
Implementing Atomic Actions 
on Decentralized Data 

DAVID P. REED 

Massachusetts Institute of Technology 
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with requirements of decentralized systems is described. In particular, the correct construction and 
execution of a new atomic action can be accomplished without knowledge of all other atomic actions 
in the system that might execute concurrently. Further, the mechanisms degrade gracefully if parts 
of the system fail: only those atomic actions that require resources in failed parts of the system are 
prevented from executing, and there is no single coordinator that can fail and bring down the whole 
system. 
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1. INTRODUCTION 

T h e  r e s e a r c h  r e p o r t e d  h e r e  was  b e g u n  w i t h  t he  i n t e n t i o n  of  d i scove r ing  m e t h o d s  
for  c o m b i n i n g  p r o g r a m m e d  ac t ions  on d a t a  a t  m u l t i p l e  d e c e n t r a l i z e d  c o m p u t e r s  

in to  c o h e r e n t  ac t ions  f o r m i n g  a p a r t  of  a d i s t r i b u t e d  app l i ca t i on  p r o g r a m .  T h e  

p r i m a r y  conce rns  were  t h a t  i t  be  easy  to  c o o r d i n a t e  such  c o m b i n e d  ac t ions  w i t h  

o t h e r  c o n c u r r e n t  ac t ions  access ing  t h e  s a m e  data ,  a n d  t h a t  i t  be  easy  to  h a n d l e  

fa i lu res  in any  p a r t  of  t h e  c o m b i n e d  act ion.  
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In the course of the research it became clear that  coordinating access to data 
and recovery from failures were complementary mechanisms aimed at achieving 
the same goal: providing data and program modules whose behavior is easily 
specified without consideration for the details of the choice of data representation 
or the sequence of primitive steps executed that  achieve the behavior. This 
goal is the familiar "information-hiding principle" elucidated by Parnas [17]. 
Atomic actions make the construction of such modules straightforward: by im- 
plementing operations of a module as atomic actions, concurrency and failure 
can be ignored. 

We describe a new method for synchronization and failure recovery that  can 
be easily implemented in a decentralized system. We concentrate here particularly 
on the application of this method to the implementation of atomic actions. More 
general applications are described in the author's doctoral dissertation [19]. 

In the discussion that  follows, we first define atomic actions and discuss the 
problems of implementing atomic actions in a decentralized system. We then 
describe a way of thinking about objects as sequences of unchangeable versions, 
object histories, that  reflect the sequence of changes made to the object over 
time. Updating an object is thought of as creating a new version, while reading an 
object is thought of as selecting the proper version and obtaining its value. As 
part of this discussion, we describe two complementary techniques for coordinat- 
ing the versions of multiple objects--the possibility, which is a group of tentative 
versions created by updates that  can be "simultaneously" added to the object 
histories, and pseudotime, which is a timelike ordering of events used to select 
the versions of objects that  are read and created by a particular program. An 
example illustrating how the techniques work then follows. Finally, we compare 
these methods with traditional synchronization and recovery mechanisms. 

2. ATOMIC ACTIONS 

We define an atomic action as a program-specified computation that, although 
composed of primitive computational steps executed at different times and in 
different places, cannot be decomposed from the point of view of computations 
outside the atomic action. During the execution of atomic actions, intermediate 
states of data objects that  arise will never be observed by computations outside 
the atomic action. During the execution of an atomic action, objects whose values 
are read by steps of the atomic action can be modified only by other steps 
belonging to the atomic action during the execution of the atomic action. 

Concurrency and failure both threaten to decompose atomic actions. Two 
concurrent programs accessing a shared variable can interact in such a way that  
intermediate states of data within one program are observed by the other. If one 
program modifies the variable while the other is executing, the behavior of the 
first can be affected. Similarly, a program that  halts because of a failure will leave 
intermediate states of data objects exposed. To say that  a program specifies an 
atomic action means that the program must be atomic even in the face of 
concurrent execution and failures. We refine our  definition by the following two 
requirements on the set of computational steps in an atomic action Ap specified 
by program P. 
ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983. 
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(1) Concurrency atomicity. For all executed steps o not in Ap, either o precedes 
all steps in Ap or o follows all steps in Ap.1 

(2) Failure atomicity. Either all steps in Ap complete, or none of them complete. 

To illustrate these concepts, we use a simple example. Consider a bank 
database, where each account is represented by an object whose value is the 
balance of the account {this is an extremely simplistic banking system, of course). 
To transfer money between two accounts, one account's balance must be debited 
and the other credited. If complex banking transactions are allowed to proceed 
concurrently, undesirable behavior may occur. For example, two transactions 
trying to debit the same account may operate incorrectly if both read the value 
before either writes back its debited value. If an audit operation reads the 
balances between the debit and credit for some transaction, some money may 
appear to be missing. Failure can have equally disastrous results, leaving accounts 
in an inconsistent state. 

More abstractly, structuring a system using atomic actions is a key way to 
assure consistency within the system. Consistency is usually proved inductively: 
the system is initially consistent (basis) and each operation is shown to take a 
consistent state into a new consistent state (induction step). By making the 
operations atomic actions, we can ignore concurrency and failures in the proof, 
because the equivalence to a total ordering is assured. We can ignore failures 
because each operation is executed wholly or not at all. Consistency is just one 
example of a property proved by induction on sequences of atomic actions; we 
can also ignore concurrency and failure in proving other inductively proved 
properties if the operations are atomic actions. 

Thus, built-in atomic actions simplify the programmer's task in coping with 
unplanned concurrency and failure. The programmer of an atomic action writes 
his program without concern that  other computations will interfere with data it 
touches. The specification of an atomic action need describe only the ultimate 
effect on shared data in terms of the data's initial state and any other inputs to 
the action, without need to describe any intermediate states assumed by the data, 
since such intermediate states are not visible to computations outside the atomic 
action. Thus the implementation of the atomic action can be significantly modi- 
fied (e.g., doing the credit before the debit, or doing both simultaneously) without 
propagation of changes to actions outside the atomic action. 

Our concept of atomic actions is quite similar to that  of Lomet [16] and also to 
the sphere of control described by Davies [5, 6]. If all computations in the system 
perform all their data accesses as part of atomic actions, then the observable 
behavior of the system will be the same as a serial schedule, as in the definition 
of atomic transaction developed by Eswaran et al. [10]. 

Recovery blocks [18] are also closely related to atomic actions, but recovery 
blocks have no explicit provision for synchronization. The crucial insight we have 

1 If  all steps 0 are part  of some atomic action, then concurrency atomicity is the same as serializability 
[11]. But  we allow here for actions tha t  are not concurrency atomic. An important  example is the 
backup or undo action, which restores the state of a set of objects to that  which existed at some point 
in the past. Such an action should be failure, but  not concurrency, atomic. 
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made is that  the atomic action abstraction arises from consideration of the 
programmer's need to design a program without concerning himself with inter- 
actions from concurrent computations. This leads to the idea of hiding interme- 
diate states within the atomic action, and thus implies both the required syn- 
chronization and recovery. 

3. THE DECENTRALIZED SYSTEM 

It is fairly easy to understand the atomic action abstraction and its implications-- 
the trick is to provide the mechanics that  allow atomic actions to be implemented. 
We are particularly concerned with the mechanics of implementing atomic actions 
in a decentralized distributed computer system. By decentralized computer 
systems we mean a set of computer nodes each consisting of processor, memory, 
and permanent storage (disk), connected together by a communications network. 
Each node can be used as an autonomous computer. The network provides 
sharing of information between these nodes. It is this sharing of information 
among programs executing on distributed nodes that  must be coordinated. 

Communication among nodes is by message passing. The arrival of messages 
at nodes causes execution of programs that  may result in modifying data at that  
node or retrieving data from that  node. In what follows data are modeled as 
recordlike objects that may contain references to other data objects either on the 
same site or on other sites. The algorithms that  manipulate such objects are 
assumed to be implemented by programs existing at multiple sites that  commu- 
nicate by message passing. 

We assume that  individual nodes are capable of providing atomic stable 
storage, that  is, storage blocks that  do not lose their contents as a result of failure, 
and for which there are actions that  read and write entire storage blocks 
atomically. By atomic, we mean that a write operation will either successfully 
write the specified data value or else fail in such a way that  the previous data 
value is left unchanged. No other outcome {e.g., half the data is changed) should 
be possible. Lampson and Sturgis have argued that  it is practical to provide such 
storage and have suggested a technique for implementing it in [15]. For simplicity 
of discussion, atomic stable storage is assumed to be the basis for all data 
structures described here. However, most of the data structures need only be in 
stable storage, that  is, storage that  does not lose its contents, but for which 
failures during a write may leave data incorrect. 

The failures we consider all take the form of failing to carry out a requested 
action. For example, a message may be lost, a processor may stop in the middle 
of a program, or a node may reject a request because it violates protection 
constraints. Many failures can be transformed into this class--for example, 
garbled data messages may be transformed into lost messages by using error 
detecting codes. We do not consider failures where one action is attempted and 
results in a quite different, yet valid, action occurring instead. 

Six objectives related to the distributed system shaped our solution to the 
problem of implementing atomic actions. These are as follows: 

(1) Maximize node autonomy, while allowing multisite atomic actions. The 
maintenance of individual objects should be the responsibility of the node 
ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983. 
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containing the object. Consequently, the implementation of synchronization and 
recovery should be decentralized. However, nodes must work in concert to 
support the implementation of atomic actions involving objects on multiple nodes 
{e.g., the case where the source and destination bank accounts are kept on distinct 
computers). 

(2) Modular composability of atomic actions. It should be possible to combine 
separately written programs that  manipulate shared data objects into one atomic 
action, without the need to plan all such combinations in advance. Many schemes 
for synchronizing access to data fail to satisfy this goal, because mutual exclusion 
mechanisms, such as critical sections [9], synchronizers [2], and monitors [12], 
require advance knowledge of all potentially conflicting users of shared data to 
design the proper synchronization. Such knowledge may not always be available, 
unless the data accessed by all programs in the distributed system can be known 
at the time a new atomic action is created--a condition that  may be difficult to 
achieve in practice. For example, in a system where autonomous users can 
implement new atomic actions, the names of objects accessed by each atomic 
action would have to be stored in some central registry. 

(3) Support for data-dependent access patterns. There are important cases 
where the set of objects to be accessed by an atomic action cannot be predicted 
in advance. In the bank example such a requirement might arise if one could 
associate a "reserve account" with one's normal account. If the balance of the 
normal account is too low to satisfy a debit, the reserve account is debited instead. 
Then one cannot know what accounts will be accessed without accessing them. 
Another example occurs if objects may contain pointers to other objects. 

(4) Minimize additional communication. By doing the necessary synchroni- 
zation at the time and place where shared objects are stored, one can avoid the 
need for finding and synchronizing with remote conflicting actions. In a system 
with shared memory, coordination can be achieved inexpensively by locking 
objects to be accessed before use, and unlocking after the last use. Such locking 
is inexpensive because all processes can easily access the locks and because 
deadlock 'detection or avoidance can be centralized. In a distributed system, 
locking requires interactions among nodes that use the objects and therefore 
substantial communications delays. We thus would like a solution that  uses a 
minimum amount of internode message passing. It is preferable that coordination 
of processes accessing the same object be done as part of the access operations 
themselves, and locally to the node containing the object for reasons of perform- 
ance and autonomy. The best arrangement would be that  only the message 
passing needed to request the actual reads and writes of objects occur. Our 
scheme achieves this minimum. 

(5) No critical nodes. A critical node is one whose failure prevents the entire 
system from being used. Certainly when a node fails, the data it holds become 
inaccessible. However, it should be possible for computations that  do not use data 
on the failed nodes to proceed. 

(6) Unilateral aborting of remote requests. Recovery from failures is made 
difficult in a distributedsystem by the peculiar nature of communication failures. 
In particular, when a requestor requires a service from a server that  involves 
modifying data objects stored at the server, certain kinds of communication 
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failures will leave the requestor in doubt as to whether the server has performed 
the requested action or not. Further actions by the requestor usually require 
successful completion of the request at the server to ensure internode consistency. 
The requestor must wait until the server state can be ascertained, but this can 
take a very long time. If the requestor holds resources needed by other compu- 
tations, then such a failure can cause deadlock. We thus would like a mechanism 
that allows for unilaterally aborting an atomic action, without the need to 
communicate with all the nodes involved in an atomic action. 

4. IMPLEMENTING ATOMIC ACTIONS 

In order to understand our approach to synchronization, it is helpful to think 
about the following noncomputer example. Suppose the personnel officer of a 
company is charged with determining raises for all employees, by reviewing and 
updating their personnel folders accordingly. The personnel officer must also 
submit the total change to higher management for approval. The way he would 
proceed would be to choose the date at which the raise is to be effective, then 
process folders one at a time, perhaps going back to alter an earlier choice he had 
made. The updated salary would not replace the existing salary; instead it would 
be placed in the folder as a tentative increase, effective as of a certain date, 
pending approval by the manager. Queries about the salary by the employee or 
a credit bureau would still show the old salary if processed before the effective 
date, but if a query were to arrive after the effective date, it would be necessary 
to check whether the increase was approved. Once the manager received the 
report and authorized the increase, the salary change would become effective. 
Thereafter, to clean up the folders, the personnel officer might go to each folder 
and stamp the new salary "approved," but this only makes answering queries 
quicker by eliminating the check of whether the increase was approved. 

We now elaborate this strategy in terms useful for the computer. To do so, we 
need to develop three new concepts: (i) use of a timelike ordering, pseudotime, to 
define the interaction between operations on an object (effective dates); (ii) 
representation of each object as an object history of versions (the sequence of 
salaries); and (iii) grouping of tentative versions into sets called possibilities that  
facilitate backward error recovery (the new salaries before authorization). To 
develop each concept, we describe the properties of each and then a plausible 
implementation. 

We then specify READ and WRITE operations on objects (procedures for 
accessing folders). Unlike the usual READ and WRITE operations, the behavior 
of our READ and WRITE is defined in terms of pseudotime, possibilities, and 
object histories. Once we have defined READ and WRITE, we use them to 
implement atomic actions. 

4.1 Object Versions 

We think of each object as a sequence of versions. 2 Each WRITE to an object 
creates a new version, installing it into the sequence of versions, which represents 

2 Our use of object versions is similar to the treatment of synchronization in [21], though our 
mechanism using known histories and pseudotime is quite different. Also closely related is the practice 
of using version numbering for modifications to fries, as in TENEX [4], though such operating systems 
provide no mechanism for interfrie consistency. 
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the history of the object as known so far-- the object history. Once created, a 
version's value does not change. The pseudotime of the write is recorded with the 
version and is used to order the version properly with respect to other versions. 
To READ from an object at pseudotime p, p is used as described below to select 
the proper version of the object to return. 

To simplify the following discussion, we assume that  the complete sequence of 
versions belonging to an object history is stored. We show later how to improve 
the situation so that for most objects only the current version is actually stored. 
For now, we ask that the reader suspend disbelief on this point until we have 
described the basic implementation of objects. 

4.2 Backward Error Recovery 

Before continuing the discussion of how READS and WRITES manipulate the 
object history, we must describe the way failure recovery works. If a failure 
prevents an atomic action from being completed, any WRITE the atomic action 
had done to shared data should be aborted to satisfy the requirement that  no 
intermediate states of atomic actions are visible outside the atomic action. For 
this reason, new object versions are written in two steps. First, each WRITE 
operation creates a tentative version, called a token, in the appropriate object 
history. Thereafter, if the atomic action is committed, all the tokens it has created 
are converted to permanent versions, but if the atomic action is aborted, all the 
tokens it has created are removed from their object histories. 

A token can be thought of as a version whose existence is conditional upon the 
later completion of the atomic action that created it. We call the set of tokens 
created by an atomic action a possibility, since it represents a new state of the 
system whose existence is conditioned by the successful completion of the creating 
atomic action. At the beginning of an atomic action, a new possibility is created. 
Each WRITE done by the atomic action creates a new token and adds that  token 
to the possibility. When the atomic action completes successfully, it commits the 
possibility, so that  all of its tokens become versions. 

Possibilities have two important properties. First, the commit step is atomic; 
even though an arbitrary number of tokens may belong to the possibility, and 
those tokens may be at many nodes, there should be no way for a failure to cause 
only part of the commit step to be completed, changing only some tokens into 
versions. Second, we wish to ensure that, if the atomic action never completes, all 
of the tokens will be erased. We detect that  an atomic action will not complete by 
using a time-out, so that if the atomic action goes into a loop, for example, we can 
still ensure that  the tokens will eventually be erased or converted into versions. 

Until the time the atomic action is either committed or aborted, the final state 
of the tokens created by the atomic action is in doubt. While the status is in 
doubt, computations that  belong to the atomic action may need to read the value 
of its tokens, but computations outside the atomic action must be prevented from 
reading the tokens until the atomic action is completed, lest they obtain values 
that  will be erased by a subsequent failure of the atomic action. 

As an illustration of why tokens must be visible to the atomic action that  
creates them, but not visible outside that action until the action is completed, 
consider our bank example again. Suppose that we wish to do two transfers out 
of the same account as one atomic action. One way to do this is to call on the 
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version of 
object A 

next 
stort 
end 
CR / 

dora 

version of 
object B 

next / 
start 
end 
CR 

data 

commit record 

state of 
possibility 

timeout 

one of: "unknown" 
"committed" 
"aborted" 

Fig. 1. Versions of  several  objects  shar ing  a commi t  record. 

transfer action described earlier twice, once to do each tranfer. The source 
account will then be debited twice, with the second debit action reading the 
reduced balance resulting from the first debit action. This reduced balance will 
be represented as a token in our model, visible to the second part of the double 
transfer action, but not visible to other computations yet, since a failure may 
occur before the second credit is completed, necessitating aborting the whole 
double transfer. 

4.2.1 Implementing Possibilities. An implementation for possibilities works as 
follows. The state of a possibility is represented by a record in atomic stable 
storage called a commit record, which records the state of the possibility and the 
time of its time-out (see Figure 1). When initaUy created, a commit record is in 
the "unknown" state. Committing the possibility is done by changing the state 
atomically to the "committed" state. Aborting the possibility is accomplished by 
changing the state to "aborted." If the state is still "unknown" after the time-out 
elapses, the next time the state is examined, that  activity will change the commit 
record's state to "aborted." 

Every WRITE or READ operation uses a parameter (see Section 4.4) that is 
an identification for the commit record for the atomic action containing that  
WRITE or READ. Each version (whether token or not) contains a commit record 
pointer, stored by the WRITE operation that created it. When a p,'ogram wants 
to read a version, this commit record is first compared with the commit record 
associated with the READ. If the same commit record is used for the version and 
the READ, then the READ is part of the same atomic action as the WRITE that  
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created the version; so it does not matter if the commit record is still in the 
"unknown" state. If different commit records are used, then the READ operation 
checks the state of the version's commit record. If the version's commit record is 
"committed," then the READ operation returns the version's value. If the commit 
record is found to be "aborted," then the READ operation erases the version and 
another version is selected (see Section 4.4 for discussion of how READs select 
the version read). Finally, if the commit record is in the state "unknown," the 
READ operation waits; this wait is bounded by the time-out on the commit 
record. 

4 . 3  P s e u d o t i m e  

We usually describe the effect of reads and writes to an object in terms of the 
time ordering of the reads and writes. Thus, a READ returns a value determined 
by the latest WRITE that precedes the READ. In order to achieve synchroni- 
zation between actions that  manipulate shared data, we must then provide means 
for controlling the real-time ordering of READs and WRITEs. In a decentralized 
system, because of communications failures and delays, correctly enforcing rela- 
tive time orderings between actions is difficult and slow. 

In our approach to synchronization, we have replaced.the real-time ordering 
with ordering by a timelike, totally ordered set called pseudotime. Each READ 
and WRITE operation is assigned a particular pseudotime, and READs and 
WRITEs to shared objects behave such that  a READ returns the value written 
by the latest (in the pseudotime ordering} WRITE that  precedes {again, in 
pseudotime) the READ. The thing that makes pseudotime ordering easier to deal 
with than real-time ordering is that  we are able to devise a decentralized way of 
reserving ranges of pseudotime values that does not require communication 
among the participants. 

Pseudotime must also have two other properties. First, if two steps of a 
computation are ordered such that  step A must occur before step B {e.g., if B 
waits for A to finish), then the pseudotime for step A must precede (in the 
pseudotime ordering} that of step B. This property ensures that  sequential 
programs still behave in the same way as they do in a system where real-time 
orderings define the meaning of reads and writes to shared data. 

The second property loosely links the rate of increase of pseudotime to real 
time. Basically, we would like the pseudotime ordering of two events to correspond 
to their real-time ordering whenever the events occur far enough apart in real 
time. Thus we do not care what pseudotime ordering is assigned to nearly 
simultaneous events that  are not ordered parts of the same computation. We do 
care, though, that  two events that  are observed to be ordered from outside the 
system be ordered in pseudotime in the same way. 

The pseudotime of an event is generated from a pseudotemporal environment. 
Each computation has, as part of its execution state, a pseudotemporal environ- 
ment (PTE) which generates the pseudotimes used by steps of that  computation 
in reading and writing shared data. We describe only the PTEs of atomic actions 
here. 

To guarantee that  other atomic actions do not see intermediate states of 
objects modified by other atomic actions, we require that  for any two atomic 
actions, A and B, either all steps of A must precede (in pseudotime) all steps of 
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B, or all steps of B must precede all steps of A. We achieve this by constraining 
the sets of pseudotimes that  are used in each atomic action so that either all 
pseudotimes used in A precede all those used in B, or all those used in B precede 
all those used in A. 

There are two important operations on pseudotemporal environments and 
pseudotimes. To create a new pseudotemporal environment for an atomic action, 
one executes the following: 

pte ~-- CreateAtomicPTE(). 

The resulting object is a generator of pseudotimes. To generate the next 
pseudotime from a PTE, one executes the following: 

pt ~ NewPT(pte}. 

The result is a pseudotime greater than all pseudotimes previously generated 
using PTE. 

4.3.1. Implementing Pseudotime. We briefly describe an implementation of 
pseudotime and PTEs that  is suitable for a distributed system. The implemen- 
tation uses approximately synchronized real-time clocks at each node of a 
distributed system. Clocks can be synchronized easily to within microseconds 
using the WWV radio time standard broadcast by the National Bureau of 
Standards. Lamport's clock synchronization mechanism would also suffice [14]. 
These clocks are used to create time stamps that  are unique. To the value read 
from the clock, a unique site identifier is concatenated as the low-order bit~. 
Thus, even though two sites need not communicate, it is guaranteed that  the sets 
of time stamps they generate are disjoint. 

A pseudotemporal environment for an atomic action is represented as a two- 
component structure consisting of a time stamp obtained at its creation, and a 
time stamp read as part of the last selection of a pseudotime from the PTE. For 
simplicity, assume that each of these quantities is specified as an N-bit integer. 

A new pseudotime is selected from the pseudotemporal environment by getting 
a time stamp and prefixing it with the time stamp of creation of the PTE (see 
Figure 2}. The time stamp read must be greater than the time stamp of all prior 
selections; if not, either the new selection must wait, or the real-time clock must 
be set forward. The real-time clock value read also replaces the time stamp last 
selected in the PTE. 

Comparison of pseudotimes is done by treating them as binary fractions, where 
the leftmost digit is the high-order bit of the creation time stamp of the source 
PTE. As a result of this definition, the pseudotimes in one PTE always are less 
than any pseudotimes selected from a PTE created later. If two PTEs are created 
"simultaneously" at different sites, pseudotimes from each will be ordered by the 
order induced by the site identifiers that  make time stamps unique in their low- 
order digits. 

Thus far, we have discussed the PTEs and pseudotimes associated with atomic 
actions. Data accesses made by programs outside of atomic actions nonetheless 
use pseudotimes. Such pseudotimes are derived from a simpler kind of PTE that  
consists only of a cell containing the time of last selection. A new pseudotime is 
selected by just reading a time stamp and storing it in the PTE. Treating these 
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Fig. 2. 

PTE 

pseudo-time real time c lock  
(2N bits~ at current site 

Selecting a new pseudo t ime  f rom pseudo tempora l  env i ronmen t  for an  a tomic action. 

N-bit time stamps as binary fractions orders them correctly with respect to the 
{longer) time stamps belonging to atomic actions. 

The use of time stamps for synchronization was originally developed by 
Johnson and Thomas [13]. Later work by Thomas [23] and Bernstein et al. [3] 
has carried this approach further. We were inspired by these approaches, though 
they did not use the time stamps in the way we have described. 

4.4 Coordinating Object Reading and Writing 

We now define the READ and WRITE operations in terms of the above concepts. 
The READ operation selects the proper version of the object, ensures that  it is 
readable, by the requesting computation, and returns the value. The WRITE 
operation creates a token in the object history. Additional parameters to the 
READ and WRITE operations specify the pseudotime and possibility to be used 
in each operation. In a practical system, these additional parameters would be 
provided implicitly by the system; we give them explicitly to simplify our notation. 
Thus, we have the operations 

v ~-- READ(o, p, q) 

and 

WRITE(o, v, p, q) 

where v is the value, o is the object identifier, p is the pseudotime, and q is the 
possibility. 

Before discussing the implementation of READ and WRITE operations, it is 
important to emphasize that we place n o  constraint on the real-time order of 
processing of READ and WRITE operations on an object. Thus a READ of an 
object at pseudotime p may arrive at and be processed by the node containing 
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the object before a WRITE whose pseudotime is less than p. In a distributed 
system, delays in transmitting messages may be unbounded as a result of network 
congestion or transient failures, resulting in such out-of-order arrivals. Since 
nodes are not ominiscient, they will process READ soon after arrival, although 
there may be some point in holding a READ for a small amount of time in case 
the WRITE arrives slightly late. If a WRITE with a pseudotime less than an 
already executed READ arrives at a site, it cannot be executed, for that  would 
cause the value previously returned by the READ to be incorrect. Consequently, 
such a late-arriving WRITE will be rejected. 

In order to keep track of the reads that have been executed, each version 
records the maximum pseudotime of the READs that  have accessed that  version. 
A late-arriving WRITE is detected by the fact that  its pseudotime p is in the 
interval between the pseudotime of the WRITE creating a version and the 
maximum READ pseudotime of that version. 

To execute the write command WRITE(o, v, p, q), the system first checks to 
see if there is already a version that  exists at the pseudotime p. If so, then an 
error is signaled. Otherwise, a new token is created and sorted into the object 
history according to the pseudotime p. The pseudotime p and possibility q are 
recorded in the version. 

To execute the operation v *-- READ(o, p, q), we must first determine which 
version is the proper one to access. The READ operation must use the version 
created by the WRITE with largest pseudotime that  does not exceed p. To 
determine if we can return the value of the version, we first check whether the 
possibility recorded by the WRITE is the same as q. If so, the value of the version 
can be returned; if not we check to see if the version is committed, by testing the 
state of the possibility recorded when it was written. If the state is "unknown," 
then the READ operation waits until the state becomes either "aborted" or 
"committed." If the state is "committed," then the value of the version can be 
returned as the result of the READ. If the state is changed to "aborted," then the 
version is removed from the object history and the previous value is returned. 
Before the value is returned, the maximum read pseudotime is updated to p if 
necessary. 

For illustrative purposes, we can represent object histories as a sorted linked 
list of versions, as in Figure 3. Each version contains a value (DATA), the 
pseudotime of the WRITE that created it (PTW), the maximum read pseudotime 
(PTR), and the identifier of the possibility that  created it (a pointer to a commit 
record, CR). The list is sorted in order of decreasing pseudotimes. Figure 3 also 
shows how we WRITE(o, v, p, q) by adding a token. This token becomes a 
version if and when the state of q is changed to "committed," or it will be deleted 
if and when q's state is changed to "aborted." 

5. EXECUTING AN ATOMIC ACTION 

An atomic action consists of a prologue, an epilogue, and the sequence of steps 
that carry out the desired actions. The prologue consists of constructing a new 
pseudotemporal environment for the atomic action and a new commit record. 
The epilogue consists of changing the state of the commit record from "unknown" 
to "committed." If the commit record is already in the aborted state, due to a 
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Fig. 3. Object  history.  

time-out or a unilateral attempt to abort the action, the commit record's state is 
not changed and the fact that the atomic action has failed is reflected to the 
invoker. The epilogue must be executed only when it is known that  all steps of 
the atomic action have finished correctly. Thus, positive acknowledgments must 
be received from all remote nodes that execute parts of the atomic action. 3 If the 
epilogue is not executed (as when the node that  would execute it crashes}, the 
time-out on the commit record will eventually cause the tokens created by the 
failing atomic action to be erased. 

All reads and writes executed by the atomic action are done by executing 
READ and WRITE operations with pseudotimes obtained from the atomic 
action's PTE and with the commit record constructed in the prologue. The PTE 

3 Actually,  no t  all s teps  have  to succeed. T h e  atomic act ion m a y  provide for th is  in the  a l ternat ive  
steps.  
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provides the atomic action with exclusive access to a range of pseudotimes tha t  
will not  be used by other  programs. Thus  a version wri t ten as par t  of the atomic 
action will be observable by o ther  computat ions  only if it is the final version of 
tha t  object  wri t ten by the atomic action; versions with pseudot imes earlier than  
the final one cannot  be re turned  as a result  of a R E A D  with a pseudot ime later  
than  those in the atomic action's PTE.  

5.1 Example Atomic Action 
Let  us consider the case of the t ransfer  between two bank account  balances, B1 
and B2, in more  detail. T h e  atomic action is executed as six steps, as follows. If  
any of steps 2-5 fail, the whole action is abor ted  by not  executing step 6. Th e  
t ime-out  on the possibility will eventual ly erase all tokens written, bu t  if a failure 
is detected,  the atomic action may  choose explicitly to set the possibility's state 
to "abor ted"  to speed things up. 

1. Create a new possibility Q and a new pseudotemporal environment E. 
2. Select pseudotime P1 from E, and READ(B1, P1, Q, balance). 
3. Select P2 from E, and WRITE(B1, P2, Q, balance-amount). 
4. Select P3 from E, and READ(B2, P3, Q, balance). 
5. Select P4 from E, and WRITE(B2, P4, Q, balance + amount). 
6. Try to change the state of Q from "unknown" to "committed." 

Because of the order  of the steps, we know tha t  P1 < P2 < P3 < P4, and tha t  
all pseudot imes used in o ther  computat ions  are e i ther  less than  P1 or greater  
than  P4. As a result, step 2 will read a version of B1 and step 3 will create the 
succeeding version. Figure 4 shows the state of B l ' s  object  history after  step 3. 
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Similarly, step 4 will read a version of B2, and step 5 will create the succeeding 
version. Note that  another program executing a read on B1 whose pseudotime is 
later than P2 will wait until step 6 is completed or the atomic action is aborted. 

Problems may occur, however, if some other computation executes a READ on 
B1 or B2 with a pseudotime greater than P4. Consider the case of a READ(B2, 
P5 . . . .  ) that  is processed before the above transfer executes step 5. Then the 
value returned by the read at P5 will be the value of a version created before P1, 
and that  version's maximum read pseudotime will be set to P5. The object history 
for B2 at this point is shown in Figure 5. When step 4 is executed, it will return 
the same value in its READ, but the write in step 5 will be rejected. The transfer 
atomic action will then fail, either explicitly changing Q's state to "aborted," or 
just by doing nothing and letting the commit record time out. 

This case of READs aborting WRITEs should not be too surprising. It is 
analogous to aborting an atomic action because of a detected deadlock in a 
scheme that uses locking to achieve synchronization. The likelihood of frequent 
aborts due to this cause grows with the frequency with which separate atomic 
actions at tempt to use the same object nearly simultaneously. We believe that in 
a decentralized system, such conflicts will be relatively rare, and so the overall 
performance degradation will be acceptable. It seems to be a price that must be 
paid in order to allow atomic actions to be constructed without knowledge of the 
other users of data they modify. 

6. PRAGMATIC IMPLEMENTATION ISSUES 

To implement these ideas effectively and efficiently, there are several issues that  
must be addressed. Here we outline approaches to some of these. 

6.1 Representation of Versions 

With two exceptions, versions are never modified once created. If we can eliminate 
the need for any modifications, we can benefit (a) in performance because fewer 
writes to stable storage will be needed and (b) by allowing versions to be 
implemented in a write-once stable medium such as an optical disk. As part of 
the SWALLOW project [1, 20, 22], we have solved these problems. To eliminate 
the need for modifying the chain pointers when adding a token, we restrict the 
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implementation to adding new versions at the front of the list (so only more 
current versions can be added). To eliminate the need for modifying the maximum 
READ pseudotime, we observe that  if new versions can be added only on the 
front of the list, then we need to store a maximum READ pseudotime only for 
the most recent version. The other maximum READ pseudotimes will be replaced 
by an implied value just less than the WRITE pseudotime of the next version. 
The maximum READ pseudotime for the latest version can be stored in the 
object header, or in a separate table maintained in faster storage that  maps each 
object header to its maximum READ pseudotime. This latter strategy was finally 
chosen for SWALLOW. The table can be compressed by restricting the length of 
time, 8, that  ar/atomic action can run before writing. Then the table need only 
store the maximum pseudotimes of current versions created less than 8 time units 
ago. For all other objects, the maximum READ pseudotime will be T - 8 where 
T is the current real time. 

6.2 Impact of Distribution on Availability 

The trick we used to ensure failure atomicity is to make the commit action for all 
tokens in a possibility atomic by representing the state of the possibility in one 
place--the commit record. There are two drawbacks to this trick. First, if data 
objects are stored on multiple nodes, reading a version will often involve delay 
due to accessing the commit record. However, once a read of a version discovers 
that  the commit record is in the committed state, that  information can be 
recorded with the version, so that  later reads need not check the commit record 
state. Once all versions have recorded the state of the commit record (either 
turning from tokens into ordinary versions, or being erased), the commit record 
can be deleted. Second, the node containing the commit record becomes a critical 
resource, since its unavailability will prevent the state of many objects from being 
ascertained. This problem can be alleviated by distributing the commit record's 
state on multiple nodes, using a voting strategy [19]. 

6.3 Pruning Object Histories 

For most practical systems, our implementation so far suffers from a serious 
problem. Since all versions of an object are stored forever, the total storage used 
by the system will increase at a rate proportional to the update traffic in the 
system. Consequently, we would like to be able to throw away old versions of the 
objects in the system. We can do this pruning of versions without much additional 
mechanism, however. 

Before explaining how the pruning works, though, it is worthwhile to consider 
why one might n o t  want to throw away old object versions. One reason is that  
the object histories provide exactly the information needed to go back to an 
earlier state of the system and restart it. One need merely pick a pseudotime that  
does not correspond to a point in the middle of an atomic action (in terms of the 
implementation sketched above, any N-bit time stamp is such a pseudotime), 
and use it to READ all the objects in the system. Since the objects are read in 
between atomic actions, the system state thus read will be consistent. This kind 
of checkpointing and backup to previous states is usually added on as a separate 
mechanism to systems without explicit mechanisms to support atomic actions. 
As a result, checkpoints in such systems usually can contain inconsistent data. 
ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983. 
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Another use for maintaining old versions is to support very large, slow, read-only 
atomic actions. If a read-only atomic action is executed in a system that maintains 
only one version of each object (e.g., as in a system that  uses locks for synchro- 
nization), then it will either delay all computations that  use the data it reads until 
it completes, or it will not be able to complete because writes to data it needs will 
make it impossible to access a consistent system state. If old versions are kept 
around, a very slow read-only atomic action will always be able to find the 
versions that  it needs, even though writes at larger pseudotimes are executed, 
creating new versions. Such large read-only transactions do occur in practice, 
usually as the result of a need to provide an unanticipated kind of summary 
report about information maintained in a large database. Finally, we note that if 
a naturally write-once storage technology {such as laser-written optical storage) 
is used, retaining old versions is unavoidable (so we can "make a virtue out of 
necessity"). 

Assuming that  we want to prune old versions, the only problem is to ensure 
that we do not allow writes to take place that  would create new, different versions 
in the same range of pseudotime where an old one exists. We must also make 
sure that  at least the most current committed version of each object is retained. 

A simple and practical pruning mechanism works as follows: whenever a version 
has a pseudotime less than the most recent committed version, it is eligible for 
pruning. We only prune versions whose PTR field is less than a threshold equal 
to T - d where T is the current real time, as obtained from the node's N-bit real- 
time clock, and d is a positive constant. The significance of d is that the only 
objects for which noncurrent versions are retained are those that  were written by 
atomic actions that started within the last d time units. If d is zero, then only the 
most recent committed version of each object and any tokens created by atomic 
actions in progress are kept. Essentially this is equivalent to a locking strategy. 
Setting d to be greater than zero retains some old versions, so that late-arriving 
reads (from large read-only actions) can proceed. A good value for d can be 
chosen by noting,the likely amount of time between the start of an atomic action 
and the time its last read arrives at the node containing the object read. 

The amount of storage used for objects if this pruning algorithm is used is 
roughly the sum of two quantities--the total amount of storage used for the 
"current" versions of all the objects, plus the storage needed to hold any other 
versions of objects that  were created by writes in the last d time units. The 
second quantity is roughly constant, assuming a constant update traffic, and is 
proportional to the overall system update traffic. Since most large databases do 
not have a high update traffic (i.e., a very small part of the database is actually 
modified during any short time period), the overhead is likely to be small. 

If pruning occurs, the algorithms for READ and WRITE described earlier need 
to be modified so that READs and WRITEs whose pseudotime is older than 
T - d are rejected. Such rejections add another way in which atomic actions 
abort. 

6.4 Extensions 

A major goal is that atomic actions be modularly composable operations. That  is, 
one can implement atomic actions so that new atomic actions can be constructed 
out of previously existing atomic actions without either (a) modifying the preex- 
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isting implementations or {b) requiring that  the new actions know what objects 
the preexisting atomic actions access. Locking mechanisms for providing syn- 
chronization or recovery for atomic actions make it difficult thus to compose 
atomic actions because of the need to have at least one instant of time where all 
data touched by an atomic action are locked. Composing atomic actions in a 
system based on locking thus requires extending the time during which an object 
is locked. 

Implementing composable atomic actions requires extending pseudotemporal 
environments and possibilities. PTEs are extended so that  a nested atomic action 
has exclusive access to a contiguous subset of the pseudotimes in its containing 
atomic action's PTE. Similarly, possibilities are given a hierarchically nested 
structure. The details of these extensions can be found in the author's disserta- 
tion [19]. 

A commit record can be deleted after the last token referring to it is either 
aborted or committed. This deletion requires an augmented protocol presented 
in [20]. 

In a distributed system, where communication is costly, it may improve 
performance to encache the state of an object at a site other than its home site. 
Versions of objects provide a useful unit of encachement, and strategies for 
distributing new versions of encaching sites can use the fact that  the {object 
name, pseudotime) pair uniquely identifies the version. 

If READs and WRITEs to objects in a distributed system are requested by 
messages, the mechanisms outlined in this paper work correctly, even if the 
communications system reorders the messages, duplicates them, or loses them. 
The reason for this is that  the pseudotime and possibility required for each 
READ and WRITE provide enough identification to order each READ or 
WRITE request's effect on the object, and to ensure that  a request is idempotent 
(may be executed repeatedly, with the same effect as if executed once). 

7. CONCLUSIONS 

In this paper, we have concentrated our attention on one aspect of synchroniza- 
t ion-contro l  of simultaneous access to shared data objects. It has been traditional 
to treat shared data synchronization with the same ideas and mechanisms as 
other problems of synchronization, such as disk queue scheduling and processor 
multiplexing, even though synchronization of access to data is a very simple and 
important case. The power of synchronization mechanisms has been measured 
by determining what "synchronization problems" they can and cannot solve, 
where such problems often have little to do with the important case of concurrent 
access to data. 

As we have seen, by treating data synchronization alone, we need not be so 
concerned about the timing of programs accessing data, but rather we can 
concern ourselves with the more relevant requirement that  the program access 
the correct states of the data. The division of synchronization into two classes, 
data access synchronization and process (timing) synchronization, seems to be a 
useful and powerful division. 

Our view that a data object really stands for a sequence of states and that  
accesses (reads and writes) to the object are operations on that  sequence is rather 
powerful. Pseudotime can be thought of as a naming mechanism for successive 

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983. 



Implementing Atomic Actions on Decentralized Data 21 

states of all objects in the system. Because we implement programs with that  
naming mechanism, programs accessing shared objects can be defined without 
need to consider their timing explicitly. Since timing of programs is one of the 
attributes of program execution over which the designer has little control (espe- 
ciaUy in distributed systems), reducing the importance of timing in understanding 
program execution simplifies the design task. 

Pseudotimes and possibilities provide a "language" for describing the desired 
coordination of actions. In a distributed system, a remote request specified in 
high-level terms ("perform this set of account transfers") can be qualified with a 
pseudotemporal environment and possibility to ensure atomicity. This qualifica- 
tion can be specified without the requestor knowing what steps are carried out by 
the server. Thus one can ensure atomicity without compromising the ability to 
build abstract, modular interfaces. To work correctly, the modules that  implement 
abstract requests need only pass the PTE and possibility through to the under- 
lying READ and WRITE operations. If the basic operations are other than 
READ and WRITE, then assuming that these other basic operations are designed 
so that  their state changes correspond to the pseudotime ordering and commit/ 
abort with the possibility, one can still build atomic actions. Thus our scheme fits 
naturally with modular programming styles. 

Our two-phase implementation of atomic actions is a close relative of the two- 
phase commit described by Gray [11] and Lampson and Sturgis [15]. In particular, 
the state of the commit record is analogous to the state of the coordinator process 
of Lampson and Sturgis. They also divide writes into two steps, creating a 
tentative value to be written and then doing the write. The major difference is 
that, in our scheme, the uncommitted state of the token prevents other atomic 
actions from reading it. In their schemes, uncommitted data are not stored as 
part of the object, which leads to two difficulties. First, additional synchronization 
is needed in their schemes, so they use write-locks. Second, writes are stored into 
the object only after the entire atomic action is committed, preventing the 
possibility of storing results as they are generated, in parallel with the computa- 
tion. This parallel storing of results is a potential performance improvement that  
results from our scheme. 

It is interesting to note that our object semantic model is somewhere between 
the traditional von Neumann machine semantics based on changeable memory 
locations and the more recent "side-effect-free" machine semantics best illus- 
trated by data-flow machine architecture [7]. Although our objects can be 
updated, they are built on a substructure consisting of immutable object versions 
that  correspond to the structured objects available in a data-flow machine. The 
immutability of object versions leads to the same advantage that  is accrued from 
immutability in a data-flow architecture: the timing of concurrent programs is 
not important to the behavior of the program. However, by supporting an update 
semantics on top of the immutable versions, we support a user view of the system 
as an extensive memory with state-changing operations, a view that  seems to be 
better for interuser sharing. Thus, we may have achieved the "best of both 
worlds." 

It is worthwhile noting the relationship between the idea of maintaining object 
histories and two other ideas. An important notion in managing recovery of 
databases is the idea of a log [10]. Normally, a log consists of a time-ordered list 
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of all old versions of data objects. Our object histories might be thought of as a 
"distributed log." The object history is also closely related to the history arrays 
of Dennis and Van Horn [8], which were used to describe the essential orderings 
among concurrent programs accessing shared data. In this context it is worthwhile 
to note that  the idea of synchronization using object histories and pseudotimes 
allows us to increase parallelism, though that  is not our primary goal. This is 
because the essential orderings are captured in the relationships between pseu- 
dotime values, rather than in the flow of control between steps of the programs. 

In a system designed to be used in building modular abstract operations, both 
the synchronization and recovery mechanisms must be designed to preserve the 
degree of abstraction of the module interface. Either inadequate synchronization 
or inadequate recovery from failures could result in compromising the abstraction, 
and therefore both mechanisms must be present and correct to provide such 
abstractions. We have shown both a synchronization mechanism and a mecha- 
nism that  provides limited backward error recovery that  work well together in 
building atomic actions, a kind of abstract operation. We believe that  such 
mechanisms must be designed to work together; the traditional approach of 
implementing reliability measures and synchronization measures independently 
would not work in the distributed computing environment. 
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