
Determining the Last Process to Fail

DALE SKEEN
Cornell University

A total failure occurs whenever all processes cooperatively executing a distributed task fail before the
task completes. A frequent prerequisite for recovery from a total failure is identification of the last
set (LAST) of processes to fail. Necessary and sufficient conditions are derived here for computing
LAST from the local failure data of recovered processes. These conditions are then translated into
procedures for deciding LAST membership, using either complete or incomplete failure data. The
choice of failure data is itself dictated by two requirements: (1) it can be cheaply maintained, and (2)
it must afford maximum fault-tolerance in the sense that the expected number of recoveries required
for identifying LAST is minimized.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.4: [Performance of Systems]: reliability, auailability, and serviceability; D.4.5 [Oper-
ating Systems]: Reliability-checkpoint/restart; fault-tolerance; H.2.2 [Database Management]:
Physical Design-recovery and restart

General Terms: Algorithms, Reliability

Additional Keywords and Phrases: Cooperative processes, total failure, event ordering

1. INTRODUCTION
A total failure occurs whenever all processes cooperatively executing a distributed
task fail before the task completes. Frequently, a prerequisite for recovering from
a total failure is reconstructing the task state immediately prior to the total
failure. This, in turn, requires identification of the last process to fail. Since
processes can fail concurrently, as well as sequentially, the general problem is to
identify the set, denoted LAST, of processes failing last.

This problem arises in several contexts in highly fault-tolerant distributed
systems. In a distributed database system, a transaction is typically managed by
a group of transaction coordinators, whose principal responsibility is to decide
whether to commit or abort the transaction. Normally a designated coordinator,
the primary, actually decides, while the others serve as backups [2]. If the primary
fails before deciding, one of the backups is promoted into the decision-making
role. A total failure in this context occurs when all coordinators fail. When such
a failure occurs, the last coordinator to fail must be identified in order to
determine if a decision had been made (and, if so, to complete the transaction
accordingly).

Author’s address: IBM Research Laboratory, San Jose, CA 95193.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1985 ACM 0734-2071/85/0200-0015 $00.75

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985, Pages 15-30.

16 l Dale Skeen

A second application of the problem of computing LAST arises in the manage-
ment of replicated data. Replicated data is usually managed by a group of
processes, known as data managers, each of which controls access to one copy.
One popular data access algorithm allows the replicated data to be modified
whenever any manager is operational, and forwards each modification to all
currently operational managers [11. In order to recover from the failure of all
data managers, the most up-to-date copy of the data must be determined. This,
of course, requires identification of the last data manager to fail.

In this paper we derive necessary and sufficient conditions for computing
LAST from the “available information.” We assume that each process maintains
some local failure information on stable storage, which is available whenever the
processor containing that information is operational. We desire that the failure
data be maintainable with little overhead, yet provide a high degree of fault-
tolerance in the sense that the expected number of recovered processors required
for identifying LAST is small. Two factors complicate the problem: in many
situations failure information is incomplete, and the set of processes executing
the task is often dynamic-processes are continuously added to and deleted from
the set.

The remainder of this paper is organized as follows. The next section defines
the processing environment and the failure information maintained by each
process. Basic results on reconstructing the failure ordering from the stored
failure data are also given. Section 3 shows how to infer LAST when each process
knows the identities of all other processes executing the assigned task. Section 4
extends these results to systems in which each process knows only a subset of its
fellow members. Section 5 discusses implementation issues, including how to
prune failure data for long-lived tasks.

2. BACKGROUND

2.1 The Environment

We assume a distributed system of asynchronous processes, communicating solely
through messages. Each process has a single lifetime: after creation, it is opera-
tional until eventually it fails. Processes are assumed to fail by halting (crash
failures), an assumption that is used in the design of many distributed systems.
Note that if processes could fail by skipping steps in their program (omission
failures) or by acting arbitrarily (Byzantine failures), then identification of LAST
would not suffice to reconstruct a meaningful task state. The message delivery
system is assumed to be completely reliable: messages between operational
processes are never lost and are delivered within finite but arbitrary time.
However, messages may be delivered in any order.

A failure is detectable by any process attempting to communicate with the
failed process. So that all information, including failure information, is conveyed
through messages in a uniform manner, we assume that a failing process sends
failed (j) messages to all processes. Such messages are delivered and processed in
the same way that normal messages are. In practice, of course, failures would be
detected by using timeouts or, if more reliability is desired, by a failure detection
protocol such as the one described in [4].
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Determining the Last Process to Fail 17

A process group is a finite, nonempty set of communicating and cooperating
processes. If the membership of the group is fixed over time, the group is said to
be static; otherwise, it is said to be dynamic. A new process can join a dynamic
group by executing a suitable protocol. Among other things, the protocol makes
the new member known to the other members of the group. For convenience, we
assume that a member can never quit a group (i.e., become a nonmember).
Although a process may join several groups, we will consider its participation in
each group separately. Throughout this paper, P denotes the process group of
interest. All definitions and results are relative to P.

Upon joining a group, a process becomes an operational member and remains
so until it fails, whereupon it is classified a failed member. The evolution of each
process with respect to a process group is thus

nonmember -+ operational member + failed member.

A total failure within a process group occurs when all members have failed.

2.2 Event Ordering

In contrast to a centralized system, the temporal ordering of events in a distrib-
uted system is only partial. Accordingly, understanding a distributed system
requires some knowledge of partial orderings. The terminology and properties of
partial orderings used in this paper are given in the appendix.

We are interested in ordering events in a way that is consistent with causality.
For an event at process i to affect an event at process j, communication must
occur between the two processes. In a message-based system, this communication
must consist of messages, either a single message sent by i and received by j, or
a sequence of messages where i sends a message to k, k sends to 1, . . . , and m
sends to j. Therefore, the event at process i should be ordered before the event
at process j only if such a sequence of messages exists. In [3] a partial ordering,
the “happens before” relation with this property, is defined as follows.

Definition [3]. The happens before relation, denoted by +, on a set of events
is the smallest relation satisfying the following three conditions:

(1) If a and b are events in the same process, and a precedes b according to some
local clock, then a + b.

(2) If event a is the sending of a message and event b is the receipt of the same
message, then a + b.

(3) Ifa+bandb+c,thena+c.

Distinct events a and b are said to be concurrent if neither a + b nor b ---) a.

Clearly, event a can affect event b only if a + b. Concurrent events, therefore,
cannot affect one another. Events of interest to us include the sending and the
receiving of messages, the joining of a process to a process group, and, most
important, process failures and their detection. Hereinafter, all references to
event orderings are understood to be references to the “happens before” relation,
as defined above.

The appeal of our particular failure model is that failures and failure messages
need not be treated specially in the above definition. The failure of process i can

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

18 l Dale Skeen

affect events at another process j only if there is communication between i and j
after the failure occurs. As always, this communication is in the form of a
sequence of messages, but in this case the first message in this sequence must be
failed(i), since failure messages are the only type of messages that can be sent
by a failed process. This implies the useful and intuitive observation that i’s
failure can affect events in j only if some process (not necessarily j) receives
failed(i). (That is to say, i’s failure can affect events at process j only if i’s failure
is detected by some process k. Note that j and k may be different processes.)

The failed before relation, denoted FB, is derived from the subrelation of
“happens before” concerned with failures. For convenience, we define it over
processes rather than events and say i failed before j if and only if i’s failure could
have affected some event in j.

Definition. Let i and j be two processes. i FB j if and only if there exists some
event ej in j such that (i’s failure) + ej.

Two processes, i and j, fail concurrently if neither i FB j nor j FB i. That FB
is a partial ordering follows from the definition of +.

We are now ready to define LAST. Intuitively, LAST is the set of processes
whose failure could not have affected events at other processes. Formally,

Definition. LAST = 1 j 1 1 3 i(j FB i)].

Equivalently, LAST is the set of maximal elements’ of P with respect to the
partial ordering FB.

Using the above definitions, it is a straightforward exercise to show that the
definition of LAST captures the intended semantics: i E LAST if and only if i’s
failure did not affect any event at another process. From this, it follows that i E
LAST if and only if no process in P received the message failed(i).

2.3. Failure Information

In order to determine LAST after a total failure, the processes in a group
maintain failure information on nonvolatile storage about their fellow group
members. These data are readable by recovery processes after a total failure has
occurred. Specifically, each process i in group P maintains two sets:

(1) Pi-i’s cohort set-a subset of P known to i.
(2) fi-i’s mourned set-a subset of Pi composed of processes that have failed

and whose failures are known to i. (i “mourns” the members Of fi.)

Although the values of Pi and fi vary over time, we are interested in them only
after i has failed, at which time their values are fixed.

A process’s cohort set is complete if it equals P and is incomplete otherwise.
Similarly, a process’s mourned set is complete if it contains all processes that
have failed before it and is incomplete otherwise. Incomplete cohort sets can arise
when process groups are dynamic, because a process will normally not know the
processes joining after its failure. Incomplete mourned sets are sometimes inten-
tionally maintained because of cost considerations. As we discuss in Section 5,

1 For a definition of maximal element, see the appendix.

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Determining the Last Process to Fail 19

the maintenance of complete mourned sets is itself a nontrivial and sometimes
expensive task.

If LAST is to be determinable from the failure data, a certain minimum
amount of information must be maintained. Process i’s cohort set must contain
i and fi. Its mourned set must record each failure that it detected directly through
the receipt of a failure message. These constraints ensure that

PROPOSITION 1. UiepPi - Uiszpfi = LAST.

PROOF. Because of the requirement i E Pi, we have Ui,pPi = P. Consequently,
we need to show only that i 4 Ujepfj if and only if i E LAST. This follows from
(1) i E LAST if and only if no process received a failed(i), and (2) i E fj, for some
j, if and only if some process received failed(i). Cl

After a total failure, it is often the case that only failure data from a proper
subset of the processes in the group are available for reading by recovery processes
(the remaining failure data being unavailable because e.g., the processors holding
the data are not operational). It is from the collection of available cohort sets
and mourned sets that LAST is to be determined. An initial, nonempty collection
determines a set of candidates for LAST. As time progresses and more processors
recover, more data become available, and the set of candidates shrinks. Our
primary task is to determine when sufficient data are available to conclude that
the candidate set equals LAST. A simpler task, which is satisfactory for many
applications, is to identify a single member of LAST.

The available failure data induce a partial ordering among process failures.
Even when all data are available, this ordering is generally weaker than the
failed-before relation because of the possible incompleteness of mourned sets.
Nonetheless, this induced ordering will be instrumental in proving the correctness
of algorithms for calculating LAST. This ordering is denoted by FBR, where R is
the set of processes with accessible failure data.

Definition. Let R G P. FBR is the smallest relation on processes in P satisfying

(1) if j E R and i E fj, then i FBR j, and
(2) if i FBR j and j FBR k, then i FBs lz.

If all fi’s are complete, then FBs is said to be complete.

FBR is the irreflexive transitive closure of the information contained in the
failure data of processes in R. Notice that it defines a partial ordering over all
processes in P, not just the ones in R.

We can view FBs as defining a set of possible candidate relations for the
unknown FB relation. Each candidate relation is called a feasible extension of
FBR and is characterized as follows.

Definition. A binary relation fb over processes is called a feasible extension of
FBR if and only if

(1) fb is a partial ordering, and
(2) fb extends FBR(i.e., FBR G fb).

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

20 - Dale Skeen

In addition, if FBR is complete, then fb must also satisfy

(3) IfifbjandjER,theniFBsj.

Each feasible extension is consistent with the available failure data and hence
can not be excluded from consideration.

3. DETERMINING LAST IN A STATIC GROUP

In this section we assume that process group P is fixed and known to every
member process; hence, cohort sets are complete. This is typical of static groups,
where group membership remains invariant over time. With this assumption, we
derive necessary and sufficient conditions for determining LAST. As before, R
denotes the subset of processes whose failure data is available.

The cases of complete and incomplete mourned sets are considered separately.
We assume that the completeness of the failure data is known a priori rather
than inferred from the data itself. We show toward the end of this section that
testing completeness is as difficult as testing LAST membership.

To simplify the notation, we define

CANDs s P - ‘JiEs fiy where S C P.

CANDs is the set of processes that failed before no other process according to
the mourned sets of the processes in S; consequently, for any S, we have

LAST G CANDs. (3.1)

Think of CANDs as being the candidates for LAST membership according to
processes in S. By Proposition 1 it follows that LAST = CANDs whenever S =
P. We will be interested primarily in the set CANDR, the members of which are
the candidates for LAST according to the available failure data.

3.1 Using Complete Information

With complete mourned sets the key to an efficient LAST membership test is
the observation that the members of LAST record sufficient information to
determine LAST.

LEMMA 1. With complete mourned sets, CAND,sT = LAST.

PROOF. Since LAST G CANDLAsT (by 3.1), we need only show that
CANDLAsT C LAST to establish the lemma.

Let i be an arbitrary member of CAND nAST. Since mourned sets are complete,
i’s membership in CANDLAsr implies that i failed before no member of LAST.
Now, a process fails before no member of LAST if and only if it is a member of
LAST (by Theorem A2 in the appendix). Therefore, i E LAST, and this
establishes that CANDUST C LAST. Cl

With complete mourned sets, LAST is determinable if mourned sets from all
its members are available. This is useful only if there is an effective way to check
whether the data for all members of LAST is available without explicitly knowing
LAST. Fortunately, there is a simple check: If the candidates for LAST constitute
a subset of R, then by Lemma 1, LAST is a subset of R. The next theorem uses
this check in determining LAST.
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Determining the Last Process to Fail - 21

procedure DetermineLast(i, P, A);

local j: process;
R, CANDR, f’: set-of-processes;

begin
R := Ii);
CANDR := P - fi;
broadcast message (i, A) to P;
while (CANDR g R) do begin

(j, f’) := receive();
R:=RU {j};

Fig. 1. The distributed algorithm for determining
LAST given complete cohorts and mourned sets. The
above procedure is executed by the recovery process for
process i, for all i E R.

CANDR := CANDR - f’;
end;

print CAND,;
end;

THEOREM 1. Let R be an arbitrary subset of P, and assume the completeness
of mourned sets. If CANDR G R, then CANDR = LAST.

PROOF. Again, since we know LAST C CANDR (by 3.1), we need only
establish

if CANDR G R, then CANDR C LAST.

Assume CANDs G R. First, let us note that this assumption and the fact that
LAST G CANDs gives us (by transitivity)

LAST G R. (3.2)

Now, let us prove CANDR C LAST, which, by Lemma 1, is equivalent to

CANDR G CANDUST.

Replacing CAND with its definition gives us

P- u fi c p - lisT fi,
iER

Eliminating the common term and rearranging gives us

U fiCUfi* (3.3)
iELAST iER

The validity of (3.3) follows from (3.2). 0

An algorithm for determining LAST, based on Theorem 1, is given in Figure
1. For each process i in R, an associated recovery process executes the given
procedure. The recovery processes exchange failure data and incrementally
evaluate, in parallel, the expression CANDR c R. (Note that variable R is local
to each process, and its value may vary from process to process, depending on
the message delivery order.) A recovery process terminates when CANDR G R
evaluates to true and, as a result, LAST is determined.

Theorem 1 establishes that the availability of failure data from all candidates
for LAST suffices to determine LAST. The next theorem establishes that this
information is also necessary: If CANDR $Z LAST, then, in all cases, LAST
membership for at least one process is indeterminable.

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

22 l Dale Skeen

The observed ordering of failures:

1 failed before 2
2 failed concurrently with 3
2, 3 failed before 4

The (incomplete) mourned sets:

fi = 0, fi = Ill, A = Ill, f, = P, 31

Fig. 2. An example with incomplete mourned sets (P = 11,2,3,4)).

THEOREM 2. (Assuming complete mourned sets.) If CANDR $Z R, where R is
the set ofprocesses with available failure information, then LAST is indeterminable.

The proof of this theorem requires the following technical lemma. The lemma
is quite general and does not depend on the completeness of mourned sets.

LEMMA 2. For any R such that R G P, we have R rl CANDR # 0.

PROOF. This lemma is based on a simple, fundamental property of partially
ordered sets, namely, a subset of a partially ordered set is also partially ordered
(see Theorem A3 in the appendix). Thus any subset R of P contains a maximal
element (with respect to the partial ordering FB). Let j be such a maximal
element. By definition of maximal element, j failed before no other member of
R; consequently, j is in CANDs. 0

PROOF OF THEOREM 2. We will show that the assumption CANDs Z R allows
us to construct two feasible extensions, fbi and fbn, each implying a different
LAST. In particular, we show that there exists an r such that r E LAST according
to fbi, while r 4 LAST according to fbz. Since either feasible extension could be
the unknown FB relation, r’s membership status in LAST is indeterminable from
the available information. The choice of r is, in fact, rather straightforward: it
can be any member of R rl CANDR. Lemma 2 guarantees that this set is
nonempty.

Let fbi be equal to FBR. Trivially, fhl is a feasible extension of FBR. Moreover,
if fbi = FB, then r E LAST (since according to FBs, no process failed before r,
and FBR = fbi = FB).

To construct fbz, first choose some j such that j 4 R and j E CANDR. By the
hypothesis of the theorem, such a j exists. Now let fb2 be the feasible extension
where all processes, including r, fail before j. Formally, fb, = FBR U ((iz, j) 1 k E
P and Iz # j 1. It is straightforward to verify that fbz is a valid feasible extension
of FBR. Since r fails before j in fbz, r 4 LAST if fb, = FB. 0

The proof actually implies a stronger result than stated in the theorem: CANDR
C R is necessary to determine a single member of LAST rl R. Therefore,
membership testing in LAST II R is as difficult as determining the entire LAST
set. In some cases, it is possible to determine a member of LAST-R without
satisfying the above premise, but this is generally not useful to recovery processes.

3.1 Using Incomplete Information

With, incomplete mourned sets, CAND LAsr may contain nonmembers of LAST.
This is because a member of LAST may not record all of the processes failing
before it. Consequently, neither Lemma 1 nor Theorem 1 is valid in this case.
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Determining the Last Process to Fail 23

assume: fj for all j E R is available;

function closure(i, R) returns set-of-processes;

local tried: set-of-processes; (8 those already used in the reduction.*)
f;: set-of-processes;

begin
f” := if (i E R) then fi else 0;
tried := Ii);
while (f: - tried) n R # 0 do begin

choose any j from (f? - tried) n R;
f: := f” U fj;

tried := tried U (j 1;
end;

return (f”);
end;

Fig. 3. Algorithm for calculating the closure of fi with respect to set R If f).

This is illustrated in Figure 2 for R = (1, 4), where process 4 did not detect the
failure of process 1 because, for example, 4 did not attempt to communicate with
1. In this example, CANDs = (1, 4) = R, which satisfies the premise of Theorem
1. Note however that LAST # { 1, 41; rather, LAST equals the singleton set (4).
The cause of the miscalculation is the incomplete mourned set of process 4; the
complete mourned set includes process 1.

This suggests that the problem of determining LAST with incomplete mourned
sets is harder than the problem with complete mourned sets. We will first
consider a simpler problem, that of determining a single member of LAST.

Before proceeding, we need to define the closure of a mourned set. The closure
of i’s mourned set is the set of processes failing before i that can be inferred from
the available data. This includes failures not recorded in fi but implied (by
transitivity) from other mourned sets. The formal definition is

Definition. The closure of fi with respect to R, denoted f?, is the set
1.i I.~FBR iI.

If i E R and mourned sets are complete, then f 7 = fi. If i 4 R, then by definition
f? is empty. The algorithm in Figure 3 efficiently computes the closure of i’s
mourned set without explicitly constructing FBR.

The expression P - f” describes the set of processes not failing before i, given
the data in R. Hence, the processes in P - f” failed concurrently with or after i.
The next theorem tells us that the membership status of i is determinable if the
failure data from this set of processes is available.

THEOREM 3. Let i be an arbitrary process. If i E CANDR and (P - fg) G R,
then i E LAST.

PROOF. Assume both i E CANDR and (P - f”) C R, but suppose for the sake
of contradiction that i B LAST. Now, i 4 LAST implies that some process j
received failed(i)(see remarks at the end of Section 2.2) and, as a result, i E fi.
Process j can not be a member of R, for we have assumed i E CANDR, where
CANDR = P - ui,R fi. Since j failed after i, j is not a member off”. Thus we
have j E (P - f?) and j $ R. But this contradicts our assumption that
(P-f”)GR.. Cl

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

24 l Dale Skeen

Since LAST is always contained in P - f”, the failure data of all members of
LAST must be available for a membership test based on this theorem to succeed.
Recall that with complete information, this is sufficient to determine all members
of LAST.

A distributed procedure for testing LAST membership based on Theorem 3 is
given in Figure 4. For each process i in R, an associated recovery process
incrementally tests if i is a member of LAST, terminating only when membership
is decided.

When failure information is complete, either the decision procedure based on
Theorem 1 (Figure 1) or the procedure based on Theorem 3 (Figure 4) can be
used to test membership in LAST. From a practical perspective, it is important
to know how the efficacies of these two procedures compare, for if the two
procedures work equally well, the one based on Theorem 3 can always be used.
In this case, there would be no need to differentiate between complete and
incomplete failure data.

Unfortunately, the two procedures do not work equally well. The procedure
based on Theorem 3 is strictly weaker than the one based on Theorem 1: the
former procedure may not be able to determine LAST even when the latter
procedure can. This is because the test condition of the former (P - f: G R)
implies that of the latter (CANDR 5 R), but not the converse. In fact, the
procedure based on Theorem 3 is much weaker, as illustrated by the example in
Figure 5.

Two questions remain. First, can a process detect when its mourned set is
complete? If so, then processes with complete mourned sets can choose to apply
the test based on Theorem 1 rather than the one based on Theorem 3. Using
Theorem 1 has the additional advantage that it yields all members of LAST.
Second, is there a better membership test?

We address the latter question first, since a stronger test may obviate the need
to detect completeness.

THEOREM 4. Given that i E CANDR (and hence a candidate for LAST
membership), if (P - ff) $Z R, then the membership status of i is indeterminable.

PROOF. The proof follows the same outline as the proof of Theorem 2. We
assume that i E CANDR and that P - f” g R, and then show that it is always
possible to construct two feasible extensions, one including i in LAST, the other
not.

Let fbi, the first extension, simplype FB R. Thus, the only ordering among
failures can be inferred from the available data. Trivially, fbi is a feasible
extension, and it implies i E LAST.

The construction of fb,, the second extension, is only slightly harder. It requires
the existence of a j such that j E (P - f f) and j 4 R. By our initial assumption,
such a j exists. To construct fbz, we add the pair (i, j) to FBR and take the
transitive closure. Thus, fb2 is simply FBR extended so that i fails before j. fbz is
antisymmetric (this is easily shown), and it is transitive by construction; there-
fore, it is a valid feasible extension of FBR. Cl

The theorem shows that deciding membership in LAST is difficult in all cases.
This suggests that deciding whether fi is complete is also difficult: an easy
completeness test would imply that the membership test could be streamlined in
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Determining the Last Process to Fail 25

function Membership Test (i, P, A) returns boolean;

local j: process;
R, CANDs: set-of-processes;
f: array 1 . . . P of set-of-processes; (* holds mourned sets known by this process *)

begin
R := {i);
CANDs := P - f;;
broadcast message (i, fi) to P;
while (i E CANDs A (P-closure(i, R)) g R) do begin

(j, f[j]) := receive();
R:=RU {j);
CANDs := CANDs - f [j];
end;

if (i E CANDJ then return (true)
else return (false)

end;

Fig. 4. Procedure to determine if process i is in LAST, given complete cohorts sets and incomplete
mourned sets. The distributed algorithm is executed by the recovery process for i, for all i E R.

Assume f, = f” for all processes i and subsets R.

Let:

fl = (4, 6, 8, . . . , n); and

f, = 13, 5, 7, . . . , n - 1);

f, = 0, for 3 5 i 5 n.

(Hence, process 1 failed concurrently with all odd processes and
strictly after all even processes except process 2. Likewise, process
2 failed concurrently with all even processes and strictly after all
odd processes except process 1.)

To determine LAST using Theorem 1 requires only that {1,2&R.
To determine LAST using Theorem 3 requires the recovery of all
processes, and to determine only that 1 E LAST requires the
recovery of all odd processes in addition to both members of LAST.

Fig. 5. An example demonstrating that the membership test based on Theorem
3 is much weaker than the test based on Theorem 1, even with complete mourned
sets.

some cases. A necessary and sufficient condition for determining completeness
is given below; the proof is left as an exercise for the interested reader.

CLAIM. To conclude that fi is complete, it is necessary and sufficient that either
f” G R or Vj(j E f” V i E ff),

Deducing completeness from the available data is not simple and can not
facilitate the determination of LAST. If R is an extensive subset of P, then
fi = ff strongly suggests that fi is complete-but, in no case, except by satisfying
the above condition, is this conclusive. To be useful, completeness must be an a
priori premise, inferred from the architecture of process interaction.

4. A DYNAMIC ENVIRONMENT

We consider now an environment where processes may be continuously added to
the process group until a total failure occurs. All of the previous results are still
valid in this environment, but their application requires that each process know

ACM Transactions on Computer Systems, Vol. 3, NO. 1, February 1985.

26 l Dale Skeen

all members of P. Such knowledge is unreasonable for most dynamic environ-
ments; a process can be expected to know only processes joining before its own
failure. With this constraint, the new problem confronting us is how to determine
P from the available failure data.

Processes must join P in a systematic fashion in order for P, and LAST, to be
determinable. Loosely speaking, the requirements for joining are: (1) P contains
an operational member, and (2) the joining process makes itself “known” to all
operational members. To simplify the presentation, we will use a stronger form
of the second requirement: the joining process must be known to all processes
failing after it joins. These requirements are captured formally in the following
rules.

Inclusion rules. The event p joins P is allowed, if and only if

(1) 3q such that (q joins P) happens before (p joins P) and the failure of q does
not happen before p joins P,

(2) Vq: the failure of q does not happen before p joins P implies that p E Pp.

Inclusion protocols-protocols satisfying these rules-are not hard to design
and are in common use (see, e.g., [l]). We assume hereafter that a process joins
P only by executing a proper inclusion protocol. Exempt from this requirement
are the initial members of P, which may join by satisfying only Rule 2.

Rule 1 prohibits the addition of a process after a total failure has occurred.
Rule 2 ensures that Pg contains all processes joining before q fails. Together
these rules ensure that there exists no closed subgroup of P, that is, a subgroup
of processes whose members know only other members of the subgroup. Stated
formally,

LEMMA 3. For any S C P, if UiEs Pi = S, then S = P.

PROOF. (By contradiction.) Assume that the antecedent of the implication is
true but the consequence is false. Let p be the member in P-S that joined before
or concurrent with the other processes in P-S. By Inclusion Rule 1, we know
that there exists a q joining before p joins and not failing before p joins, and by
Inclusion Rule 2, we have p E P4. Since q joined before p, it must be that q is in
S, and therefore, p E Uics Pi (equivalently, p E S). This contradicts our
assumption. Cl

In the absence of closed subgroups, a test similar to the membership test of
Theorem 1 can be used to determine P from the available data.

THEOREM 5. If (UiER Pi - UiER fi) G R, then UiER Pi = P.

PROOF. Since fi C Pi, the premise can be rearranged to yield

U PiC (U fi) U R.
iER iER

Letting S denote (UiER fi) U R yields

U Pi C S.
iER

(4.1)

Note that if p E (S - R), then p E U&R fi and therefore p E fi, for some i E R.
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Determining the Last Process to Fail 27

Using Inclusion Rule 2, it is straightforward to show that p failing before i implies
Pp G Pi, and from this we conclude that

U PpGUPi*
&ES-R iER

Adding UiER Pi to both sides gives US

U Pp C U Pi*
es iER

By (4.1), we have

U Pp S U Pi C S.
es iER

Since p E Pp, we have 5’ G lJ,,s P,,, and therefore,
S= U Pp= U Pi.

PES iER

By the previous lemma, this is equal to P. Cl

This theorem holds for incomplete as well as complete mourned sets. It
immediately suggests that Theorems 1 and 3 can be extended to this environment
with little modification.

COROLLARY 1. If mourned sets are complete, then UiER Pi - UiER fi c R
implies that UicR Pi - UieR fi = LAST.

COROLLARY 2. If r @ UiER fi and (UiEJj Pi - f:) c R, then r E LAST.
PROOF. Corollary 1 follows immediately from Theorem 1 and Theorem 5.

Corollary 2 follows from Theorem 3, Theorem 5, and the observation that
(u&R Pi - fF> c R implies (U&R Pi - U&R fi) c R. (The observation follows
from the fact that f; 5 UiER fi.) 0

Using the results in Corollaries 1 and 2, the previous decision procedures
(Figures 1 and 4) can be extended to handle dynamic groups. The modified
procedure for complete information is given in Figure 6.

5. DISCUSSION

In this section we discuss issues related to the maintenance of failure data,
including compaction of failure data for long-lived groups. We also discuss a
convenient extension: allowing processes to quit and rejoin groups.

Since the efficacy of membership testing procedures that tolerate incomplete
mourned sets is much lower than those designed for complete data, it is desirable
to maintain complete mourned sets and use the better procedures. Unfortunately,
the maintenance of complete mourned sets is not straightforward.

Consider the following “obvious” implementation of complete mourned sets. A
process appends to each message it sends its mourned set. Before processing a
newly received message, a process conjoins the appended mourned set with its
mourned set. This scheme has a singular deficiency: it does not work when a
process fails after detecting a failure but before forwarding the observation to all
of its cohorts. For example, let process 2 detect the failure of process 1. Now 2
sends a message to 3 but fails before sending one to 4. Process 4 eventually
detects the failure of 2 by the standard means-a timeout message. At this point,

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

28 l Dale Skeen

procedure DetermineLast(i, Pi, f;);

local j: process;
R, P’, f ‘: set-of-processes;
known, failed: set-of-processes;

begin
R := Ii);
known := Pi;
failed := fi;
broadcast message (i, Pi, f;) to P;
while (known - failed $Z R) do begin

(j, P’, f ‘) := receive();
if (j B known) then send (i, Pi, fi) to j;
R:=RU(jJ;
known := known U P’;
failed := failed - f I;
end,

print CANDR;
end:

Fig. 6. The distributed algorithm executed by the recov-
ery process for i. Cohorts sets are incomplete; mourned
sets are complete.

4’s mourned set should contain 1 and 2, but instead it contains only 1. (Note
that this is the example of Figure 2.) The problem with the proposed implemen-
tation is that mourned sets cannot be appended to failure notices (in this case,
the timeout). Similar problems arise in implementations based on logical clocks.

Strictly speaking, complete mourned sets are unattainable in any asynchronous
system. However, they can be approximated to an acceptable degree in most
systems. A brute-force approximation is to have a process send failure notices to
all cohorts and wait for acknowledgements whenever it first learns of a failure.
The notices must be sent and acknowledgments received prior to any changes in
the task state. This ensures that mourned sets are complete with respect to the
set of events changing the task state. More cost-effective approaches to main-
taining complete mourned sets exist, but they generally rely on a lower level
failure detection and failure data propagation facility (see [l]).

With long-lived tasks, the process group can be expected to grow to an unwieldy
size. Eventually, the failure data must be either compacted or truncated. Many
applications naturally lend themselves to a compact representation of the failure
data. A common situation is to execute the task on a fixed group of processors
with one operational member on each operational processor. Upon detecting the
failure of its group member, a processor creates a new process, which then joins
the group. Thus, a sequence of member processes with disjoint operational periods
exists at each processor. By cleverly naming the processes of a sequence, it is
possible to represent explicitly the status of the most current member (i.e., the
most recently included member), and to infer the names and the statuses of the
previous members. This can be accomplished, for example, by a two-part process
name: the first part is a sequence identifiers, and the second part is the process’s
position in the sequence.

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Determining the Last Process to Fail - 29

An alternative to clever naming is periodically to discard some of the failure
data. An obvious strategy is to store only Pi - fi for each member i. The set
difference is attractive because its size is bounded by the multiprogramming level
of the task. However, vital information is lost: decision procedures as effective
as the ones proposed herein do not exist for this data.

It is still possible to prune Pi and fi without compromising Corollaries 1 and 2.
Each member i need only maintain information on cohorts whose operational
periods overlap with its own operational period. The formal statement of this
requirement is

Pi > (j 1 l((j’s failure + i’s inclusion) or (i’s failure *j’s inclusion))}.

This new requirement invalidates Lemma 3. Fortunately, Theorem 5 and Cor-
ollaries 1 and 2 are still valid, but they require new proofs since Lemma 3 is used
in their current proofs. Pruning the Pi’s and the fi's does not discard useful
information and, consequently, does not diminish the efficacy of the decision
procedure given in Fig. 6. If LAST is determinable with full failure data from the
processes in R, then LAST is determinable with truncated failure data from R.

We conclude this discussion with a simple extension for allowing a process to
repeatedly join and quit a group. A process can quit a group by simulating a
failure. To do so, it must notify at least one operational member, and to expedite
the determination of LAST, all operational members should be notified. More-
over, it must notify all operational members if complete mourned sets are to be
maintained. If a process is allowed to rejoin a group after quitting, then member
identifiers must be substituted for process names in the foregoing discussion.
Each time a process rejoins, it is assigned a new member identifier that is unique
for the lifetime of the group. Unique member identifiers can easily and cheaply
be generated by augmenting the process name with a count of the number of
times the process has joined the group.

APPENDIX. PARTIAL ORDERINGS

In this appendix we define partial ordering and state several useful properties.
A (strict) partial ordering on a set E is an irreflexive, antisymmetric, and

transitive binary relation (a set of ordered pairs) on E x E. Throughout, we let R
denote an arbitrary partial ordering on E. As a shorthand, we say that R partially
orders E. To denote (ei, ez) E R, we use the infix notation el R e2.

Element e, e E E, is a maximal element with respect to R if and only if there
exists no other element e’, e’ E E, such that e Re’. (Whenever R is obvious from
context, we will drop the phrase “with respect to R.“) Two useful theorems
concerning maximal elements are

THEOREM Al. Let R be a partial ordering on E. If E is nonempty and finite,
then E contains a maximal element with respect to R.

THEOREM A2. Let R be a partial ordering on a finite set E. For every element
e in E, either e is a maximal element with respect to R or there exists a maximal
element emax such that e R emax.

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

30 - Dale Skeen

Both properties can be proved from the above definitions.
Let S be a binary relation, not necessarily a partial ordering, on E x E and let

E’ be a subset of E. The restriction of S to E’ is the set of ordered pairs in S
both of whose elements are in E ‘. If S is a partial ordering, then we have the
following useful result.

THEOREM A3. If S partially orders E, then the restriction of S to E’ partially
orders E’.

In addition, if e is a maximal element of E (with respect to S) and e E E ‘, then
e is a maximal element of E’ with respect to the restriction of S to E’.

To simplify the notation, the term “the restriction of” is often dropped. We
use the term “S partially orders E”’ with the implicit understanding that “the
restriction of S to E’ partially orders E”’ is meant.

ACKNOWLEDGMENTS

I am indebted to Nat Goodman for suggesting the descriptive terminology, in
particular, “mourned sets.” David Wright and the anonymous referees suggested
a number of improvements in the presentation. Fred Schneider deserves special
thanks for carefully reading and critiquing multiple drafts of this paper.

REFERENCES

1. GOODMAN, N., SKEEN, D., CHAN, A., DAYAL, U., Fox, S., AND RIES, D. A recovery algorithm
for a distributed database system. In Proceedings of the 2nd Symposium on the Principles of
Database Systems (Atlanta, Ga., Mar. 21-23). ACM, New York, March 1983, pp. 8-15.

2. HAMMER, M., AND SHIPMAN, D. Re!iability mechanisms for SDD-1: A system for distributed
databases. Trans. Database Syst. 5,4 (Dec. 1980), 431-466.

3. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21, 7 (July 1978), 558-565.

4. WALTER, B. A robust and efficient protocol for checking the availability of remote sites. In
Proceedings of 6th Berkeley Workshop on Distributed Data Management and Computer Networks
(Pacific Grove, Calif., Feb. 1982), pp. 45-68.

Received March 1983; revised August 1984; accepted November 1984.

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

