column, the benchmark was run with AdvFS directly access-

ing the local disks. In thédvFS NVR column, the benchmark
was rerun with NVRAM interposed in front of the local disks. |
theFrangipani Raw column, the benchmark was run with Frangi-
pani accessing Petal via the device interface. InRFangipani
NVR column, the Frangipani configuration was retested with the
addition of an NVRAM buffer between Petal and the disks. All
numbers are averaged over ten runs of the benchmarks. &fanda
deviation is less than 12% of the mean in all cases.

AdvFS Frangipani
Phase | Description Raw | NVR | Raw | NVR
1 Create Directories] 0.69 | 0.66 | 0.52 | 0.51

2 Copy Files 4.3 4.3 5.8 4.6

3 Directory Status 4.7 4.4 2.6 25
4 Scan Files 4.8 4.8 3.0 2.8
5 Compile 278 | 27.7 | 31.8 | 278

Table 1: Modified Andrew Benchmark with unmount opera-
tions. We compare the performance of two file system configura-
tions: local access (with and without NVRAM) to the DIGITAL
Unix Advanced File System (AdvFS), Frangipani, and Fraagip
with an NVRAM buffer added between Petal and the disks. We
unmount the file system at the end of each phase. Each tabje ent
is an average elapsed time in seconds; smaller numbers &erbe

Table 1 gives results from the Modified Andrew Benchmark, a
widely used file system benchmark. The first phase of the bench
mark creates a tree of directories. The second phase coBE3 a

AdvFS Frangipani
Test | Description Raw | NVR | Raw | NVR

1 file and directory creation: | 0.92 | 0.80 | 3.11 | 2.37
creates 155 files and
62 directories.

2 file and directory removal: | 0.62 | 0.62 | 0.43 | 0.43
removes 155 files and 62
62 directories.

3 lookup across mount point] 0.56 | 0.56 | 0.43 | 0.40
500 getwd and stat calls.

4 setattr, getattr, and lookupy{ 0.42 | 0.40 | 1.33 | 0.68
1000 chmods and stats
on 10 files.

5a | write: writes a 1048576 220 | 216 | 259 | 1.63
byte file 10 times.

5b read: reads a 1048576 054 | 045 | 181 | 1.83
byte file 10 times.

6 readdir: reads 20500 058 | 058 | 263 | 2.34
directory entries, 200 files.

7 link and rename: 200 0.47 | 0.44 | 0.60 | 0.50
renames and links
on 10 files.

8 symlink and readlink: 400 | 0.93 | 0.82 | 0.52 | 0.50
symlinks and readlinks
on 10 files.

9 statfs: 1500 statfs calls. 053 | 049 | 023 | 0.22

Table 22 Connectathon Benchmark with unmount operations.
We run the Connectathon Benchmark with a unmount operation
included at the end of each test. Each table entry is an awerag

KB collection of C source files into the tree. The third phase g|apsed time in seconds, and smaller numbers are bettet5Bes
traverses the new tree and examines the status of each file ands anomalous due to a bug in AdvFS.

directory. The fourth phase reads every file in the new trdee T
fifth phase compiles and links the files.

Unfortunately, it is difficult to make comparative measuess
using the Modified Andrew Benchmark in its standard form.sThi
is becausethe benchmark does not accountfor work thatdsrddf
by the file system implementation. The work deferred during o
phase of the benchmark can be performed during a later phdse a
thus inappropriately charged to that phase, while some wamibe
deferred past the end of the benchmark and thus never aecbunt
for.

Like traditional Unix file systems, both AdvFS and Frangipan
defer the cost of writing dirty file data until the nexync opera-
tion, which may be explicitly requested by a user or triggeénghe
background by a periodic update demon. However, unliké-trad
tional Unix file systems, both AdvFS and Frangipani are laged
and do not write metadata updates synchronously to diskedds
metadata updates are also deferred until the sigrt, or at least
until the log wraps.

In order to account properly for all sources of deferred work

Frangipani latencies with NVRAM are roughly comparable to
that of AdvFS with four notable exceptions. Tests 1, 4, and 6
indicate that creating files, setting attributes, and regqdirectories
take significantly longer with Frangipani. In practice, rewer,
these latencies are small enough to be ignored by users, lsawge
not tried very hard to optimize them.

File creation takes longer with Frangipani partly becabise t
128 KB log fills up several times during this test. If we douthie
log size, the times reduce to 0.89 and 0.86 seconds.

Frangipani is much slower on the file read test (5b). AdvFS
does well on the file read test because of a peculiar artifaits o
implementation. On each iteration of the read test, the fiack
makes a system call to invalidate the file from the buffer each
before reading it in. The current AdvFS implementation arpe
to ignore this invalidation directive. Thus the read tesamees
the performance of AdvFS reading from the cache rather tioam f

we changed the benchmark to unmount the file system after eachdisk. When we redid this test with a cold AdvFS file cache, the

phase. We choseto unmountratherthan to ssena call because
on Digital Unix, sync queues the dirty data for writing but does
not guarantee it has reached disk before returning. Thdtsesu
shownin Table 1, indicate that Frangipaniis comparabledeoHSs

in all phases.

Table 2 shows the results of running the Connectathon Bench-
mark. The Connectathon benchmark tests individual opersitr
small groups of related operations, providing more insiigtat the
sources of the differences that are visible in the Andrewchen
mark. Like the Andrew benchmark, this benchmark also doés no
account for deferred work, so again we unmounted the fileegyst
at the end of each phase.

performance was similar to Frangipani's (1.80 secondd) wit
without NVRAM).

We nextreport on the throughput achieved by a single Framgip
server when reading and writing large files. The file readerisi
a loop reading a set of 10 files. Before each iteration of the,lo
it flushes the contents of the files from the buffer cache. Tke fi
writer sits in aloop repeatedly writing a large (350 MB) fatie file.
The file is large enough that there is a steady stream of waitkect
to disk. Both read and write tests were run for several mswute
and we observed no significant variation in the throughpute T
time-averaged, steady state results are summarized ia Jabhe
presence or absence of NVRAM has little effect on the timing.

put achievable in this case.

Throughput (MB/s) CPU Utilization
Frangipani | AdvFS | Frangipani | AdvFS
Write 153 133 42% 80% 9.3 Scaling
Read 10.3 13.2 25% 50%
This section studies the scaling characteristics of Fpamgi Ide-
Table 3: Frangipani Throughput and CPU Utilization. We ally, we would like to see operational latencies that arehanged
show the performance of Frangipani in reading and writinggla and throughput that scales linearly as servers are added.

files.

50—

A single Frangipani machine can write data at about 15.3 MB/s Compile
which is about 96% of the limit imposed by the ATM link and Scan Files
UDP/IP software on our machine. Frangipani achieves good pe 304+ Directory Status
formance by clustering writes to Petal into naturally aéigr64 20 - Copy Files
-

KB blocks. It is difficult make up the last 4% because Frangipa
occasionally (e.g., duringync) must write part of the data out in
smaller blocks. Using smaller block sizes reduces the maxim
available throughput through the UDP/IP stack. The Fraagip 0
server CPU utilization is about 42%, and the Petal server<CRe

not a bottleneck.

A single Frangipani machine can read data at 10.3 MB/s with Figure 5: Frangipani Scaling on Modified Andrew Benchmark.

25% CPU utilization. We believe this performance can be im- Several Frangipani servers simultaneously run the Modifed
proved by changing the read-ahead algorithm used in Frangip drew Benchmark on independent data sets. JHagis gives the
Frangipani currently uses a read-ahead algorithm borrdvesa average elapsedtime taken by one Frangipani machine to letenp
the BSD-derived file system UFS, which is less effective tiian the benchmark.

one used by AdvFS.

For comparison, AdvFS can write data atabout 13.3 MB/s when Figure 5 shows the effect of scaling on Frangipani runnireg th
accessing large files that are striped over the eight RZ2&dis Modified Andrew Benchmark. In this experiment, we measure
connected to the two controllers. The CPU utilization isw#bo the average time taken by one Frangipani machine to complete
80%. The AdVFS read performance is about 13.2 MB/s, at a the benchmark as the number of machines is increased. This
CPU utilization of 50%. Neither the CPU nor the controllers a experiment simulates the behavior of several users doimgram

Create Directories

Elapsed Time (secs)
N
@
[

1 2 3 4 5 6 7 8
Frangipani Machines

bottlenecked, so we believe AdvFS performance could bedueat developmenton a shared data pool. We notice that there igatin
a bit with more tuning. negative impact on the latency as Frangipani machines aedad
It is interesting to note that although Frangipani uses gpim In fact, between the single machine and six machine expatime
policy to lay out data, its latency and write throughput asenpa- the average latency increased by only 8%. This is not sumgris
rable to those of conventional file systems that use moreesidy because the benchmark exhibits very little write sharing ae
policies. would expectlatencies to remain unaffected with increasedkrs.

Frangipani has good write latency because the latendgadrit
metadata updates are logged asynchronously rather thao e @
formed synchronously in place. File systems like UFS thatsy o
chronously update metadata have to be more careful aboat dat2
placement. In separate experiments not described hereavee h §_
found that even when Frangipani updates its logs synchginou 5
performance is still quite good because the log is allocatétge 3

e

physically contiguous blocks and because the NVRAM absorbs 20 Read file (Uncached)

much of the write latency. = 10 - Linear Scaling
Frangipani achieves good write throughput because lamgg fil 0 | | | | | |

are physically striped in contiguous 64 KB units over marskdi 1 2 3 4 5 6 7 8

and machines, and Frangipani can exploit the parallelisrarant
in this structure. Frangipani has good read throughputdayel
files for the same reason. Figure 6: Frangipani Scaling on Uncached Read. Several
Recall from Section 3 that individual 4 KB blocks for files ~Frangipani servers simultaneously read the same set of filas
smaller than 64 KB may not be allocated contiguously on disk. dotted line shows the linear speedup curve for comparison.
Also, Frangipani does not do read-ahead for small files, carit
not always hide the disk seek accesstimes. Thusit is peghil Figure 6 illustrates Frangipani's read throughput on uhedc
Frangipani could have bad read performance on small files. To data. In this test, we replicate the reader from the singiees
quantify small read performance, we ran an experiment wB@re experiment on multiple servers. The test runs for sevenalitas,
processes on a single Frangipani machine tried to readate@r and we observe negligible variation in the steady-stataiginput.
KB files after invalidating the buffer cache. Frangipanotnghput As indicated in the figure, Frangipani shows excellent agail
was 6.3 MB/s, with the CPU being the bottleneck. Petal, agas this test. We are in the process of installing Frangipani @nem
through the raw device interface using 4 KB blocks, can éeld/ machines, and we expect aggregate read performance tasecre
MB/s. Thus Frangipani gets about 80% of the maximum through- until it saturates the Petal servers’ capacity.

Frangipani Machines

60
50
40
30

20 Write file

10 Linear Scaling

o—1 1 1 1 | |

1 2 3 4 5 6 7 8
Frangipani Machines

Throughput (MB/s)

Figure 7: Frangipani Scaling on Write. Each Frangipani server
writes a large private file. The dotted line shows the lingeeedup
curve for comparison. Performance tapers off early becdhse
ATM links to the Petal servers become saturated.

Figure 7 illustrates Frangipani's write throughput. Hehe t
writer from the single-server experiment is replicated aritiple
servers. Each server is given a distinct large file. The éxymat
runs for several minutes, and we observe little variatiorthie
steady-state throughput during this interval. Since tieen® lock
contention in the experiment, the performance is seen te sel
until the ATM links to the Petal servers are saturated. Sthee
virtual disk is replicated, each write from a Frangipanieeturns
into two writes to the Petal servers.

9.4 Effects of Lock Contention

Since Frangipani uses coarse-grained locking on entirg filés
important to study the effect of lock contention on perfonta
We report three experiments here.

The first experiment measures the effect of read/write sbari
on files. One or more readers compete against a single woiter f
the same large file. Initially, the file is not cached by thedeya
or the writer. The readers read the file sequentially, whike t
writer rewrites the entire file. As a result, the writer reteety
acquires the write lock, then gets a callback to downgrastetitat
the readers can get the read lock. This callback causes tteg wr

to flush data to disk. At the same time, each reader repeatedly=

acquires the read lock, then gets a callback to releaselited thte
writer can get the write lock. This callback causes the res&me
invalidate its cache, so its next read after reacquiringdble must
fetch the data from disk.

The first results we observed in this experiment were unex-
pected. Our distributed lock manager has been designed to b

fair in granting locks, and simulations show that this ietaf the
implementation. If the single writer and thereaders were to
make lock requests at a uniform rate, they would be servited i
round-robin fashion, so successive grants of the write todke
writer would be separated bygrants of the read lock to the read-
ers. During the interval between two downgrade callbacke, o
would expect the number of read requests and the aggregate re
throughput to increase as readers were added. In the linghwh

is large, the scaling would be linear. However, we did noeobs
this behavior in our experiment. Instead, read throughpttefhs
out at about 2 MB/s after two readers are running, as showneby t
dashed line in Figure 8. As indicated earlier in Figure 6s ki
only about 10% of what two Frangipani servers can achievenwhe
there is no lock contention.

No read-ahead
With read-ahead

Read Throughput (MB/s)
OFRNWMUOTONO©

Number of Readers

Figure 8: Frangipani Reader/Writer Contention. One or more
Frangipani servers read a shared file while a single Frangipa
server writes the same file. We show the effect of read-ahead o
the performance.

read-ahead, so we repeated the experiment without readtiahe
check. Read-ahead is disadvantageous in the presencewf hea
read/write contention because when a reader is called baek t
lease its lock, it mustinvalidate its cache. If there is aad-ahead
data in the cache that has not yet been delivered to the ciient
must be discarded, and the work to read it turns out to have bee
wasted. Because the readers are doing extra work, they tanno
make lock requests at the same rate as the writer. Redoing the
experiment with read-ahead disabled yielded the expectdihg
result, as shown by the solid line in Figure 8.

We could make this performance improvement available tsuse
either by letting them explicitly disable read-ahead oncfjie
files, or by devising a heuristic that would recognize thisecand
disable read-ahead automatically. The former would bé&trio
implement, but would affect parts of the operating systemdéle
beyond Frangipani itself, making it inconvenient to suppeaross
future releases of the kernel. The latter approach seeres, dait
we have not yet devised or tested appropriate heuristics.

@ 8
) 7
= 6 8KB
5 5 16 KB
>
o 3
=2
1E
% 0 |
7

Number of Readers

Figure 9: Effect of Data Size on Reader/Writer Contention.
One or more Frangipani readers share varying amounts of data
with a Frangipani writer. Readahead is disabled in this expent.

The second experiment is a variation of the first. Here, the
readers run as before, but the writer modifies different artsoof
file data. Since Frangipani locks entire files, readers vaillehto
invalidate their entire cache irrespective of the writdr&havior.
However, readers will be able to acquire a lock faster when th
writer is updating fewer blocks of data because the writestmu

We conjectured that this anomalous behavior was caused byflush only smaller amounts of data to disk. Figure 9 shows éne p

formance of Frangipani (with read-ahead disabled) whedeea

and the writer concurrently share differing amounts of dataex-

pected, when the shared data is smaller, we get better penfae.
The third experiment measures the effects of write/writerisiy

caching. Echo does not share Frangipani's scalability,dvew
Each Echo volume can be managed by only one server at a time,
with failover to one designated backup. A volume can spaw onl
as many disks as can be connected to a single machine. There is

on files. As the base case, a Frangipani server writes a file in an internal layering of file service atop disk service, bt Btho

isolation. We then added Frangipani servers that wrote dhees
file and measured the degradation in performance. Writedifyno
file data in blocks of 64 KB. Since Frangipani does whole-file
locking, the offsets that the writers use are irrelevanttiis test.
We found that the aggregate bandwidth seen by all the writers
dropped from 15 MBY/s for the single-writer case to a littleepd
MB/s with two or more writers. This is not surprising, becaus
with multiple writers trying to modify a file, nearly evemri t e
system call will cause a lock revocation request. This ration
request causes the lock holder to flush its dirty data to PState
locks are being revoked on evew i t e system call and each
call dirties only 64 KB of data, throughput is quite limitetVith
smaller block sizes, throughput is even smaller.

We do not have much experience with workloads that exhibit
concurrent write sharing. If necessary, we believe it wdugd
straightforward to extend Frangipani to implement bytegelock-
ing [6] or block locking instead. This would improve the po¥f
mance of workloads that read and write different parts oktdrae
file, making it similar to the performance of writing differefiles
in the current system. Workloads in which multiple machioes-
currently read and write the same blocks of the same file—avher
the filesystem is being used as an interprocess communicatio
channel—would perform as indicated above. Frangipaniiplsi
not targeted for such workloads.

10 Related Work

Like Frangipani, the Cambridge (or Universal) File Seradets a
two-layered approach to building a file system [4, 28]. Thi sp
between layers is quite different from ours, however. CR8, t
lower layer, provides its clients with two abstractiorfdes and

implementation requires both layers to run in the same addre
space on the same machine, and experience with Echo shosved th
server CPU to be a bottleneck.

The VMS Cluster file system [14] offloads file system process-
ing to individual machines that are members of a cluster,masc
Frangipani does. Each cluster member runs its own instéfbe o
file system code on top of a shared physical disk, with syrmihes
tion provided by a distributed lock service. The shared @ajs
disk is accessed either through a special-purpose clugézcon-
nectto which a disk controller can be directly connectethimugh
an ordinary network such as Ethernet and a machine acting as a
disk server. Frangipaniimproves upon this design in séwergs:
The shared physical disk is replaced by a shared scalatlglir
disk provided by Petal, the Frangipani file system is logelefer
quick failure recovery, and Frangipani provides extensiehing
of both data and metadata for better performance.

The Spiralog file system [20] also offloads its file system pro-
cessing to individual cluster members, which run above aesha
storage system layer. The interface between layers in IBgira
differs both from the original VMS Cluster file system andnfro
Petal. The lower layer is neither file-like nor simply diskel;
instead, it provides an array of stably-stored bytes, amthipe
atomic actions to update arbitrarily scattered sets ofdowiichin
the array. Spiralog’s split between layers simplifies theedilstem,
but complicates the storage system considerably. At the siame,
Spiralog’s storage system does not share Petal’s schjaiifiault
tolerance; a Spiralog volume can span only the disks cordeact
one machine, and becomes unavailable when that machirestas

Though designed as a cluster file system, Calypso [11] idagimi
to Echo, not to VMS Clusters or Frangipani. Like Echo, Catyps
stores its files on multiported disks. One of the machine=ctlir
connected to each disk acts as a file server for data stordthon t

indices File systems built above CFS can use these abstractions todisk; if that machine fails, another takes over. Other memsbihe

implement files and directories. A major difference betwE&is
and Petal is that in CFS a single machine manages all thegstora

NFS [31, 33] is not a file system in itself, but simply a remote
file access protocol. The NFS protocol provides a weak notion
of cache coherence, and its stateless design requiregsctien
access servers frequently to maintain even this level ofieite.
Frangipani provides a strongly coherent, single system,\ising
a protocol that maintains more state but eliminates unisacegs
accessesto servers.

The Andrew File System (AFS) [19] and its offshoot
DCE/DFS [21] provide better cache performance and coherenc
than NFS. AFS is designed for a different kind of scalabifitgn
Frangipani. Frangipani provides a unified cluster file systieat
draws from a single pool of storage, and can be scaled up to spa

Calypso cluster access the current server as file systemtscligke
both Frangipani and Echo, the clients have caches, kepteohe
with a multiple-reader/single-writer locking protocol.

For comparison purposes, the authors of Calypso also built a
file system in the shared-disk style, called PJFS [12]. Calyp
performed better than PJFS, leading them to abandon thedshar
disk approach. PJFS differs from Frangipani in two main eetp
First, its lower layer is a centralized disk server, not aritigted
virtual disk like Petal. Second, all file server machines &
share a common log. The shared log proved to be a performance
bottleneck. Like Frangipani, PJFS locks the shared diskalev
file granularity. This granularity caused performance prots
with workloads where large files were concurrently writensd
among multiple nodes. We expect the present Frangipaneimpl

many disk drives across many machines under a common admin-mentation to have similar problems with such workloads,dsit

istration. In contrast, AFS has a global name space andigecur
architecture that allows one to plug in many separate fileessr
and clients over a wide area. We believe the AFS and Franigipan

noted in Section 9.4 above, we could adopt byte-range lgckin
instead.

Shillner and Felten have built a distributed file system gnm to

approaches to scaling are complementary; it would make good of a shared logical disk [34]. The layering in their system is

sense for Frangipani servers to export the file system to-atide
clients using the AFS or DCE/DFS name space and access pkotoc
Like Frangipani, the Echo file system [5, 18, 26, 35] is log-
based, replicates data for reliability and access patlavilability,
permits volumes to span multiple disks, and provides catiere

similar to ours: In the lower layer, multiple machines coape
to implement a single logical disk. In the upper layer, npldti
independent machines run the same file system code on togof on
logical disk, all providing access to the same files. UnliletalR
their logical disk layer does not provide redundancy. Theteay

can recover when a node fails and restarts, but it cannotdigadly
configure out failed nodes or configure in additional noddifT
file system uses careful ordering of metadata writes, nagitay
as Frangipani does. Like logging, their technique avoidsibed
for a full metadata scarfigck) to restore consistency after a server
crash, but unlike logging, it can lose track of free blocka rrash,
necessitating an occasional garbage collection scan taHerd
again. We are unable to compare the performance of theemyst
with ours at present, as performance numbers for their fieesy
layer are not available.

The xFSfile system [1, 36] comes closestin spirit to Frangjipa
In fact, the goals of the two systems are essentially the sBoth
try to distribute the management responsibility for filegromul-
tiple machines and to provide good availability and perfance.
Frangipani is effectively “serverless” in the same sense=&—
the service is distributed over all machines, and can be g
with both a Frangipani server and Petal server on each machin
Frangipani’s locking is coarser-grained that xFS, whichpgurts
block-level locking.

Our work differs from xXFS in two principal ways:

First, the internal organization of our file system and iteiiface
to the storage system are significantly different from xF8slike
Frangipani, XFS has a predesignated manager for each filé{san
storage server is log-structured. In contrast, Frangigaarga-

nized as a set of cooperating machines that use Petal aseaishar

store with a separate lock service for concurrency conilrs
is a simpler model, reminiscent of multithreaded shared argm

programs that communicate via a common store and use locks fo

synchronization. This model allows us to deal with file syste
recovery and server addition and deletion with far less rimzci
than xXFS requires, which has made our system easier to inreplem
and test.

Second, we have addressed file system recovery and reconfigu-
ration. These issues have been left as open problems by the xF 3]

work to date.
We would have liked to compare Frangipani’s performanchk wit

that of xFS, but considerable performance work remains to be

completed on the currentxFS prototype [1]. Acomparisowbeh
the systems at this time would be premature and unfair to XFS.

11 Conclusions

The Frangipani file system provides all its users with cohere
shared access to the same set of files, yet is scalable talprovi
more storage space, higher performance, and load balaaxthe
user community grows. It remains available in spite of congra
failures. It requires little human administration, and ausiration

already comparable to a production DIGITAL Unix file system,
and we expect improvement with further tuning. Frangipas h
shown good scaling properties up to the size of our testbefiigzo
uration (seven Petal nodes and six Frangipani nodes). Bluise
leave us optimistic that the system will continue to scaleupany
more nodes.

Our future plans include deploying Frangipani for our owg-da
to-day use. We hope to gain further experience with the prp&o
under load, to validate its scalability by testing it in largonfigu-
rations, to experiment with finer-grained locking, and tonpdete
our work on backup. Finally, of course, we would like to se= th
ideas from Frangipani make their way into commercial prasluc

Acknowledgments

We thank Mike Burrows, Mike Schroeder, and Puneet Kumar for

helpful advice on the Frangipani design and comments on this
paper. Fay Chang implemented an early prototype of Frangipa
as a summer project. The anonymous referees and our shepherd
John Wilkes, suggested many improvements to the paperh@ynt
Hibbard provided editorial assistance.

References

[1] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe,
David A. Patterson, Drew S. Roselli, and Randolph Y. Wang.
Serverless network file system®sCM Transactions on Com-
puter Systemd.4(1):41-79, February 1996.

[2] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Good
man. Concurrency Control and Recovery in Database Sys-

tems Addison-Wesley, 1987.

Anupam Bhide, ElImootazbellah N. Elnozahy, and Stephen P
Morgan. A highly available network file server. Rro-
ceedings of the Winter USENIX Confereruages 199-205,
January 1991.

[4] A. D. Birrell and R. M. Needham. A universal file server.
IEEE Transactions on Software Engineerir8E-6(5):450—
453, September 1980.

[5] Andrew D. Birrell, Andy Hisgen, Charles Jerian, Timothy
Mann, and Garret Swart. The Echo distributed file sys-
tem. Research Report 111, Systems Research Center, Digital
Equipment Corporation, September 1993.

[6] Michael Burrows.Efficient Data SharingPhD thesis, Uni-

versity of Cambridge, September 1988.

does not become more complex as more components are added to

a growing installation.

Frangipani was feasible to build because of its two-layercst
ture, consisting of multiple file servers running the sanmept®
file system code on top of a shared Petal virtual disk. UsirtglPe
as a lower layer provided several benefits. Petal implenuates
replication for high availability, obviating the need foraRgipani
to do so. A Petal virtual disk is uniformly accessible to athfgi-
pani servers, so that any server can serve any file, and arlyimeac
can run recovery when a server fails. Petal’s large, spaide=as
space allowed us to simplify Frangipani’s on-disk datacstrtes.

Despite Frangipani’s simple data layout and allocatiorcgol
and coarse-grained locking, we have been happy with itoperf
mance. In our initial performance measurements, Frangipan

[7] C.Chao, R.English, D. Jacobson, A. Stepanov, and J.a&/llk
Mime: A high performance parallel storage device with
strong recovery guarantees. Technical Report HPL-CSP-92-

9, Hewlett-Packard Laboratories, November 1992.

[8] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and
Edward D. Lazowska. Sharing and protection in a single-
address-space operating syst&f&M Transactions on Com-
puter Systemd.2(4):271-307, November 1994.

Sailesh Chutani, Owen T. Anderson, Michael L. Kazar,
Bruce W. Leverett, W. Anthony Mason, and Robert N. Side-
botham. The Episode file system. Rroceedings of the
Winter USENIX Conferen¢gpages 43—60, January 1992.

9]

[10] Wiebrende Jonge, M. Frans Kaashoek, and Wilson C. Hsieh [23] Leslie Lamport. The part-time parliament. Research Re

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

The logical disk: A new approach to improving file systems.
In Proc. 14th Symp. on Operating Systems Princigieges
15-28, December 1989.

Murthy Devarakonda, Bill Kish, and Ajay Mohindra. Re-
covery in the Calypso file systemACM Transactions on
Computer System$4(3):287-310, August 1996.

Murthy Devarakonda, Ajay Mohindra, Jill Simoneauxdan
William H. Tetzlaff. Evaluation of design alternatives far
cluster file system. IfProceedings of the Winter USENIX
Conferencepages 3546, January 1995.

Garth A. Gibson, David F. Nagle, Khalil Amiri, Fay W.
Chang, Eugene M. Feinberg, Howard Gobioff, Chen Lee,
Berend Ozceri, Erik Riedel, David Rochberg, and Jim Ze-
lenka. File server scaling with network-attached secgledi

In Proceedings ofthe ACM International Conference on Mea-
surements and Modeling of Computer Systems (Sigmetrics
'97), pages 272-284, June 1997.

Andrew C. Goldstein. The design and implementation of a
distributed file systemDigital Technical Journgl1(5):45—
55, September 1987. Digital Equipment Corporation, 50
Nagog Park, AK02-3/B3, Acton, MA 01720-9843.

Cary Gray and David Cheriton. Leases: An efficient fault
tolerant mechanism for distributed file cache consistelmcy.
Proc. 12th Symp. on Operating Systems Principfesges
202-210, December 1989.

Robert Hagmann. Reimplementing the Cedar file system
using logging and group commit. IRroc. 11th Symp. on
Operating Systems Principlepages 155-162, November
1987.

John H. Hartman and John K. Ousterhout. The Zebra stripe
network file system.ACM Transactions on Computer Sys-
tems 13(3):274-310, August 1995.

Andy Hisgen, Andrew Birrell, Charles Jerian, Timothy
Mann, and Garret Swart. New-value logging in the Echo
replicated file system. Research Report 104, Systems Re-
search Center, Digital Equipment Corporation, June 1993.

John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N. Side-
botham, and Michael J. West. Scale and performance in
a distributed file systemACM Transactions on Computer
Systems6(1):51-81, February 1988.

James E. Johnson and William A. Laing. Overview of the
Spiralog file systemDigital Technical Journal8(2):5-14,
1996. Digital Equipment Corporation, 50 Nagog Park, AKO2-
3/B3, Acton, MA 01720-9843.

Michael L. Kazar, Bruce W. Leverett, Owen T. Anderson,
Vasilis Apostolides, Ben A. Bottos, Sailesh Chutani, Craig
Everhart, W. Antony Mason, Shu-Tsui Tu, and Edward R.
Zayas. DEcorum file system architectural overviewPho-
ceedings ofthe Summer USENIX Confergpages 151164,
June 1990.

Nancy P. Kronenberg, Henry M. Levy, and Wiliam D.
Strecker. VAXclusters: A closely-coupled distributed sys
tem.ACM Transactions on Computer Syste4¢2):130-146,
May 1986.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

port 49, Systems Research Center, Digital Equipment Cor-
poration, September 1989.

Edward K. Lee and Chandramohan A. Thekkath. Petal: Dis-
tributed virtual disks. InProc. 7th Intl. Conf. on Architec-
tural Support for Programming Languages and Operating
Systemgpages 84-92, October 1996.

Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul
Johnson, Liuba Shrira, and Michael Williams. Replication
in the Harp file system. Ifroc. 13th Symp. on Operating
Systems Principlepages 226-238, October 1991.

Timothy Mann, Andrew Birrell, Andy Hisgen, Charles Je-
rian, and Garret Swart. A coherent distributed file cachk wit
directory write-behindACM Transactions on Computer Sys-
tems 12(2):123-164, May 1994.

Marshal Kirk McKusick, William N. Joy, Samuel J. Leffler
and Robert S. Fabry. A fast file system for UNDACM
Transactions on Computer Syster2¢3):181-197, August
1984.

James G. Mitchell and Jeremy Dion. A comparison of two
network-based file serversCommunications of the ACM
25(4):233-245, April 1982.

Sape J. Mullender and Andrew S. Tanenbaum. Immediate
files. Software—Practice and Experienck4(4):365—-368,
April 1984.

Michael N. Nelson, Brent B. Welch, and John K. Oustetthou
Caching in the Sprite network file systeACM Transactions
on Computer Systen(1):134-154, February 1988.

Brian Pawlowski, Chet Juszczak, Peter Staubach, @aithS
Diane Lebel, and David Hitz. NFS version 3 design and
implementation. InProceedings of the Summer USENIX
Conferencepages 137-152, June 1994.

Mendel Rosenblum and John K. Ousterhout. The design
and implementation of a log-structured file systeéCM
Transactions on Computer Syster8(1):26-52, February
1992.

Russel Sandberg, David Goldberg, Steve Kleiman, Dan
Walsh, and Bob Lyon. Design and implemention of the Sun
network filesystem. IfProceedings of the Summer USENIX
Conferencepages 119-130, June 1985.

Robert A. Shillner and Edward W. Felten. Simplifyingsdi
tributed file systems using a shared logical disk. Technical
Report TR-524-96, Dept. of Computer Science, Princeton
University, 1996.

Garret Swart, Andrew Birrell, Andy Hisgen, Charlesidar

and Timothy Mann. Availability in the Echo file system. Re-
search Report 112, Systems Research Center, Digital Equip-
ment Corporation, September 1993.

Randy Wang, Tom Anderson, and Mike Dahlin. Experience
with a distributed file system implementation. Technical re
port, University of California, Berkeley, Computer Scienc
Division, June 1997.

Edward Wobber, Martin Abadi, Michael Burrows, and Butl
Lampson. Authentication in the Taos operating syste@M
Transactions on Computer System®(1):3-32, February
1994.

