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A total failure occurs whenever all processes cooperatively executing a distributed task fail before the 
task completes. A frequent prerequisite for recovery from a total failure is identification of the last 
set (LAST) of processes to fail. Necessary and sufficient conditions are derived here for computing 
LAST from the local failure data of recovered processes. These conditions are then translated into 
procedures for deciding LAST membership, using either complete or incomplete failure data. The 
choice of failure data is itself dictated by two requirements: (1) it can be cheaply maintained, and (2) 
it must afford maximum fault-tolerance in the sense that the expected number of recoveries required 
for identifying LAST is minimized. 
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Systems; C.4: [Performance of Systems]: reliability, auailability, and serviceability; D.4.5 [Oper- 
ating Systems]: Reliability-checkpoint/restart; fault-tolerance; H.2.2 [Database Management]: 
Physical Design-recovery and restart 
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1. INTRODUCTION 
A total failure occurs whenever all processes cooperatively executing a distributed 
task fail before the task completes. Frequently, a prerequisite for recovering from 
a total failure is reconstructing the task state immediately prior to the total 
failure. This, in turn, requires identification of the last process to fail. Since 
processes can fail concurrently, as well as sequentially, the general problem is to 
identify the set, denoted LAST, of processes failing last. 

This problem arises in several contexts in highly fault-tolerant distributed 
systems. In a distributed database system, a transaction is typically managed by 
a group of transaction coordinators, whose principal responsibility is to decide 
whether to commit or abort the transaction. Normally a designated coordinator, 
the primary, actually decides, while the others serve as backups [2]. If the primary 
fails before deciding, one of the backups is promoted into the decision-making 
role. A total failure in this context occurs when all coordinators fail. When such 
a failure occurs, the last coordinator to fail must be identified in order to 
determine if a decision had been made (and, if so, to complete the transaction 
accordingly). 
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A second application of the problem of computing LAST arises in the manage- 
ment of replicated data. Replicated data is usually managed by a group of 
processes, known as data managers, each of which controls access to one copy. 
One popular data access algorithm allows the replicated data to be modified 
whenever any manager is operational, and forwards each modification to all 
currently operational managers [ 11. In order to recover from the failure of all 
data managers, the most up-to-date copy of the data must be determined. This, 
of course, requires identification of the last data manager to fail. 

In this paper we derive necessary and sufficient conditions for computing 
LAST from the “available information.” We assume that each process maintains 
some local failure information on stable storage, which is available whenever the 
processor containing that information is operational. We desire that the failure 
data be maintainable with little overhead, yet provide a high degree of fault- 
tolerance in the sense that the expected number of recovered processors required 
for identifying LAST is small. Two factors complicate the problem: in many 
situations failure information is incomplete, and the set of processes executing 
the task is often dynamic-processes are continuously added to and deleted from 
the set. 

The remainder of this paper is organized as follows. The next section defines 
the processing environment and the failure information maintained by each 
process. Basic results on reconstructing the failure ordering from the stored 
failure data are also given. Section 3 shows how to infer LAST when each process 
knows the identities of all other processes executing the assigned task. Section 4 
extends these results to systems in which each process knows only a subset of its 
fellow members. Section 5 discusses implementation issues, including how to 
prune failure data for long-lived tasks. 

2. BACKGROUND 

2.1 The Environment 

We assume a distributed system of asynchronous processes, communicating solely 
through messages. Each process has a single lifetime: after creation, it is opera- 
tional until eventually it fails. Processes are assumed to fail by halting (crash 
failures), an assumption that is used in the design of many distributed systems. 
Note that if processes could fail by skipping steps in their program (omission 
failures) or by acting arbitrarily (Byzantine failures), then identification of LAST 
would not suffice to reconstruct a meaningful task state. The message delivery 
system is assumed to be completely reliable: messages between operational 
processes are never lost and are delivered within finite but arbitrary time. 
However, messages may be delivered in any order. 

A failure is detectable by any process attempting to communicate with the 
failed process. So that all information, including failure information, is conveyed 
through messages in a uniform manner, we assume that a failing process sends 
failed (j ) messages to all processes. Such messages are delivered and processed in 
the same way that normal messages are. In practice, of course, failures would be 
detected by using timeouts or, if more reliability is desired, by a failure detection 
protocol such as the one described in [4]. 
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A process group is a finite, nonempty set of communicating and cooperating 
processes. If the membership of the group is fixed over time, the group is said to 
be static; otherwise, it is said to be dynamic. A new process can join a dynamic 
group by executing a suitable protocol. Among other things, the protocol makes 
the new member known to the other members of the group. For convenience, we 
assume that a member can never quit a group (i.e., become a nonmember). 
Although a process may join several groups, we will consider its participation in 
each group separately. Throughout this paper, P denotes the process group of 
interest. All definitions and results are relative to P. 

Upon joining a group, a process becomes an operational member and remains 
so until it fails, whereupon it is classified a failed member. The evolution of each 
process with respect to a process group is thus 

nonmember -+ operational member + failed member. 

A total failure within a process group occurs when all members have failed. 

2.2 Event Ordering 

In contrast to a centralized system, the temporal ordering of events in a distrib- 
uted system is only partial. Accordingly, understanding a distributed system 
requires some knowledge of partial orderings. The terminology and properties of 
partial orderings used in this paper are given in the appendix. 

We are interested in ordering events in a way that is consistent with causality. 
For an event at process i to affect an event at process j, communication must 
occur between the two processes. In a message-based system, this communication 
must consist of messages, either a single message sent by i and received by j, or 
a sequence of messages where i sends a message to k, k sends to 1, . . . , and m 
sends to j. Therefore, the event at process i should be ordered before the event 
at process j only if such a sequence of messages exists. In [3] a partial ordering, 
the “happens before” relation with this property, is defined as follows. 

Definition [3]. The happens before relation, denoted by +, on a set of events 
is the smallest relation satisfying the following three conditions: 

(1) If a and b are events in the same process, and a precedes b according to some 
local clock, then a + b. 

(2) If event a is the sending of a message and event b is the receipt of the same 
message, then a + b. 

(3) Ifa+bandb+c,thena+c. 

Distinct events a and b are said to be concurrent if neither a + b nor b ---) a. 

Clearly, event a can affect event b only if a + b. Concurrent events, therefore, 
cannot affect one another. Events of interest to us include the sending and the 
receiving of messages, the joining of a process to a process group, and, most 
important, process failures and their detection. Hereinafter, all references to 
event orderings are understood to be references to the “happens before” relation, 
as defined above. 

The appeal of our particular failure model is that failures and failure messages 
need not be treated specially in the above definition. The failure of process i can 
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affect events at another process j only if there is communication between i and j 
after the failure occurs. As always, this communication is in the form of a 
sequence of messages, but in this case the first message in this sequence must be 
failed(i), since failure messages are the only type of messages that can be sent 
by a failed process. This implies the useful and intuitive observation that i’s 
failure can affect events in j only if some process (not necessarily j) receives 
failed(i). (That is to say, i’s failure can affect events at process j only if i’s failure 
is detected by some process k. Note that j and k may be different processes.) 

The failed before relation, denoted FB, is derived from the subrelation of 
“happens before” concerned with failures. For convenience, we define it over 
processes rather than events and say i failed before j if and only if i’s failure could 
have affected some event in j. 

Definition. Let i and j be two processes. i FB j if and only if there exists some 
event ej in j such that (i’s failure) + ej. 

Two processes, i and j, fail concurrently if neither i FB j nor j FB i. That FB 
is a partial ordering follows from the definition of +. 

We are now ready to define LAST. Intuitively, LAST is the set of processes 
whose failure could not have affected events at other processes. Formally, 

Definition. LAST = 1 j 1 1 3 i(j FB i)]. 

Equivalently, LAST is the set of maximal elements’ of P with respect to the 
partial ordering FB. 

Using the above definitions, it is a straightforward exercise to show that the 
definition of LAST captures the intended semantics: i E LAST if and only if i’s 
failure did not affect any event at another process. From this, it follows that i E 
LAST if and only if no process in P received the message failed(i). 

2.3. Failure Information 

In order to determine LAST after a total failure, the processes in a group 
maintain failure information on nonvolatile storage about their fellow group 
members. These data are readable by recovery processes after a total failure has 
occurred. Specifically, each process i in group P maintains two sets: 

(1) Pi-i’s cohort set-a subset of P known to i. 
(2) fi-i’s mourned set-a subset of Pi composed of processes that have failed 

and whose failures are known to i. (i “mourns” the members Of fi.) 

Although the values of Pi and fi vary over time, we are interested in them only 
after i has failed, at which time their values are fixed. 

A process’s cohort set is complete if it equals P and is incomplete otherwise. 
Similarly, a process’s mourned set is complete if it contains all processes that 
have failed before it and is incomplete otherwise. Incomplete cohort sets can arise 
when process groups are dynamic, because a process will normally not know the 
processes joining after its failure. Incomplete mourned sets are sometimes inten- 
tionally maintained because of cost considerations. As we discuss in Section 5, 

1 For a definition of maximal element, see the appendix. 

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985. 



Determining the Last Process to Fail 19 

the maintenance of complete mourned sets is itself a nontrivial and sometimes 
expensive task. 

If LAST is to be determinable from the failure data, a certain minimum 
amount of information must be maintained. Process i’s cohort set must contain 
i and fi. Its mourned set must record each failure that it detected directly through 
the receipt of a failure message. These constraints ensure that 

PROPOSITION 1. UiepPi - Uiszpfi = LAST. 

PROOF. Because of the requirement i E Pi, we have Ui,pPi = P. Consequently, 
we need to show only that i 4 Ujepfj if and only if i E LAST. This follows from 
(1) i E LAST if and only if no process received a failed(i), and (2) i E fj, for some 
j, if and only if some process received failed(i). Cl 

After a total failure, it is often the case that only failure data from a proper 
subset of the processes in the group are available for reading by recovery processes 
(the remaining failure data being unavailable because e.g., the processors holding 
the data are not operational). It is from the collection of available cohort sets 
and mourned sets that LAST is to be determined. An initial, nonempty collection 
determines a set of candidates for LAST. As time progresses and more processors 
recover, more data become available, and the set of candidates shrinks. Our 
primary task is to determine when sufficient data are available to conclude that 
the candidate set equals LAST. A simpler task, which is satisfactory for many 
applications, is to identify a single member of LAST. 

The available failure data induce a partial ordering among process failures. 
Even when all data are available, this ordering is generally weaker than the 
failed-before relation because of the possible incompleteness of mourned sets. 
Nonetheless, this induced ordering will be instrumental in proving the correctness 
of algorithms for calculating LAST. This ordering is denoted by FBR, where R is 
the set of processes with accessible failure data. 

Definition. Let R G P. FBR is the smallest relation on processes in P satisfying 

(1) if j E R and i E fj, then i FBR j, and 
(2) if i FBR j and j FBR k, then i FBs lz. 

If all fi’s are complete, then FBs is said to be complete. 

FBR is the irreflexive transitive closure of the information contained in the 
failure data of processes in R. Notice that it defines a partial ordering over all 
processes in P, not just the ones in R. 

We can view FBs as defining a set of possible candidate relations for the 
unknown FB relation. Each candidate relation is called a feasible extension of 
FBR and is characterized as follows. 

Definition. A binary relation fb over processes is called a feasible extension of 
FBR if and only if 

(1) fb is a partial ordering, and 
(2) fb extends FBR(i.e., FBR G fb). 
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In addition, if FBR is complete, then fb must also satisfy 

(3) IfifbjandjER,theniFBsj. 

Each feasible extension is consistent with the available failure data and hence 
can not be excluded from consideration. 

3. DETERMINING LAST IN A STATIC GROUP 

In this section we assume that process group P is fixed and known to every 
member process; hence, cohort sets are complete. This is typical of static groups, 
where group membership remains invariant over time. With this assumption, we 
derive necessary and sufficient conditions for determining LAST. As before, R 
denotes the subset of processes whose failure data is available. 

The cases of complete and incomplete mourned sets are considered separately. 
We assume that the completeness of the failure data is known a priori rather 
than inferred from the data itself. We show toward the end of this section that 
testing completeness is as difficult as testing LAST membership. 

To simplify the notation, we define 

CANDs s P - ‘JiEs fiy where S C P. 

CANDs is the set of processes that failed before no other process according to 
the mourned sets of the processes in S; consequently, for any S, we have 

LAST G CANDs. (3.1) 

Think of CANDs as being the candidates for LAST membership according to 
processes in S. By Proposition 1 it follows that LAST = CANDs whenever S = 
P. We will be interested primarily in the set CANDR, the members of which are 
the candidates for LAST according to the available failure data. 

3.1 Using Complete Information 

With complete mourned sets the key to an efficient LAST membership test is 
the observation that the members of LAST record sufficient information to 
determine LAST. 

LEMMA 1. With complete mourned sets, CAND,sT = LAST. 

PROOF. Since LAST G CANDLAsT (by 3.1), we need only show that 
CANDLAsT C LAST to establish the lemma. 

Let i be an arbitrary member of CAND nAST. Since mourned sets are complete, 
i’s membership in CANDLAsr implies that i failed before no member of LAST. 
Now, a process fails before no member of LAST if and only if it is a member of 
LAST (by Theorem A2 in the appendix). Therefore, i E LAST, and this 
establishes that CANDUST C LAST. Cl 

With complete mourned sets, LAST is determinable if mourned sets from all 
its members are available. This is useful only if there is an effective way to check 
whether the data for all members of LAST is available without explicitly knowing 
LAST. Fortunately, there is a simple check: If the candidates for LAST constitute 
a subset of R, then by Lemma 1, LAST is a subset of R. The next theorem uses 
this check in determining LAST. 
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procedure DetermineLast(i, P, A); 

local j: process; 
R, CANDR, f’: set-of-processes; 

begin 
R := Ii); 
CANDR := P - fi; 
broadcast message (i, A) to P; 
while (CANDR g R) do begin 

(j, f’) := receive( ); 
R:=RU {j}; 

Fig. 1. The distributed algorithm for determining 
LAST given complete cohorts and mourned sets. The 
above procedure is executed by the recovery process for 
process i, for all i E R. 

CANDR := CANDR - f’; 
end; 

print CAND,; 
end; 

THEOREM 1. Let R be an arbitrary subset of P, and assume the completeness 
of mourned sets. If CANDR G R, then CANDR = LAST. 

PROOF. Again, since we know LAST C CANDR (by 3.1), we need only 
establish 

if CANDR G R, then CANDR C LAST. 

Assume CANDs G R. First, let us note that this assumption and the fact that 
LAST G CANDs gives us (by transitivity) 

LAST G R. (3.2) 

Now, let us prove CANDR C LAST, which, by Lemma 1, is equivalent to 

CANDR G CANDUST. 

Replacing CAND with its definition gives us 

P- u fi c p - lisT fi, 
iER 

Eliminating the common term and rearranging gives us 

U fiCUfi* (3.3) 
iELAST iER 

The validity of (3.3) follows from (3.2). 0 

An algorithm for determining LAST, based on Theorem 1, is given in Figure 
1. For each process i in R, an associated recovery process executes the given 
procedure. The recovery processes exchange failure data and incrementally 
evaluate, in parallel, the expression CANDR c R. (Note that variable R is local 
to each process, and its value may vary from process to process, depending on 
the message delivery order.) A recovery process terminates when CANDR G R 
evaluates to true and, as a result, LAST is determined. 

Theorem 1 establishes that the availability of failure data from all candidates 
for LAST suffices to determine LAST. The next theorem establishes that this 
information is also necessary: If CANDR $Z LAST, then, in all cases, LAST 
membership for at least one process is indeterminable. 
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The observed ordering of failures: 

1 failed before 2 
2 failed concurrently with 3 
2, 3 failed before 4 

The (incomplete) mourned sets: 

fi = 0, fi = Ill, A = Ill, f, = P, 31 

Fig. 2. An example with incomplete mourned sets (P = 11,2,3,4)). 

THEOREM 2. (Assuming complete mourned sets.) If CANDR $Z R, where R is 
the set ofprocesses with available failure information, then LAST is indeterminable. 

The proof of this theorem requires the following technical lemma. The lemma 
is quite general and does not depend on the completeness of mourned sets. 

LEMMA 2. For any R such that R G P, we have R rl CANDR # 0. 

PROOF. This lemma is based on a simple, fundamental property of partially 
ordered sets, namely, a subset of a partially ordered set is also partially ordered 
(see Theorem A3 in the appendix). Thus any subset R of P contains a maximal 
element (with respect to the partial ordering FB). Let j be such a maximal 
element. By definition of maximal element, j failed before no other member of 
R; consequently, j is in CANDs. 0 

PROOF OF THEOREM 2. We will show that the assumption CANDs Z R allows 
us to construct two feasible extensions, fbi and fbn, each implying a different 
LAST. In particular, we show that there exists an r such that r E LAST according 
to fbi, while r 4 LAST according to fbz. Since either feasible extension could be 
the unknown FB relation, r’s membership status in LAST is indeterminable from 
the available information. The choice of r is, in fact, rather straightforward: it 
can be any member of R rl CANDR. Lemma 2 guarantees that this set is 
nonempty. 

Let fbi be equal to FBR. Trivially, fhl is a feasible extension of FBR. Moreover, 
if fbi = FB, then r E LAST (since according to FBs, no process failed before r, 
and FBR = fbi = FB). 

To construct fbz, first choose some j such that j 4 R and j E CANDR. By the 
hypothesis of the theorem, such a j exists. Now let fb2 be the feasible extension 
where all processes, including r, fail before j. Formally, fb, = FBR U (( iz, j ) 1 k E 
P and Iz # j 1. It is straightforward to verify that fbz is a valid feasible extension 
of FBR. Since r fails before j in fbz, r 4 LAST if fb, = FB. 0 

The proof actually implies a stronger result than stated in the theorem: CANDR 
C R is necessary to determine a single member of LAST rl R. Therefore, 
membership testing in LAST II R is as difficult as determining the entire LAST 
set. In some cases, it is possible to determine a member of LAST-R without 
satisfying the above premise, but this is generally not useful to recovery processes. 

3.1 Using Incomplete Information 

With, incomplete mourned sets, CAND LAsr may contain nonmembers of LAST. 
This is because a member of LAST may not record all of the processes failing 
before it. Consequently, neither Lemma 1 nor Theorem 1 is valid in this case. 
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assume: fj for all j E R is available; 

function closure(i, R) returns set-of-processes; 

local tried: set-of-processes; (8 those already used in the reduction.*) 
f;: set-of-processes; 

begin 
f” := if (i E R) then fi else 0; 
tried := Ii); 
while (f: - tried) n R # 0 do begin 

choose any j from (f? - tried) n R; 
f: := f” U fj; 

tried := tried U (j 1; 
end; 

return (f”); 
end; 

Fig. 3. Algorithm for calculating the closure of fi with respect to set R If f). 

This is illustrated in Figure 2 for R = (1, 4), where process 4 did not detect the 
failure of process 1 because, for example, 4 did not attempt to communicate with 
1. In this example, CANDs = (1, 4) = R, which satisfies the premise of Theorem 
1. Note however that LAST # { 1, 41; rather, LAST equals the singleton set (4). 
The cause of the miscalculation is the incomplete mourned set of process 4; the 
complete mourned set includes process 1. 

This suggests that the problem of determining LAST with incomplete mourned 
sets is harder than the problem with complete mourned sets. We will first 
consider a simpler problem, that of determining a single member of LAST. 

Before proceeding, we need to define the closure of a mourned set. The closure 
of i’s mourned set is the set of processes failing before i that can be inferred from 
the available data. This includes failures not recorded in fi but implied (by 
transitivity) from other mourned sets. The formal definition is 

Definition. The closure of fi with respect to R, denoted f?, is the set 
1.i I.~FBR iI. 

If i E R and mourned sets are complete, then f 7 = fi. If i 4 R, then by definition 
f? is empty. The algorithm in Figure 3 efficiently computes the closure of i’s 
mourned set without explicitly constructing FBR. 

The expression P - f” describes the set of processes not failing before i, given 
the data in R. Hence, the processes in P - f” failed concurrently with or after i. 
The next theorem tells us that the membership status of i is determinable if the 
failure data from this set of processes is available. 

THEOREM 3. Let i be an arbitrary process. If i E CANDR and (P - fg) G R, 
then i E LAST. 

PROOF. Assume both i E CANDR and (P - f”) C R, but suppose for the sake 
of contradiction that i B LAST. Now, i 4 LAST implies that some process j 
received failed(i)(see remarks at the end of Section 2.2) and, as a result, i E fi. 
Process j can not be a member of R, for we have assumed i E CANDR, where 
CANDR = P - ui,R fi. Since j failed after i, j is not a member off”. Thus we 
have j E (P - f?) and j $ R. But this contradicts our assumption that 
(P-f”)GR.. Cl 
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Since LAST is always contained in P - f”, the failure data of all members of 
LAST must be available for a membership test based on this theorem to succeed. 
Recall that with complete information, this is sufficient to determine all members 
of LAST. 

A distributed procedure for testing LAST membership based on Theorem 3 is 
given in Figure 4. For each process i in R, an associated recovery process 
incrementally tests if i is a member of LAST, terminating only when membership 
is decided. 

When failure information is complete, either the decision procedure based on 
Theorem 1 (Figure 1) or the procedure based on Theorem 3 (Figure 4) can be 
used to test membership in LAST. From a practical perspective, it is important 
to know how the efficacies of these two procedures compare, for if the two 
procedures work equally well, the one based on Theorem 3 can always be used. 
In this case, there would be no need to differentiate between complete and 
incomplete failure data. 

Unfortunately, the two procedures do not work equally well. The procedure 
based on Theorem 3 is strictly weaker than the one based on Theorem 1: the 
former procedure may not be able to determine LAST even when the latter 
procedure can. This is because the test condition of the former (P - f: G R) 
implies that of the latter (CANDR 5 R), but not the converse. In fact, the 
procedure based on Theorem 3 is much weaker, as illustrated by the example in 
Figure 5. 

Two questions remain. First, can a process detect when its mourned set is 
complete? If so, then processes with complete mourned sets can choose to apply 
the test based on Theorem 1 rather than the one based on Theorem 3. Using 
Theorem 1 has the additional advantage that it yields all members of LAST. 
Second, is there a better membership test? 

We address the latter question first, since a stronger test may obviate the need 
to detect completeness. 

THEOREM 4. Given that i E CANDR (and hence a candidate for LAST 
membership), if (P - ff) $Z R, then the membership status of i is indeterminable. 

PROOF. The proof follows the same outline as the proof of Theorem 2. We 
assume that i E CANDR and that P - f” g R, and then show that it is always 
possible to construct two feasible extensions, one including i in LAST, the other 
not. 

Let fbi, the first extension, simplype FB R. Thus, the only ordering among 
failures can be inferred from the available data. Trivially, fbi is a feasible 
extension, and it implies i E LAST. 

The construction of fb,, the second extension, is only slightly harder. It requires 
the existence of a j such that j E (P - f f) and j 4 R. By our initial assumption, 
such a j exists. To construct fbz, we add the pair (i, j) to FBR and take the 
transitive closure. Thus, fb2 is simply FBR extended so that i fails before j. fbz is 
antisymmetric (this is easily shown), and it is transitive by construction; there- 
fore, it is a valid feasible extension of FBR. Cl 

The theorem shows that deciding membership in LAST is difficult in all cases. 
This suggests that deciding whether fi is complete is also difficult: an easy 
completeness test would imply that the membership test could be streamlined in 
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985. 
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function Membership Test (i, P, A) returns boolean; 

local j: process; 
R, CANDs: set-of-processes; 
f: array 1 . . . P of set-of-processes; (* holds mourned sets known by this process *) 

begin 
R := {i); 
CANDs := P - f;; 
broadcast message (i, fi) to P; 
while (i E CANDs A (P-closure(i, R)) g R) do begin 

(j, f[j]) := receive( ); 
R:=RU {j); 
CANDs := CANDs - f [j]; 
end; 

if (i E CANDJ then return (true) 
else return (false) 

end; 

Fig. 4. Procedure to determine if process i is in LAST, given complete cohorts sets and incomplete 
mourned sets. The distributed algorithm is executed by the recovery process for i, for all i E R. 

Assume f, = f” for all processes i and subsets R. 

Let: 

fl = (4, 6, 8, . . . , n); and 

f, = 13, 5, 7, . . . , n - 1); 

f, = 0, for 3 5 i 5 n. 

(Hence, process 1 failed concurrently with all odd processes and 
strictly after all even processes except process 2. Likewise, process 
2 failed concurrently with all even processes and strictly after all 
odd processes except process 1.) 

To determine LAST using Theorem 1 requires only that {1,2&R. 
To determine LAST using Theorem 3 requires the recovery of all 
processes, and to determine only that 1 E LAST requires the 
recovery of all odd processes in addition to both members of LAST. 

Fig. 5. An example demonstrating that the membership test based on Theorem 
3 is much weaker than the test based on Theorem 1, even with complete mourned 
sets. 

some cases. A necessary and sufficient condition for determining completeness 
is given below; the proof is left as an exercise for the interested reader. 

CLAIM. To conclude that fi is complete, it is necessary and sufficient that either 
f” G R or Vj(j E f” V i E ff), 

Deducing completeness from the available data is not simple and can not 
facilitate the determination of LAST. If R is an extensive subset of P, then 
fi = ff strongly suggests that fi is complete-but, in no case, except by satisfying 
the above condition, is this conclusive. To be useful, completeness must be an a 
priori premise, inferred from the architecture of process interaction. 

4. A DYNAMIC ENVIRONMENT 

We consider now an environment where processes may be continuously added to 
the process group until a total failure occurs. All of the previous results are still 
valid in this environment, but their application requires that each process know 
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all members of P. Such knowledge is unreasonable for most dynamic environ- 
ments; a process can be expected to know only processes joining before its own 
failure. With this constraint, the new problem confronting us is how to determine 
P from the available failure data. 

Processes must join P in a systematic fashion in order for P, and LAST, to be 
determinable. Loosely speaking, the requirements for joining are: (1) P contains 
an operational member, and (2) the joining process makes itself “known” to all 
operational members. To simplify the presentation, we will use a stronger form 
of the second requirement: the joining process must be known to all processes 
failing after it joins. These requirements are captured formally in the following 
rules. 

Inclusion rules. The event p joins P is allowed, if and only if 

(1) 3q such that (q joins P) happens before (p joins P) and the failure of q does 
not happen before p joins P, 

(2) Vq: the failure of q does not happen before p joins P implies that p E Pp. 

Inclusion protocols-protocols satisfying these rules-are not hard to design 
and are in common use (see, e.g., [l]). We assume hereafter that a process joins 
P only by executing a proper inclusion protocol. Exempt from this requirement 
are the initial members of P, which may join by satisfying only Rule 2. 

Rule 1 prohibits the addition of a process after a total failure has occurred. 
Rule 2 ensures that Pg contains all processes joining before q fails. Together 
these rules ensure that there exists no closed subgroup of P, that is, a subgroup 
of processes whose members know only other members of the subgroup. Stated 
formally, 

LEMMA 3. For any S C P, if UiEs Pi = S, then S = P. 

PROOF. (By contradiction.) Assume that the antecedent of the implication is 
true but the consequence is false. Let p be the member in P-S that joined before 
or concurrent with the other processes in P-S. By Inclusion Rule 1, we know 
that there exists a q joining before p joins and not failing before p joins, and by 
Inclusion Rule 2, we have p E P4. Since q joined before p, it must be that q is in 
S, and therefore, p E Uics Pi (equivalently, p E S). This contradicts our 
assumption. Cl 

In the absence of closed subgroups, a test similar to the membership test of 
Theorem 1 can be used to determine P from the available data. 

THEOREM 5. If (UiER Pi - UiER fi) G R, then UiER Pi = P. 

PROOF. Since fi C Pi, the premise can be rearranged to yield 

U PiC (U fi) U R. 
iER iER 

Letting S denote (UiER fi) U R yields 

U Pi C S. 
iER 

(4.1) 

Note that if p E (S - R), then p E U&R fi and therefore p E fi, for some i E R. 
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Using Inclusion Rule 2, it is straightforward to show that p failing before i implies 
Pp G Pi, and from this we conclude that 

U PpGUPi* 
&ES-R iER 

Adding UiER Pi to both sides gives US 

U Pp C U Pi* 
es iER 

By (4.1), we have 

U Pp S U Pi C S. 
es iER 

Since p E Pp, we have 5’ G lJ,,s P,,, and therefore, 
S= U Pp= U Pi. 

PES iER 

By the previous lemma, this is equal to P. Cl 

This theorem holds for incomplete as well as complete mourned sets. It 
immediately suggests that Theorems 1 and 3 can be extended to this environment 
with little modification. 

COROLLARY 1. If mourned sets are complete, then UiER Pi - UiER fi c R 
implies that UicR Pi - UieR fi = LAST. 

COROLLARY 2. If r @ UiER fi and (UiEJj Pi - f:) c R, then r E LAST. 
PROOF. Corollary 1 follows immediately from Theorem 1 and Theorem 5. 

Corollary 2 follows from Theorem 3, Theorem 5, and the observation that 
(u&R Pi - fF> c R implies (U&R Pi - U&R fi) c R. (The observation follows 
from the fact that f; 5 UiER fi.) 0 

Using the results in Corollaries 1 and 2, the previous decision procedures 
(Figures 1 and 4) can be extended to handle dynamic groups. The modified 
procedure for complete information is given in Figure 6. 

5. DISCUSSION 

In this section we discuss issues related to the maintenance of failure data, 
including compaction of failure data for long-lived groups. We also discuss a 
convenient extension: allowing processes to quit and rejoin groups. 

Since the efficacy of membership testing procedures that tolerate incomplete 
mourned sets is much lower than those designed for complete data, it is desirable 
to maintain complete mourned sets and use the better procedures. Unfortunately, 
the maintenance of complete mourned sets is not straightforward. 

Consider the following “obvious” implementation of complete mourned sets. A 
process appends to each message it sends its mourned set. Before processing a 
newly received message, a process conjoins the appended mourned set with its 
mourned set. This scheme has a singular deficiency: it does not work when a 
process fails after detecting a failure but before forwarding the observation to all 
of its cohorts. For example, let process 2 detect the failure of process 1. Now 2 
sends a message to 3 but fails before sending one to 4. Process 4 eventually 
detects the failure of 2 by the standard means-a timeout message. At this point, 
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procedure DetermineLast(i, Pi, f;); 

local j: process; 
R, P’, f ‘: set-of-processes; 
known, failed: set-of-processes; 

begin 
R := Ii); 
known := Pi; 
failed := fi; 
broadcast message (i, Pi, f;) to P; 
while (known - failed $Z R) do begin 

(j, P’, f ‘) := receive( ); 
if (j B known) then send (i, Pi, fi) to j; 
R:=RU(jJ; 
known := known U P’; 
failed := failed - f I; 
end, 

print CANDR; 
end: 

Fig. 6. The distributed algorithm executed by the recov- 
ery process for i. Cohorts sets are incomplete; mourned 
sets are complete. 

4’s mourned set should contain 1 and 2, but instead it contains only 1. (Note 
that this is the example of Figure 2.) The problem with the proposed implemen- 
tation is that mourned sets cannot be appended to failure notices (in this case, 
the timeout). Similar problems arise in implementations based on logical clocks. 

Strictly speaking, complete mourned sets are unattainable in any asynchronous 
system. However, they can be approximated to an acceptable degree in most 
systems. A brute-force approximation is to have a process send failure notices to 
all cohorts and wait for acknowledgements whenever it first learns of a failure. 
The notices must be sent and acknowledgments received prior to any changes in 
the task state. This ensures that mourned sets are complete with respect to the 
set of events changing the task state. More cost-effective approaches to main- 
taining complete mourned sets exist, but they generally rely on a lower level 
failure detection and failure data propagation facility (see [l]). 

With long-lived tasks, the process group can be expected to grow to an unwieldy 
size. Eventually, the failure data must be either compacted or truncated. Many 
applications naturally lend themselves to a compact representation of the failure 
data. A common situation is to execute the task on a fixed group of processors 
with one operational member on each operational processor. Upon detecting the 
failure of its group member, a processor creates a new process, which then joins 
the group. Thus, a sequence of member processes with disjoint operational periods 
exists at each processor. By cleverly naming the processes of a sequence, it is 
possible to represent explicitly the status of the most current member (i.e., the 
most recently included member), and to infer the names and the statuses of the 
previous members. This can be accomplished, for example, by a two-part process 
name: the first part is a sequence identifiers, and the second part is the process’s 
position in the sequence. 
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An alternative to clever naming is periodically to discard some of the failure 
data. An obvious strategy is to store only Pi - fi for each member i. The set 
difference is attractive because its size is bounded by the multiprogramming level 
of the task. However, vital information is lost: decision procedures as effective 
as the ones proposed herein do not exist for this data. 

It is still possible to prune Pi and fi without compromising Corollaries 1 and 2. 
Each member i need only maintain information on cohorts whose operational 
periods overlap with its own operational period. The formal statement of this 
requirement is 

Pi > (j 1 l((j’s failure + i’s inclusion) or (i’s failure *j’s inclusion))}. 

This new requirement invalidates Lemma 3. Fortunately, Theorem 5 and Cor- 
ollaries 1 and 2 are still valid, but they require new proofs since Lemma 3 is used 
in their current proofs. Pruning the Pi’s and the fi's does not discard useful 
information and, consequently, does not diminish the efficacy of the decision 
procedure given in Fig. 6. If LAST is determinable with full failure data from the 
processes in R, then LAST is determinable with truncated failure data from R. 

We conclude this discussion with a simple extension for allowing a process to 
repeatedly join and quit a group. A process can quit a group by simulating a 
failure. To do so, it must notify at least one operational member, and to expedite 
the determination of LAST, all operational members should be notified. More- 
over, it must notify all operational members if complete mourned sets are to be 
maintained. If a process is allowed to rejoin a group after quitting, then member 
identifiers must be substituted for process names in the foregoing discussion. 
Each time a process rejoins, it is assigned a new member identifier that is unique 
for the lifetime of the group. Unique member identifiers can easily and cheaply 
be generated by augmenting the process name with a count of the number of 
times the process has joined the group. 

APPENDIX. PARTIAL ORDERINGS 

In this appendix we define partial ordering and state several useful properties. 
A (strict) partial ordering on a set E is an irreflexive, antisymmetric, and 

transitive binary relation (a set of ordered pairs) on E x E. Throughout, we let R 
denote an arbitrary partial ordering on E. As a shorthand, we say that R partially 
orders E. To denote (ei, ez) E R, we use the infix notation el R e2. 

Element e, e E E, is a maximal element with respect to R if and only if there 
exists no other element e’, e’ E E, such that e Re’. (Whenever R is obvious from 
context, we will drop the phrase “with respect to R.“) Two useful theorems 
concerning maximal elements are 

THEOREM Al. Let R be a partial ordering on E. If E is nonempty and finite, 
then E contains a maximal element with respect to R. 

THEOREM A2. Let R be a partial ordering on a finite set E. For every element 
e in E, either e is a maximal element with respect to R or there exists a maximal 
element emax such that e R emax. 
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Both properties can be proved from the above definitions. 
Let S be a binary relation, not necessarily a partial ordering, on E x E and let 

E’ be a subset of E. The restriction of S to E’ is the set of ordered pairs in S 
both of whose elements are in E ‘. If S is a partial ordering, then we have the 
following useful result. 

THEOREM A3. If S partially orders E, then the restriction of S to E’ partially 
orders E’. 

In addition, if e is a maximal element of E (with respect to S) and e E E ‘, then 
e is a maximal element of E’ with respect to the restriction of S to E’. 

To simplify the notation, the term “the restriction of” is often dropped. We 
use the term “S partially orders E”’ with the implicit understanding that “the 
restriction of S to E’ partially orders E”’ is meant. 
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