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This paper describes the motivation, design, and performance of Porcupine, a scalable mail
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1. INTRODUCTION

The growth of the Internet has led to the need for highly scalable and
highly available services. This paper describes the Porcupine scalable
electronic mail service. Porcupine achieves scalability by clustering many
small machines (PCs), enabling them to work together in an efficient
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manner. In this section, we describe system requirements for Porcupine
and relate the rationale for choosing a mail application as our target.

1.1 System Requirements

Porcupine defines scalability in terms of three essential system aspects:
manageability, availability, and performance. Requirements for each fol-
low:

(1) Manageability requirements. Although a system may be physically
large, it should be easy to manage. In particular, the system must
self-configure with respect to load and data distribution and self-heal
with respect to failure and recovery. A system manager can simply add
more machines or disks to improve throughput and replace them when
they break. Over time, a system’s nodes will perform at differing
capacities, but these differences should be masked (and managed) by
the system.

(2) Availability requirements. With so many nodes, it is likely that some
will be down at any given time. Despite component failures, the system
should deliver good service to all of its users at all times. In practice,
the failure of one or more nodes may prevent some users from accessing
some of their mail. However, we strive to avoid failure modes in which
whole groups of users find themselves without any mail service for even
a short period.

(3) Performance requirements. Porcupine’s single-node performance
should be competitive with other single-node systems; its aggregate
performance should scale linearly with the number of nodes in the
system. For Porcupine, we target a system that scales to hundreds of
machines, which is sufficient to service a few billion mail messages per
day with today’s commodity PC hardware and system area networks.

Porcupine meets these requirements uniquely. The key principle that
permeates the design of Porcupine is functional homogeneity. That is, any
node can execute part or all of any transaction, e.g., for the delivery or
retrieval of mail. Based on this principle, Porcupine uses three techniques
to meet our scalability goals. First, every transaction is dynamically
scheduled to ensure that work is uniformly distributed across all nodes in
the cluster. Second, the system automatically reconfigures whenever nodes
are added or removed, even transiently. Third, system and user data are
automatically replicated across a number of nodes to ensure availability.

Figure 1 shows the relationships among our goals and key features or
techniques used in the system. For example, dynamic scheduling and
automatic reconfiguration make the system manageable, since changes to
the size or the quality of machines, user population, and workload are
handled automatically. Similarly, automatic reconfiguration and replica-
tion improve availability by making email messages, user profiles, and
other auxiliary data structures survive failures.
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Today, Porcupine runs on a cluster of 30 PCs connected by a high-speed
network, although we show that it is designed to scale well beyond that.
Performance is linear with respect to the number of nodes in the cluster.
The system adapts automatically to changes in workload, node capacity,
and node availability. Data are available despite the presence of failures.

1.2 Rationale for a Mail Application

Although Porcupine is a mail system, its underlying services and architec-
ture are appropriate for other systems in which data are frequently
written, and where good performance, availability, and manageability at
high volume are demanded. For example, Usenet news, community bulletin
boards, and large-scale calendar services are good candidates for deploy-
ment using Porcupine. Indeed, we have configured Porcupine to act as a
Web server and a Usenet news node. In this paper, however, we focus on
the system’s use as a large-scale electronic mail server.

We chose a mail application for several reasons. First is need: large-scale
commercial services now handle more than 10 million messages per day.
Anticipating continued growth, our goal with Porcupine is to handle
billions of messages per day on a PC-based cluster. Second, email presents
a more challenging application than that served by conventional Web
servers, which have been shown to be quite scalable. In particular, the
workload for electronic mail is write intensive, and most of the Web scaling
techniques, such as stateless transformation [Fox et al. 1997] and caching
[Chankhunthod et al. 1996; Pai et al. 1998], become useless for write-
intensive workloads. Finally, consistency requirements for mail, compared
to those for a distributed file or database system, are weak enough to
encourage the use of replication techniques that are both efficient and
highly available.

1.3 Organization of the Paper

The remainder of this paper describes Porcupine’s architecture, implemen-
tation, and performance. Section 2 presents an overview of the system’s
architecture and compares our architecture with alternatives. Section 3
describes how the system adapts to changes in configuration automatically,

Fig. 1. The primary goal of Porcupine is scalability defined in terms of manageability,
availability, and performance requirements. In turn, these requirements are met through
combinations of the three key techniques shown above.
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while Section 4 presents Porcupine’s approach to availability. In Section 5
we describe the system’s scalable approach to fine-grained load balancing.
Section 6 evaluates the performance of the Porcupine prototype on our
30-node cluster. Section 7 discusses some of the system’s scalability limita-
tions and areas for future work. In Section 8, we discuss related work, and
we draw conclusions in Section 9.

2. SYSTEM ARCHITECTURE OVERVIEW

Porcupine is a cluster-based, Internet mail service that supports the SMTP
protocol [Postel 1982] for sending and receiving messages across the
Internet. Users retrieve their messages using any mail user agent that
supports either the POP or IMAP retrieval protocols [Myers and Rose 1996;
Crispin 1996].

A key aspect of Porcupine is its functional homogeneity: any node can
perform any function. This greatly simplifies system configuration: the
system’s capacity grows and shrinks with the number and aggregate power
of the nodes, not with how they are logically configured. Consequently,
there is no need for a system administrator to make specific service or data
placement decisions. This attribute is key to the system’s manageability.

Functional homogeneity ensures that a service is always available, but it
offers no guarantees about the data that the service may be managing.
Replicated state serves this purpose. There are two kinds of replicated state
that Porcupine must manage: hard state and soft state. Hard state consists
of information that cannot be lost and therefore must be maintained in
stable storage. For example, an email message and a user’s password are
hard state. Porcupine replicates hard state on multiple nodes to increase
availability and to survive failures. Soft state consists of information that,
if lost, can be reconstructed from existing hard state. For example, the list
of nodes containing mail for a particular user is soft state, because it can be
reconstructed by a distributed disk scan. Most soft state is maintained on
only one node at a given instant, and is reconstructed from hard state after
failure. The exception is when directories that name and locate other states
are themselves soft state. Such directories are replicated on every node to
improve performance.

This approach minimizes persistent store updates, message traffic, and
consistency management overhead. The disadvantage is that soft state may
need to be reconstructed from distributed persistent hard state after a
failure. Our design seeks to ensure that these reconstruction costs are low
and can scale with the size of the system. In Section 6, we demonstrate the
validity of this design by showing that reconstruction has nominal over-
head.

The following subsections describe Porcupine’s data structures and their
management.
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2.1 Key Data Structures

Porcupine consists of a collection of data structures and a set of internal
operations provided by managers running on every node. The key data
structures found in Porcupine are:

—Mailbox fragment. The collection of mail messages stored for a given
user at any given node is called a mailbox fragment; the fragment is also
the unit of mail replication. A Porcupine mailbox is therefore a logical
entity consisting of a single user’s mailbox fragments distributed and
replicated across a number of nodes. There is no single mailbox structure
containing all of a user’s mail. A mailbox fragment is hard state.

—Mail map. This list describes the nodes containing mailbox fragments
for a given user. The mail map is soft state. For the sake of brevity, we
pretend that each user has only one mailbox throughout this paper; in
fact, Porcupine supports multiple mailboxes per user, and the mail map
actually maps a pair ^user, mailbox& to a set of nodes.

—User profile database. This database describes Porcupine’s client pop-
ulation, i.e., it contains user names, passwords, etc. It is persistent,
changes infrequently for a given user, and is partitioned and replicated
across nodes. The user profile database is hard state.

—User profile soft state. Porcupine separates the storage and the man-
agement of user profile, which is distributed dynamically to improve
performance. Each Porcupine node uniquely stores a soft-state copy of a
subset of the profile database entries. Accesses and updates to a profile
database entry begin at the node holding the soft-state copy of that entry.
This data structure is soft state.

—User map. The user map is a table that maps the hash value of each
user name to a node currently responsible for managing that user’s
profile soft state and mail map. The user map is soft state and is
replicated on each node.

—Cluster membership list. Each node maintains its own view of the set
of nodes currently functioning as part of the Porcupine cluster. Most of
the time, all nodes perceive the same membership, although a node’s
arrival or departure may cause short-term inconsistencies as the system
establishes the new membership. During network partition, inconsisten-
cies may last for a long time. Various system data and services, such as
the user map and load balancer, automatically respond to changes in the
cluster membership list. The cluster membership list is soft state and is
replicated on each node.

2.2 Data Structure Managers

The preceding data structures are distributed and maintained on each node
by several essential managers shown in Figure 2. The user manager
manages soft state including user profile soft state and mail maps. By
spreading the responsibility for servicing accesses to the user profile
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database across all nodes in the system, larger user populations can be
supported simply by adding more machines.

Two managers, the mailbox manager and the user database manager,
maintain persistent storage and enable remote access to mailbox fragments
and user profiles.

The replication manager on each node ensures the consistency of repli-
cated objects stored in that node’s local persistent storage.

The membership manager on each node maintains that node’s view of the
overall cluster state. It tracks which nodes are up or down and the contents
of the user map. It also participates in a membership protocol to track that
state. The load balancer on each node maintains the load and disk usage of
other nodes and picks the best set of nodes to store or read messages. The
RPC manager supports remote intermodule communication.

On top of these managers, each node runs a delivery proxy to handle
incoming SMTP requests and retrieval proxies to handle POP and IMAP
requests.

The Porcupine architecture leads to a rich distribution of information in
which mail storage is decoupled from user management. For example,

Fig. 2. Each node in Porcupine runs the same set of modules shown in this picture. A solid
arrow shows that a module calls another module within the node, and a dotted arrow shows
that a module calls another module in a remote node using the RPC module.
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Figure 3 shows a sample Porcupine configuration consisting of two nodes
and three users. For simplicity, messages are not shown as replicated. The
user manager on node A maintains Alice’s and Bob’s soft state, which
consists of their user profile database entries and their mail maps. Simi-
larly, the user manager on node B maintains Chuck’s soft state.

2.3 A Mail Transaction in Progress

In failure-free operation, mail delivery and retrieval work as follows.

2.3.1 Mail Delivery. Figure 4 shows the flow of control during mail
delivery. An external mail transfer agent (MTA) delivers a message to a
user hosted on a Porcupine cluster by discovering the IP address of any
Porcupine cluster node using the Internet’s Domain Name Service [Brisco
1995] (step 1). Because any function can execute on any node, there is no
need for special front-end request routers [Cisco Systems 1999; Foundry
Networks 1999], although nothing in the system prevents their use.

To initiate mail delivery, the MTA uses SMTP to connect to the desig-
nated Porcupine node, which acts as a delivery proxy (step 2). The proxy’s
job is to store the message on disk. To do this, it applies the hash function
on the recipient’s name, looks up the user map, and learns the name of the
recipient’s user manager (step 3). It then retrieves the mail map from the
user manager (steps 4 and 5) and asks the load-balancing service to choose
the best node from that list. If the list is empty or all choices are poor (for
example, overloaded or out of disk space), the proxy is free to select any

Fig. 3. This picture shows how a two-node cluster might distribute email messages. The user
map (shown as four-entry wide in the picture, but 256-entry wide in the implementation) is
replicated on each node. For example, a node learns that Bob is managed by node A, because
the hash value of the string “Bob” is 3, and the entry number three in the user map is A. To
read Bob’s messages, the mail client consults the user manager on A to obtain Bob’s profile
(password is shown as “p”) and mail map ({A, B}) and contacts each node in the mail map to
read Bob’s messages.
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other node (step 6). The proxy then forwards the message to the chosen
node’s mailbox manager for storage (step 7). The storing node ensures that
its participation is reflected in the user’s mail map (step 8). If the message
is to be replicated (based on information in the user’s profile), the proxy
selects multiple nodes on which to store the message.

2.3.2 Mail Retrieval. An external mail user agent (MUA) retrieves
messages for a user whose mail is stored on a Porcupine cluster using
either the POP or IMAP transfer protocols. The MUA contacts any node in
the cluster to initiate the retrieval. The contacted node, acting as a proxy,
authenticates the request through the user manager for the client and
discovers the mail map. It then contacts the mailbox manager at each node
storing the user’s mail to request mail digest information, which it returns
to the MUA. Then, for each message requested, the proxy fetches the
message from the appropriate node or nodes. If the MUA deletes a message,
the proxy forwards the deletion request to the appropriate node or nodes.
When the last message for a user has been removed from a node, that node
removes itself from the user’s mail map.

2.4 Advantages and Trade-Offs

By decoupling the delivery and retrieval agents from the storage services
and user manager in this way, the system can balance mail delivery tasks
dynamically; any node can store mail for any user, and no single node is
permanently responsible for a user’s mail or soft profile information. A
user’s mail can be replicated on an arbitrary set of nodes, independent of
the replication factor for other users. If a user manager goes down, another
will take over for that manager’s users. Another advantage is that the
system becomes extremely fault tolerant by always being able to deliver or
retrieve mail for a user, even when nodes storing the user’s existing mail

Fig. 4. This picture shows how an external mail transfer agent (MTA) delivers a message to
Bob. The MTA picks B, through DNS-RR, as the SMTP session partner (steps 1 and 2). B
obtains Bob’s mailbox fragment from A (steps 3 through 5) and determines that C is the best
node to store the message (step 6). C updates Bob’s mailbox fragment after storing the
message (steps 7 and 8).
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are unavailable. The final advantage is that the system is able to react to
configuration without human intervention. Newly added nodes will auto-
matically receive their share of mail-session and storage-management
tasks. Crashed or retired nodes will be excluded from the membership list
and mail maps automatically, leaving no residual information on other
nodes.

The system architecture reveals a key tension that must be addressed in
the implementation. Specifically, while a user’s mail may be distributed
across a large number of machines, doing so complicates both delivery and
retrieval. On delivery, each time a user’s mail is stored on a node not
already containing mail for that user, the user’s mail map (a potentially
remote data structure) must be updated. On retrieval, aggregate load
increases somewhat with the number of nodes storing the retrieving user’s
mail. Consequently, it is beneficial to limit the spread of a user’s mail,
widening it primarily to deal with load imbalances and failure. In this way,
the system behaves (and performs) like a statically partitioned system
when there are no failures and load is well balanced, but like a dynamically
partitioned system otherwise. Section 5 discusses this trade-off in more
detail.

2.5 Alternative Approaches

Existing large-scale mail systems assign users and their data statically to
specific machines [Christenson et al. 1997; Deroest 1996]. A front-end
traffic manager directs an external client’s request to the appropriate node.
We believe that such statically distributed, write-oriented services scale
poorly. In particular, as the user base grows, so does service demand, which
can be met only by adding more machines. Unfortunately, each new
machine must be configured to handle a subset of the users, requiring that
users and their data migrate from older machines. As more machines are
added, the likelihood that at least one of them is inoperable grows,
diminishing availability for users with data on the inoperable machines. In
addition, users whose accounts are on slower machines tend to receive
worse service than those on faster machines. Finally, a statically distrib-
uted system is susceptible to overload when traffic is distributed nonuni-
formly across the user base. To date, systems relying on static distribution
have worked for two reasons. First, service organizations have been willing
to substantially overcommit computing capacity to mitigate short-term load
imbalances. Second, organizations have been willing to employ people to
reconfigure the system manually in order to balance load over the long
term. Because the degree of overcapacity determines where short-term
gives way to long-term, static systems have been costly in terms of
hardware, people, or both. For small static systems, these costs have not
been substantial; for example, doubling the size of a small but manageable
system may yield a system that is also small and manageable. However,
once the number of machines becomes large (i.e., on the order of a few
dozen), disparate (i.e., fast/slow machines, fast/slow disks, large/small
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disks), and continually increasing, this gross overcapacity becomes unac-
ceptably expensive in terms of hardware and people.

An alternative approach is to adopt a typical Web server architecture:
use a distributed file system to store all hard state and run off-the-shelf
software on a large number of stateless, front-end nodes that serve clients
[Fox et al. 1997; Pai et al. 1998]. This approach has been successful in
services that deliver mostly read-only data, such as Web servers and search
engines, because the front-end nodes can take significant load off the file
system by utilizing file caches. Write-intensive services such as email,
however, exhibit very low access locality that makes caching nearly useless,
and using this approach in email requires the file system itself to be highly
scalable under changing workload and system configuration. Such file
systems do exist (e.g., xFS [Anderson et al. 1995] and Frangipani [Thek-
kath et al. 1997]), but they are still in an early research stage due to their
sheer complexity. Moreover, even if they were available now, their manage-
ability and availability would not match Porcupine’s because the file
systems offer generic, single-copy semantics and sacrifice availability along
the way. For example, they tolerate only a limited number of node failures,
beyond which the entire system stops, and they stop functioning when the
network is partitioned. Porcupine, on the other hand, tolerates any number
of node failures and continues to serve users after network partition by
relaxing the data consistency guarantees.

Another approach is to build an email system on top of a cluster-based
operating system that supports membership agreement, distributed lock-
ing, and resource fail-over (e.g., [Kronenberg et al. 1986; Vogels et al. 1998;
Sun Microsystems 1999; IBM 1998]). While this solution simplifies the
architecture of the software, it tends to cost more than previous solutions
because these systems run only on proprietary hardware. They also have
limited scalability, only up to tens of nodes. More importantly, the primary
means of fault tolerance for such systems is shared disks, which statically
tie a node to specific data items and create the same manageability and
availability problems present in the first approach, albeit to a lesser
degree.

Finally, the most obvious solution is to use a large monolithic server with
reliable storage (e.g., RAID [Chen et al. 1994]). While this approach is the
simplest in terms of architecture and administration, it is rarely employed
by Internet services for two main reasons. First, a large server machine is
far more expensive than a set of small machines with the same aggregate
performance. Moreover, we can scale a single server only up to a certain
limit, beyond which we must scrap the machine and buy a faster model.
Notice, however, that the problem of making a single node fast and
available is orthogonal to the problem of making a cluster fast and
available. Porcupine solves only the latter problem, and it is perfectly
reasonable to build a Porcupine cluster using large-scale server nodes for
those applications in which a single node cannot handle the entire work-
load.
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Figure 5 summarizes the cost and manageability trade-offs for these four
solutions. Porcupine seeks to provide a system structure that performs well
as it scales, adjusts automatically to changes in configuration and load, and
is easy to manage. Our vision is that a single system administrator can be
responsible for the hardware that supports the mail requirements of one
hundred million users processing a billion messages per day. When the
system begins to run out of capacity, that administrator can improve
performance for all users simply by adding machines or even disks to the
system. Lastly, the administrator can, without inconveniencing users,
attend to the failure of machines, replacing them with the same urgency
with which one replaces light bulbs.

3. SELF-MANAGEMENT

Porcupine must deal automatically with diverse changes, including node
failure, node recovery, node addition, and network failure. In addition,
change can come in bursts, creating long periods of instability, imbalance,
and unavailability. It is a goal of Porcupine to manage change automati-
cally in order to provide good service even during periods of system flux.
The following sections describe the Porcupine services that detect and
respond to configuration changes.

3.1 Membership Services

Porcupine’s cluster membership service provides the basic mechanism for
tolerating changes. It maintains the current membership set, detects node
failures and recoveries, notifies other services of changes in the system’s
membership, and distributes new system state. We assume a symmetric
and transitive network in steady state, so that nodes eventually converge
on a consistent membership set provided that no new failure occurs for a
sufficiently long period (i.e., a few seconds).

Fig. 5. A schematic view of how different architectures trade off cost, performance, availabil-
ity, and manageability. Porcupine is an architecture that is available, manageable, and cheap
at the same time, whereas other solutions need to sacrifice either cost or manageability.
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The cluster membership service uses a variant of the Three Round
Membership Protocol (TRM) [Christian and Schmuck 1995] to detect mem-
bership changes. In TRM, the first round begins when any node detects a
change in the configuration and becomes the coordinator. The coordinator
broadcasts a “new group” message together with its Lamport clock [Lam-
port 1978], which acts as a proposed epoch ID to identify a particular
membership incarnation uniquely. If two or more nodes attempt to become
a coordinator at the same time, the one proposing the largest epoch ID
wins.

In the second round, all nodes that receive the “new group” message reply
to the coordinator with the proposed epoch ID. After a timeout period, the
coordinator defines the new membership to be those nodes from which it
received a reply. In the third round, the coordinator broadcasts the new
membership and epoch ID to all nodes.

Once membership has been established, the coordinator periodically
broadcasts probe packets over the network. Probing facilitates the merging
of partitions; when a coordinator receives a probe packet from a node not in
its current membership list, it initiates the TRM protocol. A newly booted
node acts as the coordinator for a group in which it is the only member. Its
probe packets are sufficient to notify others in the network that it has
recovered.

There are several ways in which one node may discover the failure of
another. The first is through a timeout that occurs normally during part of
a remote operation. In addition, nodes within a membership set periodi-
cally “ping” their next highest neighbor in IP address order, with the
largest IP address pinging the smallest. If the ping is not responded to
after several attempts, the pinging node becomes the coordinator and
initiates the TRM protocol.

3.2 User Map

The purpose of the user map is to distribute management responsibility
evenly across live nodes in the cluster. Whenever membership services
detect a configuration change, the system must reassign that management
responsibility. Therefore, like the membership list, the user map is repli-
cated across all nodes and is recomputed during each membership change
as a side effect of the TRM protocol.

After the second round, the coordinator computes a new user map by
removing the failed nodes from the current map and uniformly redistribut-
ing available nodes across the user map’s hash buckets (the user map has
many buckets, so a node typically is assigned to more than one bucket). The
coordinator minimizes changes to the user map to simplify reconstruction
of other soft state, described in the next section.

Each entry in the user map is associated with an epoch ID that shows
when the bucket management responsibility is first assigned to a node. In
the first phase of the TRM, each node piggybacks on the reply packet the
index and the associated epoch IDs of all the user map entries the node
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manages. For each bucket with a changed assignment, the coordinator
assigns the current epoch ID to the entry. On the other hand, for a bucket
whose assignment remains unchanged, the coordinator reuses the epoch ID
returned by the participant node. The epoch IDs in the user map are used
by nodes to determine which entries in the user map have changed.

Figure 6 shows an example of a user map reconfiguration. In this
example, node C crashes. A new membership is computed on node A, but
the packet containing the new membership fails to reach node B. Next, C
recovers, and B receives a new membership and a new user map that are
identical to the old one (on B) except that the epoch ID for the bucket
managed by C is renewed. Without epoch IDs in the user maps, B would be
unable to detect that assignment for the last bucket of the user map has
changed.

3.3 Soft-State Reconstruction

Once the user map has been reconstructed, it is necessary to reconstruct
the soft state at user managers with new user responsibilities. Specifically,
this soft state is the user profile soft state and the mail map for each user.
Essentially, every node pushes soft state corresponding to any of its hard
state to new user managers responsible for that soft state.

Reconstruction is a two-step process, completely distributed, but unsyn-
chronized. The first step occurs immediately after the third round of
membership reconfiguration. Here, each node compares the previous and

Fig. 6. Example of membership reconfiguration. Arrows show messages exchanged among
the nodes. Upper boxes in each user map show the assignments of buckets to nodes, and lower
boxes show the epoch IDs of buckets. In this example, the node C crashes and then recovers.
The node B fails to receive the membership renewal after C’s crash. Shaded area in user maps
show the entries that nodes recognize as changed.
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current user maps to identify any buckets having new assignments. A node
considers a bucket assignment new if the bucket’s previous epoch ID does
not match the current epoch ID. Recall that the user map associates nodes
with hash buckets, so the relevant soft state belonging on a node is that
corresponding to those users who hash into the buckets assigned to the
node.

Each node proceeds independently to the second step. Here, every node
identifying a new bucket assignment sends the new manager of the bucket
any soft state corresponding to the hard state for that bucket maintained
on the sending node. First, the node locates any mailbox fragments belong-
ing to users in the newly managed bucket and requests that the new
manager include this node in those users’ mail maps. Second, the node
scans its portion of the stored user profile database and sends to the new
manager all pertinent user profiles. As the user database is replicated, only
the replica with the largest IP address among those functioning does the
transfer. The hard state stored on every node is “bucketed” into directories
so that it can be quickly reviewed and collected on each change to the
corresponding bucket in the user map.

The cost of rebuilding soft state is intended to be constant per node in the
long term, regardless of cluster size for the following reason. First, the cost
of reconfiguration per node after a failure is roughly proportional to the
total number of mailboxes to be discovered on the node, because the disk
scan is by far the most expensive operation in the entire reconfiguration
process. Second, the number of mailboxes to be discovered is determined by
the number of reassignments to the user map, assuming that mailboxes are
evenly distributed in each hash bucket. Third, the number of user map
reassignments per single node crash or recovery is inversely proportional to
cluster size, because each node manages 1/cluster-size of the user map.
Consequently, the cost of reconfiguration per node per failure is inversely
proportional to the cluster size. Finally, because the frequency of reconfigu-
ration increases linearly with cluster size (assuming independent failures),
the two factors cancel each other out, and the reconfiguration cost per node
over time remains about the same regardless of the cluster size.

3.4 Effects of Configuration Changes on Mail Sessions

When a node fails, all SMTP, POP, and IMAP sessions hosted on the node
abort—an unavoidable result given the difficulty of TCP session fail-over.
Among them, the abortion of the SMTP sessions is transparent to the
senders and the recipients except for delay and possible duplicate message
delivery, because the remote MTAs retry delivery later. For the aborted
POP and IMAP sessions, the users must reconnect to the cluster. An SMTP
session that is hosted on another node and is about to store messages on
the failed node reselects another node for storage until it succeeds. Thus,
the node failure is masked from the remote server (and the sender) and the
recipient of mail. A POP or IMAP session hosted on another node may
report an error when it tries to read a message on the failed node, but the
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session itself continues running and is able to retrieve messages stored on
other nodes.

The combination of the mail map update mechanism (Section 2.3) and the
automatic reconfiguration mechanism makes each user’s mail map consis-
tent with respect to mailbox fragments locations without introducing the
complexity of solutions based on atomic transactions [Gray and Reuter
1993]. We argue that sessions that are affected by node failures keep mail
maps consistent by considering four different failure scenarios.

(1) A node fails just after a message is stored in a new mailbox fragment on
its disk, but before the corresponding mail map is updated. This case
causes no problem because this copy of the message becomes nonre-
trievable after the node failure. The replication service (Section 4)
ensures that another copy of the message is still available.

(2) A node fails just after the last message in a mailbox fragment on its
disk is deleted, but before the corresponding mail map is updated. Each
node periodically scans the mail maps it manages and removes all
“dangling” links to nodes not in the membership. The links will be
restored when the failed nodes rejoin the cluster.

(3) A node stores a message in a new mailbox fragment on its disk, but the
corresponding user manager node fails before the mail map is updated.
The message will be discovered by the disk scan algorithm that runs
after membership reconfiguration and will be added to the mail map on
a new user manager node.

(4) A node deletes the last message in a mailbox fragment on its disk, but
the corresponding user manager node fails before the mail map is
updated. The same argument as above is applied: a new user manager
will receive the result of a disk scan that excludes the deleted mailbox.

3.5 Node Addition

Porcupine’s automatic reconfiguration procedure makes it easy to add a
new node to the system. A system administrator simply installs the
Porcupine software on the node. When the software boots, it is noticed by
the membership protocol and added to the cluster. Other nodes see the
configuration change and upload soft state onto the new node. To make the
host accessible outside of Porcupine, the administrator may need to update
border naming and routing services. Occasionally, a background service
rebalances replicated email messages and user database entries across the
nodes in the cluster.1

3.6 Summary

Porcupine’s dynamic reconfiguration protocols ensure that the mail service
is always available for any given user and allow the reconstruction and
distribution of soft state with constant overhead. Client activities are

1In the current implementation, the rebalancer must be run manually.
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affected minimally by a failure; after the ensuing reconfiguration process,
the soft state is restored correctly regardless of ongoing client activities.
The next section discusses the maintenance of hard state.

4. REPLICATION AND AVAILABILITY

This section describes object replication support in Porcupine. As in previ-
ous systems (e.g., Fox et al. [1997]), Porcupine defines semantics tuned to
its application requirements. This permits a careful balance between
behavior and performance.

Porcupine replicates the user database and mailbox fragments to ensure
their availability. Our replication service provides the same guarantees
and behavior as the Internet’s electronic-mail protocols. For example,
Internet email may arrive out of order, on occasion more than once, and
may sometimes reappear after being deleted. These anomalies are artifacts
of the nontransactional nature of the Internet’s mail protocols. Porcupine
never loses electronic mail unless all nodes on which the mail has been
replicated are irretrievably lost.

4.1 Replication Properties

The general unit of replication in Porcupine is the object, which is simply a
named byte array that corresponds to a single mail message or the profile
of a single user. A detailed view of Porcupine’s replication strategy includes
these five high-level properties:

—Update anywhere. An update can be initiated at any replica. This
improves availability, since updates need not await the revival of a
primary. This strategy also eliminates the requirement that failure
detection be precise, since there need not be agreement on which is the
primary node.

—Eventual consistency. During periods of failure, replicas may become
inconsistent for short periods of time, but conflicts are eventually re-
solved. We recognize that single-copy consistency [Gray and Reuter 1993]
is too strong a requirement for many Internet-based services, and that
replica inconsistencies are tolerable as long as they are resolved eventu-
ally. This strategy improves availability, since accesses may occur during
reconciliation or even during periods of network partitioning.

—Total update. An update to an object totally overwrites that object.
Since email messages are rarely modified, this is a reasonable restriction
that greatly simplifies update propagation and replica reconciliation,
while also keeping overheads low.

—Lock free. There are no distributed locks. This improves performance
and availability and simplifies recovery.

—Ordering by loosely synchronized clocks. The nodes in the cluster
have loosely synchronized clocks [Mills 1992; 1994] that are used to order
operations on replicated objects.
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The update-anywhere attribute, combined with the fact that any Porcu-
pine node may act as a delivery agent, means that incoming messages are
never blocked (assuming at least one node remains functional). If the
delivery agent crashes during delivery, the initiating host (which exists
outside of Porcupine) can reconnect to another Porcupine node. If the
candidate mailbox manager fails during delivery, the delivery agent will
select another candidate until it succeeds. Both of these behaviors have the
same potential anomalous outcome: if the failure occurs after the message
has been written to stable storage but before any acknowledgment has been
delivered, the end-user may receive the same message more than once. We
believe that this is a reasonable price to pay for service that is continually
available.

The eventual-consistency attribute means that earlier updates to an
object may “disappear” after all replica inconsistencies are reconciled. This
behavior can be confusing, but we believe that this is more tolerable than
alternatives that block access to data when replica contents are inconsis-
tent. In practice, eventual consistency for email means that a message once
deleted may temporarily reappear. This is visible only if users attempt to
retrieve their mail during the temporary inconsistency, which is expected
to last at most a few seconds.

The lock-free attribute means that multiple mail-reading agents, acting
on behalf of the same user at the same time, may see inconsistent data
temporarily. However, POP and IMAP protocols do not require a consistent
outcome with multiple clients concurrently accessing the same user’s mail.

The user profile database is replicated with the same mechanisms used
for mail messages. Because of this, it is possible for a client to perceive an
inconsistency in its (replicated) user database entry during node recovery.
Operations are globally ordered by the loosely synchronized clocks; there-
fore, a sequence of updates to the user profile database will eventually
converge to a consistent state. We assume that the maximum clock skew
among nodes is less than the interarrival time of externally initiated,
order-dependent operations, such as Create-User and Change-Password. In
practice, clock skew is usually on the order of tens of microseconds [Mills
1994], whereas order-dependent operations are separated by networking
latencies of at least a few milliseconds. Wall clocks, not Lamport clocks
[Lamport 1978], are used to synchronize updates, because wall clocks can
order events that are not logically related (e.g., an external agent contact-
ing two nodes in the cluster serially).

We now describe the replication manager, email operations using repli-
cas, and the details of updating replicated objects.

4.2 Replication Manager

A replication manager running on each host exchanges messages among
nodes to ensure replication consistency. The manager is oblivious to the
format of a replicated object and does not define a specific policy regarding
when and where replicas are created. Thus, the replication manager
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exports two interfaces: one for the creation and deletion of objects, which is
used by the higher-level delivery and retrieval agents, and another for
interfacing to the specific managers, which are responsible for maintaining
on-disk data structures. The replication manager does not coordinate object
reads; mail retrieval proxies are free to pick any replica and read them
directly.

4.3 Sending and Retrieving Replicated Mail

When a user’s mail is replicated, that user’s mail map reflects the set of
nodes on which each fragment is replicated. For example, if Alice has two
fragments, one replicated on nodes A and B and another replicated on
nodes B and C, the mail map for Alice records {{A, B}, {B, C}}. To retrieve
mail, the retrieval agent contacts the least-loaded node for each replicated
mailbox fragment to obtain the complete mailbox content for Alice.

To create a new replicated object (as would occur with the delivery of a
mail message), an agent generates an object ID and the set of nodes on
which the object is to be replicated. An object ID is simply an opaque,
unique string. For example, mail messages have an object ID of the form
^type, username, messageID&, where type is the type of object (mail mes-
sage), username is the recipient, and messageID is a unique mail identifier
found in the mail header.

4.4 Updating Objects

Given an object ID and an intended replica set, a delivery or retrieval agent
can initiate an update request to the object by sending an update message
to any replica manager in the set. A delivery agent’s update corresponds to
the storing of a message. The retrieval agent’s update corresponds to the
deletion and modification of a message.

The receiving replica acts as the update coordinator and propagates
updates to its peers. The replication manager on every node maintains a
persistent update log, used to record updates to objects that have not yet
been accepted by all replica peers maintaining that object. Each entry in
the update log is the tuple ^timestamp, objectID, target-nodes, remaining-
nodes&:

—Timestamp is the tuple ^wallclock time, nodeID&, where wallclock time is
the time at which the update was accepted at the coordinator named by
nodeID. Timestamp uniquely identifies and totally orders the update.

—Target-nodes is the set of nodes that should receive the update.
—Remaining-nodes is the set of peer nodes that have not yet acknowledged

the update. Initially, remaining-nodes is equal to target-nodes and is
pruned by the coordinator as acknowledgments arrive.

The coordinating replication manager works through the log, attempting to
push updates to all the nodes found in the remaining-nodes field of an
entry. Once contact has been made with a remaining node, the manager
sends the replica’s contents and the log entry to the peer. Since updates to
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objects are total, multiple pending updates to the same object on a peer are
synchronized by discarding all but the one with the newest timestamp. If
no pending update exists, or if the update request is the newest for an
object, the peer adds the update to the log, modifies the replica, and sends
an acknowledgment to the coordinator. Once the coordinator receives
acknowledgments from all replica peers, it notifies all the participants of
the update (including itself) of the completion of the update. Finally, the
participants retire the completed update entry in their log (freeing that log
space) after waiting for a sufficiently long period to filter out updates that
arrive out of order. The wait period we use, 3 minutes in our prototype, is
set to the sum of the maximum clock skew among nodes and maximum
network-packet lifetime, i.e., the time long enough for most packets to
reach the destination. This retirement mechanism is a variant of the
at-most-once messaging algorithm using synchronized clocks [Liskov et al.
1991].

If the coordinator fails before responding to the initiating agent, the
agent will select another coordinator. For updates to a new object, as is the
case with a new mail message, the initiating agent will create another new
object and select a new, possibly overlapping, set of replicas. This helps to
ensure that the degree of replication remains high even in the presence of a
failed coordinator. This design may deliver a message to the user more
than once. This duplicate delivery problem, however, is already fairly
common in the Internet today; it may happen after a network transmission
failure or simply by a user pressing the “Send” button twice. Message
duplication due to node failures is far rarer than duplication due to other
causes.

The coordinators and participants force their update log to disk before
applying the update to ensure that the replicas remain consistent. As an
optimization, a replica receiving an update message for which it is the only
remaining node need not force its log before applying the update. This is
because the other replicas are already up-to-date, so the sole remaining
node will never have to make them current for this update. In practice, this
means that only the coordinator forces its log for two-way replication.

Should the coordinator fail after responding to the initiating target but
before the update is applied to all replicas, any remaining replica can
become the coordinator and bring others up-to-date. Multiple replicas can
become the coordinator in such case, since replicas can discard duplicate
updates by comparing timestamps.

In the absence of node failures, the update log remains relatively small
for two reasons. First, the log never contains more than one update to the
same object. Second, updates are propagated as quickly as they are logged
and are deleted as soon as all replicas acknowledge. Timely propagation
also narrows the window during which an inconsistency could be perceived.

When a node fails for a long time, the update logs of other nodes could
grow indefinitely. To prevent this, updates remain in the update log for at
most a week. If a node is restored after that time, it must reenter the
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Porcupine cluster as a “new” node, rather than as a recovering one. A node
renews itself by deleting all of its hard state before rejoining the system.

4.5 Summary

Porcupine’s replication scheme provides high availability through the use
of consistency semantics that are weaker than strict single-copy consis-
tency, but strong enough to service Internet clients using nontransactional
protocols. Inconsistencies, when they occur, are short lived (the update
propagation latency between functioning hosts) and, by Internet standards,
unexceptional.

5. DYNAMIC LOAD BALANCING

Porcupine uses dynamic load balancing to distribute the workload across
nodes in the cluster in order to maximize throughput. As mentioned,
Porcupine clients select an initial contact node either to deliver or to
retrieve mail. That contact node then uses the system’s load-balancing
services to select the “best” set of nodes for servicing the connection.

In developing the system’s load balancer, we had several goals. First, it
must be fine-grained, making good decisions at the granularity of message
delivery. Second, it must support a heterogeneous cluster, since not all the
nodes are of equivalent power. Third, it must be automatic and minimize
the use of “magic constants,” thresholds, or tuning parameters that need to
be manually adjusted as the system evolves. Fourth, with throughput as
the primary goal, it needs to resolve the tension between load and affinity.
Specifically, in order to best balance load, messages should be stored on idle
nodes. However, it is less expensive to store (and retrieve) a message on
nodes that already contain mail for the message’s recipient. Such affinity-
based scheduling reduces the amount of memory needed to store mail
maps, increases the sequentiality of disk accesses, and decreases the
number of internode RPCs required to read, write, or delete a message.

In Porcupine, delivery and retrieval proxies make load-balancing deci-
sions. There is no centralized load-balancing node service; instead, each
node keeps track of the load on other nodes and makes decisions indepen-
dently.

Load information is collected in the same ways we collect liveness
information (Section 3.1): (1) as a side-effect of RPC operations (i.e., each
RPC request or reply packet contains the load information of the sender),
and (2) through a virtual ring in which load information is aggregated in a
message passed along the ring. The first approach gives a timely but
possibly narrow view of the system’s load. The second approach ensures
that every node eventually discovers the load from every other node.

The load on a node has two components: a boolean, which indicates
whether or not the disk is full, and an integer, which is the number of
pending remote procedure calls that might require a disk access. A node
with a full disk is always considered “very loaded” and is used only for
operations that read or delete existing messages. After some experimenta-
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tion, we found that it was best to exclude diskless operations from the load
to keep it from becoming stale too quickly. Because disk operations are so
slow, a node with many pending disk operations is likely to stay loaded for
some time.

A delivery proxy that uses load information alone to select the best
node(s) on which to store a message will tend to distribute a user’s mailbox
across many nodes. As a result, this broad distribution can actually reduce
overall system throughput for the reasons mentioned earlier. Conse-
quently, we define for each user a spread; the spread is a soft upper bound
on the number of different nodes on which a given user’s mail should be
stored. The bound is soft to permit the delivery agent to violate the spread
if one of the nodes storing a user’s mail is not responding. When a mailbox
consists of fewer fragments than its spread limit, the delivery proxy adds a
random set of nodes on message arrival to make up a candidate set. Adding
a random set of nodes helps the system avoid a “herd behavior” in which a
herd of nodes all choose the same node that is idle at one moment and
instantly overloading the node the next moment [Mitzenmacher 1998].

As shown in Section 6, the use of a spread-limiting load balancer has a
substantial effect on system throughput even with a relatively narrow
spread. The benefit is that a given user’s mail will be found on relatively
few nodes, but those nodes can change entirely each time the user retrieves
and deletes mail from the server.

6. SYSTEM EVALUATION

This section presents measurements from the Porcupine prototype running
synthetic workloads on a 30-node cluster. We characterize the system’s
scalability as a function of its size in terms of the three key requirements:

(1) Performance. We show that the system performs well on a single node
and scales linearly with additional nodes. We also show that the system
outperforms a statically partitioned configuration consisting of a cluster
of standard SMTP and POP servers with fixed user mapping.

(2) Availability. We demonstrate that replication and reconfiguration
have low cost.

(3) Manageability. We show that the system responds automatically and
rapidly to node failure and recovery, while continuing to provide good
performance. We also show that incremental hardware improvements
can automatically result in systemwide performance improvements.
Lastly, we show that automatic dynamic load balancing efficiently
handles highly skewed workloads.

6.1 Platform and Workload

The Porcupine system runs on Linux-based PCs with all system services on
a node executing as part of a multithreaded process. For the measurements
in this paper, we ran on a cluster of 30 nodes connected by 1Gb/second
Ethernet hubs. As would be expected in any large cluster, our system
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contains several different hardware configurations: six 200MHz machines
with 64MB of memory and 4GB SCSI disks, eight 300MHz machines with
128MB of memory and 4GB IDE disks, and 16 350MHz machines with
128MB of memory and 8GB IDE disks.

Some key attributes of the system’s implementation follow:

—The system runs on Linux 2.2.7 and uses the ext2 file system for storage
[Ts’o 1999].

—The system consists of 14 major components written in C11. The total
system size is about 41,000 lines of code, yielding a 1MB executable.

—A mailbox fragment is stored in two files, regardless of the number of
messages contained within. One file contains the message bodies, and the
other contains message index information.

—The user map contains 256 buckets.
—The mailbox fragment files are grouped and stored in directories corre-

sponding to the hash of user names (e.g., if Ann’s hash value is 9, then
her fragment files are spool/9/ann and spool/9/ann.idx ). This design
allows discovery of mailbox fragments belonging to a particular hash
bucket—a critical operation during membership reconfiguration—to be
performed by a single directory scan.

—Most of a node’s memory is consumed by the soft user profile state. In the
current implementation, each user entry takes 76 bytes plus 44 bytes per
mailbox fragment. For example, in a system with 10 million users
running on 30 nodes, about 50MB/node would be devoted to user soft
state.

We developed a synthetic workload to evaluate Porcupine because users at
our site do not receive enough email to drive the system into an overload
condition. We did, however, design the workload generator to model the
traffic patterns we have observed on our departmental mail servers.
Specifically, we model a mean message size of 4.7KB, with a fairly fat tail
up to about 1MB. Mail delivery (SMTP) accounts for about 90% of the
transactions, with mail retrieval (POP) accounting for about 10%. Each
SMTP session sends a message to a user chosen from a population accord-
ing to a Zipf distribution with a 5 1.3, unless otherwise noted in the text.

For purposes of comparison, we also measure a tightly configured conven-
tional mail system in which users and services are statically partitioned
across the nodes in the cluster. In this configuration, we run SMTP/POP
redirector nodes at the front end. At the back end, we run modified versions
of the widely used Sendmail-8.9.3 and ids-popd-0.23 servers. The front-end
nodes accept SMTP and POP requests and route them to back-end nodes by
way of a hash on the user name. To keep the front ends from becoming a
bottleneck, we determined empirically that we need to run one front end for
every 15 back ends. The tables and graphs that follow include the front
ends in our count of the system size. Based on a priori knowledge of the
workload, we defined the hash function to distribute users perfectly across
the back-end nodes. To further optimize the configuration, we disabled all

Manageability, Availability, and Performance in Porcupine • 319

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.



security checks, including user authentication, client domain name lookup,
and system log auditing.

For both Porcupine and the conventional system, we defined a user
population with size equal to 160,000 times the number of nodes in the
cluster (or about 5 million users for the 30-node configuration). Neverthe-
less, since the database is distributed in Porcupine, and no authentication
is performed for the conventional platform, the size of the user base is
nearly irrelevant to the measurements. Each POP session selects a user
according to the same Zipf distribution, collects and then deletes all
messages awaiting the user. In the Porcupine configuration, the generator
initiates a connection with a Porcupine node selected at random from all
the nodes. In the conventional configuration, the generator selects a node
at random from the front-end nodes. By default, the load generator at-
tempts to saturate the cluster by probing for the maximum throughput,
increasing the number of outstanding requests until at least 10% of them
fail to complete within two seconds. At that point, the generator reduces
the request rate and resumes probing.

We demonstrate performance by showing the maximum number of mes-
sages the system receives per second. Only message deliveries are counted,
although message retrievals occur as part of the workload. Thus, this figure
really reflects the number of messages the cluster can receive, write, read,
and delete per second. The error margin is smaller than 5%, with 95%
confidence interval for all values presented in the following sections.

6.2 Scalability and Performance

Figure 7 shows the performance of the system as a function of cluster size.
The graph shows four different configurations: without message replica-
tion, with message replication, with message replication using NVRAM for
the logs, and finally for the conventional configuration of sendmail1popd.
Although neither replicates, the Porcupine no-replication case outperforms
and outscales conventional sendmail. The difference is primarily due to the
conventional system’s use of temporary files, excessive process forking, and
the use of lock-files. With some effort, we believe the conventional system
could be made to scale as well as Porcupine without replication. However,

Fig. 7. Throughput scales with the number of hosts. This graph shows how Porcupine and
the sendmail-based system scale with respect to cluster size.
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the systems would not be functionally identical, because Porcupine allows
users to read incoming messages even when some nodes storing the user’s
existing messages are down.

For replication, the performance of Porcupine scales linearly when each
incoming message is replicated on two nodes. There is a substantial
slowdown relative to the nonreplicated case, because replication increases
the number of synchronous disk writes threefold: once for each replica and
once to update the coordinator’s log. Even worse, in this hardware configu-
ration the log and the mailbox fragments share the same disk on each node.

One way to improve the performance of replication is to use nonvolatile
RAM for the log. Since updates usually complete propagation and retire
from the log quickly, most of the writes to NVRAM never need go to disk
and can execute at memory speeds. Although our machines do not have
NVRAM installed, we can simulate NVRAM simply by keeping the log in
standard memory. As shown in Figure 7, NVRAM improves throughput;
however, throughput is still about half that of the nonreplicated case,
because the system must do twice as many disk operations per message.

Table I shows the CPU, disk, and network load incurred by a single
350MHz Porcupine node running at peak throughput. For this configura-
tion, the table indicates that the disk is the primary impediment to
single-node performance.

To demonstrate this, we made measurements on clusters with one and
two nodes with increased I/O capacity. A single 300MHz node with one IDE
disk and two SCSI disks delivered a throughput of 105 messages/second, as
opposed to about 23 messages/second with only the IDE disk. We then
configured a two-node cluster, each with one IDE disk and two SCSI disks.
The machines were each able to handle 38 messages/second (48 assuming
NVRAM). These results (normalized to single-node throughput) are sum-
marized in Figure 8.

Lastly, we measured a cluster in which disks were assumed to be
infinitely fast. In this case the system does not store messages on disk but
only records their digests in main memory. Figure 9 shows that the
simulated system without the disk bottleneck achieves a sixfold improve-
ment over the measured system. At this point, the CPU becomes the
bottleneck. Thus Porcupine with replication performs comparatively better
than on the real system. The high performance observed in 2- and 4-node
clusters is due to the shortcutting of internode RPCs into function calls
that happens often in small clusters.

Table I. Resource Consumption on a Single Node with One
Disk

Resource No replication With replication

CPU utilization 15% 12%
Disk utilization 75% 75%
Network send 2.5Mb/second 1.7Mb/second
Network receive 2.6Mb/second 1.7Mb/second
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With balanced nodes, the network clearly becomes the bottleneck. In the
nonreplicated case, each message travels the network four times ((1)
Internet to delivery agent, (2) to mailbox manager, (3) to retrieval agent,
(4) to Internet). At an average message size of 4.7KB, a 1Gb/second
network can then handle about 6500 messages/second. With a single “disk
loaded” node able to handle 105 messages/second, roughly 62 nodes will
saturate the network, as they process 562 million messages/day. With
messages replicated on two nodes, the same network can handle about 20%
fewer messages (as the message must be copied one additional time to the
replica), which is about 5200 messages/second, or about 450 million mes-
sages/day. Using the throughput numbers measured with the faster disks,
this level of performance can be achieved with 108 NVRAM nodes, or about
137 nodes without NVRAM. More messages can be handled only by
increasing the aggregate network bandwidth. We address this issue further
in Section 7.

6.3 Load Balancing

The previous section demonstrated Porcupine’s performance assuming a
uniform workload distribution and homogeneous node performance. In
practice, though, workloads are not uniformly distributed, and the speeds
of CPUs and disks on nodes differ. This can create substantial management
challenges for system administrators when they must reconfigure the
system manually to adapt to the load and configuration imbalance.

Fig. 8. Summary of single-node throughput in a variety of configurations.

Fig. 9. Throughput of the system configured with infinitely fast disks.
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This section shows how Porcupine automatically handles workload skew
and heterogeneous cluster configuration.

6.3.1 Adapting to Workload Skew. Figure 10 shows the impact of
Porcupine’s dynamic spread-limiting, load-balancing strategy on through-
put as a function of workload skew for our 30-node configuration (all with a
single slow disk). Both the nonreplicated and replicated cases are shown.
Skew along the x-axis reflects the inherent degree of balance in the
incoming workload. When the skew equals zero, recipients are chosen so
that the hash distributes uniformly across all buckets. When the skew is
one, the recipients are chosen so that they all hash into a single user map
bucket, corresponding to a highly nonbalanced workload.

The graphs compare random, static, and dynamic load-balancing policies.
The random policy, labeled R on the graph, simply selects a host at random
to store each message received; it has the effect of smoothing out any
nonuniformity in the distribution. The static spread policy, shown by the
lines labeled S1, S2, and S4, selects a node based on a hash of the user
name spread over 1, 2, or 4 nodes, respectively. The dynamic spread
policy—the one used in Porcupine—selects from those nodes already stor-
ing mailbox fragments for the recipient. It is shown as D1, D2, and D4 on
the graph. Again, the spread value (1, 2, 4) controls the maximum number
of nodes (in the absence of failure) that store a single user’s mail. On

Fig. 10. (a) Nonreplicated and (b) replicated throughputs on a 30-node system with various
degrees of workload skew. Graph (c) shows a close-up view of the nonreplicated throughputs
under a uniform workload.
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message receipt, if the size of the current mail map for the recipient is
smaller than the maximum spread, Porcupine increases the spread by
choosing an additional node selected randomly from the cluster.

Static spread manages affinity well but can lead to a nonbalanced load
when activity is concentrated on just a few nodes. Indeed, a static spread of
one (S1) corresponds to our sendmail1popd configuration in which users
are statically partitioned to different machines. This effect is shown as well
on the graph for the conventional sendmail1popd configuration (SM on
Figure 10). In contrast, the dynamic spread policy continually monitors
load and adjusts the distribution of mail over the available machines, even
when spread is one. In this case, a new mailbox manager is chosen for a
user each time his/her mailbox is emptied, allowing the system to repair
affinity-driven imbalances as necessary.

The graphs show that random and dynamic policies are insensitive to
workload skew, whereas static policies do poorly unless the workload is
evenly distributed. Random performs worse than dynamic because of its
inability to balance load and its tendency to spread a user’s mail across
many machines.

Among the static policies, those with larger spread sizes perform better
under a skewed workload, since they can utilize a larger number of
machines for mail storage. Under uniform workload, however, the smaller
spread sizes perform better, since they respect affinity. The key exception
is the difference between spread51 and spread52. At spread51, the
system is unable to balance load. At spread52, load is balanced and
throughput improves. Widening the spread beyond 2 improves balance
slightly, but not substantially. The reason for this has been demonstrated
previously [Eager et al. 1986] and is as follows: in any system where the
likelihood that a host is overloaded is p, then selecting the least loaded
from a spread of s hosts will yield a placement decision on a loaded host
with probability ps. Thus, the chance of making a good decision (avoiding
an overloaded host) improves exponentially with the spread. In a nearly
perfectly balanced system p is small, so a small s yields good choices.

The effect of the loss of affinity with larger spread sizes is not pro-
nounced in the Linux ext2 file system because it creates or deletes files
without synchronous directory modification [Ts’o 1999]. On other operating
systems, load-balancing policies with larger spread sizes will be penalized
more by increased frequency of directory operations.

6.3.2 Performance under Uniform Workload. Figure 10(c) shows the
system throughput under uniform workload. It is interesting to see that
Porcupine’s load-balancing service can improve system performance even
when the workload is uniform. D4, D2, S4, and S2 all perform well; the
difference among them is statistically insignificant. S1, which emulates a
statically partitioned system, performs about 5 to 10% worse than the rest
because of the lack of load balancing. Under uniform workload, the load-
balancing service improves the performance mainly by avoiding nodes that
are undergoing periodic buffer flush activities (bdflush ) that stall all other
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disk I/O operations for a few seconds. R and D1 both perform about 15 to
20% worse, but for different reasons. R performs worse because it lacks
load balancing, and because it ignores message affinity. D1 performs worse
because it lacks load balancing, and because it tends to overload a few
nodes that happen to host hyperactive users. On the other hand, D2 and D4
host hyperactive users on multiple nodes, and the load balancer is able to
split the workload at fine grain to keep the load on these nodes low.

6.3.3 Adapting to Heterogeneous Configurations. As mentioned in the
previous section, the easiest way to improve throughput in our configura-
tion is to increase the system’s disk I/O capacity. This can be done by
adding more machines or by adding more or faster disks to a few machines.
In a statically partitioned system, it is necessary to upgrade the disks on
all machines to ensure a balanced performance improvement. In contrast,
because of Porcupine’s functional homogeneity and automatic load balanc-
ing, we can improve the system’s overall throughput for all users simply by
improving the throughput on a few machines. The system will automati-
cally find and exploit the new resources.

Figure 11 shows the absolute performance improvement of the 30-node
configuration when adding two fast SCSI disks to each of one, two, and
three of the 300MHz nodes, with and without replication. The improvement
for Porcupine shows that the dynamic load-balancing mechanism can fully
utilize the added capacity. Here, a spread of four slightly outperforms a
spread of two, because the former policy is more likely to include the faster
nodes in the spread. When a few nodes are many times faster than the rest,
as is the case with our setting, the spread size needs to be increased. On
the other hand, as described in Section 5, larger spread sizes tend to reduce
the system efficiency. Thus, spread size is one parameter that needs to be
revisited as the system becomes more heterogeneous.

In contrast, the statically partitioned and random message distribution
policies demonstrate little improvement with the additional disks. This is

Fig. 11. Performance improvement by the Porcupine load-balancing mechanism, without
replication (a) and with replication (b). X-axis is the number of nodes with fast disks. The
bottom of each bar shows the performance on the baseline system with a particular load-
balancing mechanism, and the height of the bar shows the relative improvement over the
baseline system.
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because their assignment improves performance for only a subset of the
users.

6.4 Failure Recovery

As described previously, Porcupine automatically reconfigures whenever
nodes fail or restart. Figures 12 and 13 depict an annotated timeline of
events that occur during the failure and recovery of 1, 3, and 6 nodes in a
30-node system without and with replication. Both figures show the same
behavior. Nodes fail and throughput drops as two things occur. First, the
system goes through its reconfiguration protocol, increasing its load. Next,
during the reconfiguration, SMTP and POP sessions that involve the failed
node abort. After 10 seconds, the system determines the new membership,
and throughput increases as the remaining nodes take over for the failed
ones. The failed nodes recover 300 seconds later and rejoin the cluster, at
which time throughput starts to rise. For the nonreplicated case, through-

Fig. 13. Reconfiguration timeline with replication.

Fig. 12. Reconfiguration timeline without replication.
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put increases back to the prefailure level almost immediately. With repli-
cation, throughput rises slowly as the failed nodes reconcile while concur-
rently serving new requests.

Figure 14 shows the timing of events that take place during a reintegra-
tion of one node (N30) to a 29-node cluster. Overall, 14 seconds are spent to
reconfigure the membership and to recover the soft state. The first 10
seconds are spent in the membership protocol. Ongoing client sessions are
not blocked during this period because the computational and the network-
ing overheads of the membership protocol are minimal. The next four
seconds are spent to recover the soft state. Again, ongoing client sessions
on existing nodes are not affected during this period because the soft-state
recovery affects nodes other than N30 only in a limited way—6ms to scan
the user profile and 20ms to scan mailbox fragments. On the other hand,
N30 needs to scan its entire email spool directories to discover mailboxes
and fill other nodes’ mail maps (step 8). In addition, N30 needs to receive
its assigned portions of the user profile database and mail map from other
nodes (steps 6 and 9). However, notice that the cost of step 8 is orders of
magnitude larger than that of all the other steps combined and depends
only on the node’s disk capacity and not on the number of nodes in the
cluster. Thus, this analysis demonstrates that Porcupine’s failure recovery
scales with the cluster size.

7. LIMITATIONS AND FUTURE WORK

Porcupine’s architecture and implementation have been designed to run
well in very large clusters. There are, however, some aspects of its design

Fig. 14. Time breakdown of failure recovery procedure. The timeline is not to scale.
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and the environment in which it is deployed that may need to be rethought
as the system grows to larger configurations.

First, Porcupine’s communication patterns are flat, with every node as
likely to talk to every other node. A 1Gb/second heavily switched network
should be able to serve about 6500 messages/second (or 560 million mes-
sages/day) without replication. With replication, the network can handle
5200 messages/second, or 450 million messages/day. Beyond that, faster
networks or more network-topology-aware load-balancing strategies will be
required to continue scaling.

Our membership protocol may also require adjustments as the system
grows. Presently, the membership protocol has the coordinator receiving
acknowledgment packets from all participants in a very short period of
time. Although participants currently insert a randomized delay before
responding to smooth out packet bursts at the receiver, we still need to
evaluate whether this works well at very large scale. In other work, we are
experimenting with a hierarchical membership protocol that eliminates
this problem. In time, we may use this to replace Porcupine’s current
protocol.

Our strategy for reconstructing user profile soft state may also need to be
revisited for systems in which a single user manager manages millions of
users (many users, few machines). Rather than transferring the user
profile soft state in bulk, as we do now, we could modify the system to fetch
profile entries on use and cache them. This would reduce node recovery
time (possibly at the expense of making user lookups slower, however).

8. RELATED WORK

The prototypical distributed mail service is Grapevine [Schroeder et al.
1984], a wide-area service intended to support about ten thousand users.
Grapevine users are statically assigned to (user-visible) registries. The
system scales through the addition of new registries having sufficient
power to handle their populations. Nevertheless, Grapevine’s administra-
tors are often challenged to balance users across mail servers. In contrast,
Porcupine implements a flat name space managed by a single cluster and
automatically balances load. Grapevine provided a replicated user database
based on optimistic replication, but it did not replicate mail messages.
Porcupine uses optimistic replication for both mail and the user database.

As described earlier, contemporary email cluster systems deploy many
storage nodes and partition the user population statically among them,
either using a distributed file system [Christenson et al. 1997] or protocol
redirectors [Deroest 1996]. As we demonstrate in this paper, this static
approach is difficult to manage and scale and has limited fault tolerance.

Numerous fault-tolerant, clustered-computing products have been de-
scribed in the past (e.g., [Kronenberg et al. 1986; Vogels et al. 1998; IBM
1998; Sun Microsystems 1999]). These clusters are often designed specifi-
cally for database fail-over, have limited scalability, and require propri-
etary hardware or software. Unlike these systems, Porcupine’s goal is to
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scale to hundreds or thousands of nodes using standard off-the-shelf
hardware and software.

Fox et al. [1997] describe an infrastructure for building scalable network
services based on cluster computing. They introduce a data semantics
called BASE (Basically Available, Soft-state, Eventual consistency) that
offers advantages for Web search and document-filtering applications. Our
work shares many of their goals: building scalable Internet services with a
semantics weaker than traditional databases. As in Fox’s work, we observe
that ACID semantics [Gray and Reuter 1993] may be too strong for our
target applications and define a data model that is equal to the nontrans-
actional model used by the system’s clients. However, unlike BASE, our
semantics support write-intensive applications requiring persistent data.
Our services are also distributed and replicated uniformly across all nodes
for greater scalability, rather than statically partitioned by function.

A large body of work exists on the general topic of load sharing, but this
work has been targeted mainly at systems with long-running, CPU-bound
tasks. For example, Eager et al. [1986] show that effective load sharing can
be accomplished with simple adaptive algorithms that use random probes
to determine load. Dahlin [1999] and Mitzenmacher [1998] propose a class
of load distribution algorithms using a random spread of nodes and a
selection from the spread using cached load information. Their results show
that a spread of two is optimal for a wide variety of situations in a
homogeneous cluster. In the context of clusters and the Web, several
commercial products automatically distribute requests to cluster nodes,
typically using a form of round-robin or load-based dispatching [Cisco
Systems 1999; Foundry Networks 1999; Resonate 1998; Platform Comput-
ing 1999]. Pai et al. [1998] describe a “locality-aware request distribution”
mechanism for cluster-based Web services. A front-end node analyzes the
request content and attempts to direct requests so as to optimize the use of
buffer cache in back-end nodes, while also balancing load. Porcupine uses
load information, in part, to distribute incoming mail traffic to cluster
nodes. However, unlike previous load-balancing studies that assumed
complete independence of incoming tasks, we also balance the write traffic,
taking message affinity into consideration.

Transparent automatic reconfiguration has been studied in the context of
disks and networks. AutoRAID [Wilkes et al. 1995] is a disk array that
moves data among disks automatically in response to failures and usage
pattern changes. Autonet [Rodeheffer and Schroeder 1991] is a local-area
networking system that automatically reconfigures in response to router
failures.

Porcupine uses replicated user maps to partition the user management
task among nodes. This technique, called hash routing, has attracted wide
attention recently, e.g., for Web serving [Pai et al. 1998; Valloppillil and
Ross 1998; Karger et al. 1997] and for operating system function distribu-
tion [Anderson et al. 1995; Feeley et al. 1995; Snaman and Thiel 1987].
Porcupine is the first system that combines the group membership protocol
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with hash routing to let each node determine the exact change in the hash
map.

The replication mechanism used in Porcupine can be viewed as a varia-
tion of optimistic replication schemes, in which timestamped updates are
pushed to peer nodes to support multimaster replication [Agrawal et al.
1997; Wuu and Bernstein 1984]. Porcupine’s total object update property
allows it to use a single timestamp per object, instead of timestamp
matrices, to order updates. In addition, since updates are idempotent,
Porcupine can retire updates more aggressively. These differences make
Porcupine’s approach to replication simpler and more efficient at scale.

Several file systems have scalability and fault tolerance goals that are
similar to Porcupine’s [Anderson et al. 1995; Birrell et al. 1993; Lee and
Thekkath 1996; Liskov et al. 1991; Thekkath et al. 1997]. Unlike these
systems, Porcupine uses the semantics of the various data structures it
maintains to exploit their special properties in order to increase perfor-
mance or decrease complexity.

9. CONCLUSIONS

We have described the architecture, implementation, and performance of
the Porcupine scalable mail server. We have shown that Porcupine meets
its three primary goals:

(1) Manageability. Porcupine automatically adapts to changes in configu-
ration and workload. Porcupine masks heterogeneity, providing for
seamless system growth over time using latest-technology components.

(2) Availability. Porcupine continues to deliver service to its clients, even
in the presence of failures. System software detects and recovers
automatically from failures and integrates recovering nodes.

(3) Performance. Porcupine’s single-node performance is competitive
with other systems, and its throughput scales linearly with the number
of nodes. Our experiments show that the system can find and exploit
added resources for its benefit.

Porcupine achieves these goals by combining three key architectural
techniques based on the principle of functional homogeneity: automatic
reconfiguration, dynamic transaction scheduling, and replication. In the
future, we hope to construct, deploy, and evaluate configurations larger and
more powerful than the ones described in this paper.
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