
SkipNet: A Scalable Overlay Network with Practical Locality Properties

Nicholas J.A. Harvey∗† John Dunagan∗ Michael B. Jones∗ Stefan Saroiu†

Marvin Theimer∗ Alec Wolman∗

20-Dec-02 DRAFT Microsoft Research Technical Report MSR-TR-2002-92

Abstract: Scalable overlay networks such as Chord,
Pastry, and Tapestry have recently emerged as flexible
infrastructure for building large peer-to-peer systems. In
practice, such systems have two disadvantages: They
provide no control over where data is stored and no guar-
antee that routing paths remain within an administrative
domain whenever possible. SkipNet is a scalable over-
lay network that provides controlled data placement and
guaranteed routing locality by organizing data primar-
ily by string names. SkipNet allows for both fine-grained
and coarse-grained control over data placement: Con-
tent can be placed either on a pre-determined node or
distributed uniformly across the nodes of a hierarchi-
cal naming subtree. An additional useful consequence
of SkipNet’s locality properties is that partition failures,
in which an entire organization disconnects from the
rest of the system, can result in two disjoint, but well-
connected overlay networks. Furthermore, SkipNet can
efficiently re-merge these disjoint networks when the par-
tition heals.

1 Introduction

Scalable overlay networks, such as Chord [30],
CAN [25], Pastry [27], and Tapestry [36], have re-
cently emerged as flexible infrastructure for build-
ing large peer-to-peer systems. A key function that
these networks enable is a distributed hash table
(DHT), which allows data to be uniformly diffused
over all the participants in the peer-to-peer system.

∗Microsoft Research, Microsoft Corporation, Red-
mond, WA 98052, {nickhar, jdunagan, mbj, theimer,
alecw}@microsoft.com

†Department of Computer Science and Engineering,
University of Washington, Seattle, WA 98195, {nickhar,
tzoompy}@cs.washington.edu

While DHTs provide nice load balancing proper-
ties, they do so at the price of controlling where data
is stored. This has at least two disadvantages: data
may be stored far from its users and it may be stored
outside the administrative domain to which it be-
longs. This paper introduces SkipNet, a distributed
generalization of Skip Lists [23], adapted and en-
hanced to meet the goals of peer-to-peer systems.
SkipNet is a scalable overlay network that supports
traditional overlay functionality and possesses two
locality properties that we refer to as content local-
ity and path locality.

Content locality refers to the ability to either ex-
plicitly place data on specific overlay nodes or dis-
tribute it across nodes within a given organization.
Path locality refers to the ability to guarantee that
message traffic between two overlay nodes within
the same organization is routed within that organi-
zation only.

Content and path locality provide a number of
advantages for data retrieval, including improved
availability, performance, manageability, and secu-
rity. For example, nodes can store important data
within their organization (content locality) and the
nodes will be able to reach their data through the
overlay network even if the organization has dis-
connected from the rest of the Internet (path local-
ity). Storing data near the clients that use it yields
performance benefits. Placing content onto a spe-
cific overlay node also enables provisioning of that
node to reflect demand. Content placement also
allows administrative control over issues such as
scheduling maintenance for machines storing im-
portant data, thus improving manageability.

Content locality provides security guarantees that
are unavailable in DHTs. Many organizations trust
nodes within the organization more than nodes out-

side the organization. Even when encrypted and
digitally signed, data stored on an arbitrary overlay
node outside the organization is susceptible to de-
nial of service (DoS) attacks as well as traffic anal-
ysis. Although other techniques for improving the
resiliency of DHTs to DoS attacks exist [3], content
locality is a simple, zero-overhead technique.

Once content locality has been achieved, path lo-
cality is a naturally desirable second property. Al-
though some overlay designs [4] are likely to keep
routing messages within an organization most of
the time, none guarantee path locality. For ex-
ample, without such a guarantee the route from
explorer.ford.com to mustang.ford.com could pass
through camaro.gm.com, a scenario that people at
ford.com might prefer to prevent. With path local-
ity, nodes requesting data within their organization
traverse a path that never leaves the organization.
This example also illustrates that path locality can
be desirable even in a scenario where no content is
being placed on nodes.

Controlling content placement is in direct tension
with the goal of a DHT, which is to uniformly dis-
tribute data across a system in an automated fashion.
A generalization that combines these two notions is
constrained load balancing, in which data is uni-
formly distributed across a well-defined subset of
the nodes in a system, such as all nodes in a sin-
gle organization, all nodes residing within a given
building, or all nodes residing within one or more
data centers. SkipNet supports constrained load bal-
ancing.

A useful consequence of SkipNet’s locality prop-
erties is resiliency against common Internet failures.
As discussed in the context of content and path lo-
cality, the SkipNet segment comprising a single or-
ganization survives failures that disconnect the or-
ganization from the rest of the Internet. Further-
more, the organization’s SkipNet segment can be ef-
ficiently re-merged with the external SkipNet when
connectivity is restored. In the case of uncorrelated,
independent failures, SkipNet has similar resiliency
to previous overlay networks [30].

The basic SkipNet design, not including its en-
hancements to support constrained load balancing,
network proximity-aware routing, reduced overhead
for virtual nodes, or merge algorithms, has been
concurrently and independently invented by Aspnes

and Shah [1]. As described in Section 2, their work
has a substantially different focus than our work
and the two efforts are complementary to each other
while still starting from the same underlying inspi-
ration.

The rest of this paper is organized as follows:
Section 2 describes related work, Section 3 de-
scribes SkipNet’s basic design, Section 4 discusses
SkipNet’s locality properties, Section 5 presents en-
hancements to the basic design, Section 6 presents
the ring merge algorithms, Section 7 discusses de-
sign alternatives to SkipNet, Section 8 presents a
theoretical analysis of SkipNet, Section 9 presents
an experimental evaluation, and Section 10 con-
cludes the paper.

2 Related Work

A large number of peer-to-peer overlay net-
work designs have been proposed recently, such as
CAN [25], Chord [30], Freenet [6], Gnutella [11],
Kademlia [20], Pastry [27], Tapestry [36], and
Viceroy [19]. SkipNet is designed to provide the
same functionality as existing peer-to-peer over-
lay networks, and additionally to provide improved
content availability through explicit control over
content placement.

The key feature of systems such as CAN, Chord,
Pastry, and Tapestry is that they afford scalable rout-
ing paths while maintaining a scalable amount of
routing state at each node. By scalable routing
path we mean that the expected number of forward-
ing hops between any two communicating nodes is
small with respect to the total number of nodes in
the system. Chord, Pastry, and Tapestry scale with
logN , where N is the system size, while maintain-
ing logN routing state at each overlay node. CAN
scales with D ·N1/D, where D is a dimensionality
factor with a typical value of 6, while maintaining
an amount of per-node routing state proportional to
D.

A second key feature of these systems is that they
are able to route to destination addresses that do
not equal the address of any existing node. Each
message is routed to the node whose address is
‘closest’ to that specified in the destination field
of a message; we interchangeably use the terms
‘route’ and ‘search’ to mean routing to the clos-

2

est node to the specified destination. This feature
enables implementation of a distributed hash table
(DHT) [12], in which content is stored at an over-
lay node whose node ID is closest to the result of
applying a collision-resistant hash function to that
content’s name (i.e. consistent hashing [15]).

Distributed hash tables have been used, for in-
stance, in constructing the PAST [28] and CFS [8]
distributed filesystems, the Overlook [33] scalable
name service, the Squirrel [13] cooperative web
cache, and scalable application-level multicast [5,
29, 26]. For most of these systems, if not all of
them, the overlay network on which they were de-
signed can easily be substituted with SkipNet.

SkipNet has a fundamental philosophical differ-
ence from existing overlay networks, such as Chord
and Pastry, whose goal is to implement a DHT. The
basic philosophy of systems like Chord and Pastry
is to diffuse content randomly throughout an over-
lay in order to obtain uniform, load-balanced, peer-
to-peer behavior. The basic philosophy of Skip-
Net is to enable systems to preserve useful content
and path locality, while still enabling load balancing
over constrained subsets of participating nodes.

This paper is not the first to observe that local-
ity properties are important in peer-to-peer systems.
Keleher et al. [16] make two main points: DHTs de-
stroy locality, and locality is a good thing. Vahdat et
al. [34] raises the locality issue as well. SkipNet
addresses this problem directly: By using names
rather than hashed identifiers to order nodes in the
overlay, natural locality based on the names of ob-
jects is preserved. Furthermore, by arranging con-
tent in name order rather than dispersing it, opera-
tions on ranges of names are possible in SkipNet.

Aspnes and Shah have independently invented
the same basic data structure that defines a Skip-
Net [1]. Beyond that, they investigate questions that
are mostly orthogonal to those addressed in this pa-
per. In particular, they describe and analyze dif-
ferent search and insertion algorithms and they fo-
cus on formal characterization of Skip Graph in-
variants. In contrast, our work is focused primar-
ily on the content and path locality properties of
the design, and we describe several extensions that
are important in building a practical system: net-
work proximity-aware routing is obtained by means
of two auxiliary routing tables; constrained load

H
E
A
D

3
6

197

9

12
17

21

25
26

T
A
I
L

Figure 1. A perfect Skip List.

H
E
A
D

3
17

197

25

12
9

6

21

T
A
I
L

26

Figure 2. A probabilistic Skip List.

balancing is supported through a combination of
searches in both the string name and numeric ad-
dress spaces; efficient algorithms are used to re-
merge disjoint SkipNet segments that result from
network partitions; and multiple virtual nodes can
be hosted on a single physical node with substan-
tially less overhead than the schemes described in
previous work.

3 Basic SkipNet Structure

In this section, we introduce the basic design of
SkipNet. We present the SkipNet architecture, in-
cluding how to route in SkipNet, and how to join
and leave a SkipNet.

3.1 Analogy to Skip Lists

A Skip List, first described in Pugh [23], is a dic-
tionary data structure typically stored in-memory. A
Skip List is a sorted linked list in which some nodes
are supplemented with pointers that skip over many
list elements. A “perfect” Skip List is one where the
height of the ith node is the exponent of the largest
power-of-two that divides i. Figure 1 depicts a per-
fect Skip List. Note that pointers at level h have
length 2h (i.e. they traverse 2h nodes in the list).
A perfect Skip List supports searches in O(logN)
time.

Because it is prohibitively expensive to perform
insertions and deletions in a perfect Skip List, Pugh
suggests a probabilistic scheme for determining
node heights while maintaining O(logN) searches
with high probability. Briefly, each node chooses a
height such that the probability of choosing height
h is 1/2h. Thus, with probability 1/2 a node has
height 1, with probability 1/4 it has height 2, and so
forth. Figure 2 depicts a probabilistic Skip List.

3

Whereas Skip Lists are an in-memory data struc-
ture that is traversed from its head node, we desire
a data structure that links together distributed com-
puter nodes and supports traversals that may start
from any node in the system. Furthermore, because
peers should have uniform roles and responsibili-
ties in a peer-to-peer system, we desire that the state
and processing overhead of all nodes be roughly the
same. In contrast, Skip Lists maintain a highly vari-
able number of pointers per data record and expe-
rience a substantially different amount of traversal
traffic at each data record.

3.2 The SkipNet Structure

The key idea we take from Skip Lists is the no-
tion of maintaining a sorted list of all data records as
well as pointers that “skip” over varying numbers of
records. We transform the concept of a Skip List to a
distributed system setting by replacing data records
with computer nodes, using the string name IDs of
the nodes as the data record keys, and forming a ring
instead of a list. The ring must be doubly-linked to
enable path locality, as is explained in Section 3.4.

SkipNet inherits two address spaces from Skip
Lists: a space of string names as well as a numeric
space of random numbers. The string name space is
populated by node name IDs and content identifier
strings. The numeric space serves a dual purpose:
It is used to determine appropriate connections be-
tween nodes, and it is also populated by hashes of
the node name IDs and content identifiers in order
to support DHT functionality. A combination of the
two spaces is used to support constrained load bal-
ancing.

Rather than having nodes store a highly variable
number of pointers, as in Skip Lists, each SkipNet
node stores roughly 2 logN pointers, where N is
the number of nodes in the overlay system. Each
node’s set of pointers is called its routing table, or
R-Table, since the pointers are used to route mes-
sage traffic between nodes. The pointers at level h
of a given node’s routing table point to nodes that
are roughly 2h nodes to the left and right of the
given node. Figure 3 depicts a SkipNet containing
8 nodes and shows the routing table pointers that
nodes A and V maintain.

Figure 4 depicts the same SkipNet of Figure 3,
arranged to show all node interconnections at ev-

X

2

1

0

T

M

D

T

X

Z

Lvl -> <-

2

1

0

D

Z

X

D

O

T

Lvl -> <-

T

OM
D

Z

A

V

Figure 3. SkipNet nodes ordered by name ID. Rout-
ing tables of nodes A and V are shown.

V

Level: L = 0

L = 1

L = 3

L = 2

Ring 0 Ring 1

Ring 00 Ring 01 Ring 10 Ring 11

Ring
000

Ring
001

Ring
010

Ring
011

Ring
100

Ring
101

Ring
110

Ring
111

A

M

Z

T

OD

O

Z

M

A

X

T

V

D

X

TA

M

Z

V

D

X

DO

Z

V

O

M

X
TA

Figure 4. The full SkipNet routing infrastructure for
an 8 node system, including the ring labels.

ery level simultaneously. All nodes are connected
by the root ring formed by each node’s pointers at
level 0. The pointers at level 1 point to nodes that
are 2 nodes away and hence the overlay nodes are
implicity divided into two disjoint rings. Similarly,
pointers at level 2 form 4 disjoint rings of nodes,
and so forth. Note that rings at level h + 1 are ob-
tained by splitting a ring at level h into two disjoint
sets, each ring containing every second member of
the level h ring.

The SkipNet in Figure 4 is a “perfect” Skip-
Net: each level h pointer traverses exactly 2h nodes.
Maintaining a perfect SkipNet in the presence of in-
sertions and deletions is impractical, as is the case
with perfect Skip Lists. To facilitate efficient inser-
tions and deletions, we derive a probabilistic Skip-
Net design as follows: each ring at level h is split
into two rings at level h+1 by having each node ran-
domly and uniformly choose which of the two rings

4

it belongs to. With this probabilistic scheme, in-
sertion/deletion of a node only affects two nodes in
each ring to which that the node randomly chooses
to belong. Furthermore, a pointer at level h still
skips over 2h nodes in expectation, and routing is
possible in O(logN) forwarding hops with high
probability.

Each node’s random choice of ring memberships
can be encoded as a unique binary number, which
we refer to as the node’s numeric ID. As illustrated
in Figure 4, the first h bits of the number determine
ring membership at level h. For example, node X’s
numeric ID is 011 and its membership at level 2 is
determined by taking the first 2 bits of 011, which
designate Ring 01. As described in [30], there are
advantages to using a collision-resistant hash (such
as MD-5) of the node’s DNS name as the numeric
ID. For the rest of this paper, we are not concerned
with how the numeric ID is generated — we simply
assume that it is indeed random.

Readers familiar with Chord may have observed
that SkipNet’s routing tables are similar to those
maintained by Chord in that the pointer at level
h hops over 2h nodes in expectation. The funda-
mental difference is that SkipNet’s routing tables
point into a name space populated by nodes’ name
IDs whereas Chord’s routing tables point into a nu-
meric space that is populated by unique hashes de-
rived from nodes’ string names. Chord guarantees
O(logN) routing and node insertion performance
by uniformly distributing node identifiers in the ad-
dress space. In SkipNet, nodes’ name IDs are not
spread uniformly throughout the name ID space, but
random properties of the nodes’ numeric IDs ensure
that pointers skip over the appropriate number of
nodes.

3.3 Support for DHTs

As mentioned in Section 2, a key feature of
Chord and Pastry is the ability to support a DHT and
to use the DHT to uniformly distribute data across
all nodes. In contrast, a key feature of SkipNet is its
support for content locality: user-controlled place-
ment of data on a specific node. SkipNet achieves
content locality by organizing nodes and data in the
name ID space. In addition, SkipNet simultane-
ously supports traditional DHT functionality by or-
ganizing nodes and data in the numeric ID space.

RouteByNameID (nameID , msg) {
rmsg = new (RouteByNameMessage) ;
rmsg . msg = msg ;
rmsg . rout ingOperat ion = routeByName ;
rmsg . nameID = nameID ;
i f (nameID < l oca lNode . nameID)

rmsg . d i r e c t i o n = counterClockwise ;
e l s e i f (nameID > l oca lNode . nameID)

rmsg . d i r e c t i o n = c l o c k w i s e ;

RouteMessageByNameID (rmsg) ;
}

/ / Invoked f o r e v e r y message a r r i v i n g a t a node t h a t has
/ / msg . r o u t i n g O p e r a t i o n s e t t o routeByName .
RouteMessageByNameID (msg) {

h = loca lNode . maxHeight ;
whi l e (h > 0) {

nbr = loca lNode . RoutingTable [msg . d i r e c t i o n] [h] ;
i f (LiesBetween (loca lNode . nameID , nbr . nameID ,

msg . nameID , msg . d i r e c t i o n)) {
SendToNode (msg , nbr) ;
re turn ;

} e l s e {
h = h − 1;

}
}

/ / At h =0 t h e d e s t i n a t i o n i s be tween loca lNode and nbr .
i f (ClosestNode (nameID , loca lNode . nameID ,

nbr . nameID) = = loca lNode)
Del iverMessage (msg . msg) ;

e l s e
SendToNode (msg , nbr) ;

}

Figure 5. The algorithm for routing by name ID in
SkipNet.

Because nodes’ numeric IDs are chosen ran-
domly and uniformly, they are uniformly distributed
in the numeric ID space. By mapping data identi-
fiers into the numeric ID space using hashing (i.e.,
consistent hashing [15]), data can be uniformly dis-
tributed across nodes. As in Chord and Pastry, in-
sert or lookup of a data object requires routing a
message to the node whose numeric ID is closest
to the hash of the data identifier. As described in
Section 3.5, SkipNet supports routing by numeric
ID in O(logN) time, and thus can support a DHT
with comparable efficiency to Chord and Pastry.

Content locality is lost with this scheme. Indeed,
there is a fundamental tradeoff between content lo-
cality and uniform load balancing. DHTs yield uni-
form load balancing and cannot simultaneously sup-
port content locality. However, constrained load
balancing provides the ability to achieve a flexi-
ble tradeoff between content locality and uniform
load balancing. SkipNet supports constrained load
balancing by implicitly supporting traditional DHT
functionality over any subset of the nodes that are
contiguous in name ID space. Section 4.2 provides
a detailed description of this scheme.

5

3.4 Routing by Name ID

Routing by name ID in SkipNet is based on the
same basic principle as searching in Skip Lists: Fol-
low pointers that route closest to the intended des-
tination. At each node, a message will be routed
along the highest-level pointer that does not point
past the destination value. Routing terminates when
the message arrives at a node whose name ID is
closest to the destination.

Figure 5 is a pseudo-code representation of this
algorithm. The routing operation begins when a
node calls the function RouteByNameID, passing
in a destination name ID and a message to route.
This function wraps the message inside a larger
message that also contains fields for the name ID
to route to and the direction in which to route. The
direction is set according to whether the destination
name ID is lexicographically greater or lesser than
the name ID of the local node.

After wrapping the message, the function
RouteMessageByNameID is called to actually
forward the message to the next node. This func-
tion will be called on each node that the mes-
sage is routed through (including the originating
node). RouteMessageByNameID uses the lo-
cal node’s routing table to try to forward the mes-
sage towards its final destination. If the local node
is the closest node to the destination name ID then
DeliverMessage is called to effect actual deliv-
ery of the message on the local node.

Since nodes are ordered by name ID along each
ring and a message is never forwarded past its des-
tination, all nodes encountered during routing have
name IDs between the source and the destination.
Thus, when a message originates at a node whose
name ID shares a common prefix with the destina-
tion, all nodes traversed by the message have name
IDs that share the same prefix as the source and des-
tination do. Note that, because rings are doubly-
linked, this scheme can route using both right and
left pointers depending upon whether the source
name ID is smaller or greater than the destination
name ID, respectively. The key observation of this
scheme is that a routing by name ID traverses nodes
with non-decreasing name ID prefix matches with
the destination.

If the source name ID and the destination share

no common prefix, a message could be routed in ei-
ther direction, using right or left pointers. For fair-
ness sake, one could randomly pick a direction to go
so that nodes whose name IDs are near the middle
of the lexicographic ordering do not get a dispropor-
tionately larger share of the forwarding traffic than
do nodes whose name IDs are near the beginning
or end of the ordering. For simplicity however, our
current implementation never wraps around from Z
to A or vice-versa. Section 8.5 proves that node
stress is well-balanced even under this scheme.

The expected number of hops traversed by a mes-
sage when routing by name ID is O(logN) with
high probability. For a proof see Section 8.1.

3.5 Routing by Numeric ID

As mentioned in Section 3.3, it is also possible
to route messages efficiently according to a given
numeric ID. In brief, the routing operation begins
by examining nodes in the level 0 ring until a node
is found whose numeric ID matches the destination
numeric ID in the first digit. At this point the routing
operation jumps up to this node’s level 1 ring, which
also contains the destination node. The routing op-
eration then examines nodes in this level 1 ring until
a node is found whose numeric ID matches the des-
tination numeric ID in the second digit. As before,
we conclude that this node’s level 2 ring must also
contain the destination node, and thus the routing
operation proceeds in this level 2 ring.

This procedure repeats until we cannot make any
more progress — we have reached a ring at some
level h such that none of the nodes in that ring share
h + 1 digits with the destination numeric ID. We
must now somehow deterministically choose one of
the nodes in this ring to be the destination node.
Our algorithm defines the destination node to be
the node whose numeric ID is numerically closest
to destination numeric ID amongst all nodes in this
highest ring1.

Figure 6 is a pseudo-code representation of this
algorithm. The routing operation begins when
a node calls the function RouteByNumericID,
passing in a destination numeric ID and a mes-
sage to route. This wraps the message inside a

1A simpler alternative would be to choose the closest node
under the XOR metric proposed in [20].

6

RouteByNumericID (numericID , msg) {
rmsg = new (RouteByNumberMessage) ;
rmsg . rout ingOperat ion = routeByNumber ;
rmsg . numericID = numericID ;
rmsg . currH = −1;
rmsg . s tar tNode = n u l l ;
rmsg . bestNode = n u l l ;
rmsg . f i n a l D e s t i n a t i o n = f a l s e ;

RouteMessageByNumericID (rmsg) ;
}

/ / Invoked f o r e v e r y message a r r i v i n g a t a node t h a t has
/ / msg . r o u t i n g O p e r a t i o n s e t t o routeByNumber .
RouteMessageByNumericID (msg) {

i f (msg . numericID = = loca lNode . numericID | |
msg . f i n a l D e s t i n a t i o n) {

Del iverMessage (msg . msg) ;
re turn ;

}

i f (loca lNode = = msg . s tar tNode) {
msg . f i n a l D e s t i n a t i o n = t rue ;
SendToNode (msg . bestNode) ;
re turn ;

}

h = LongestCommonPrefixLen (msg . numericID ,
loca lNode . numericID) ;

i f (h > msg . currH) {
msg . currH = h ;
msg . s tar tNode = msg . bestNode = loca lNode ;

} e l s e i f (abs (loca lNode . numericID − msg . numericID)
< abs (msg . bestNode . numericID − msg . numericID)) {

msg . bestNode = loca lNode ;
}

nbr = loca lNode . RoutingTable [clockWise] [msg . currH] ;
SendToNode (nbr) ;

}

Figure 6. Algorithm to route by numeric ID in Skip-
Net

larger message that also contains fields for several
state variables that need to be maintained and up-
dated throughout the (distributed) routing proce-
dure. These fields include

numericID: The destination numeric ID to route
to.

currH: The level of the current ring that is being
traversed.

startNode: The first node encountered in the
current ring.

bestNode: The node that is closest to the desti-
nation among all nodes encountered so far.

finalDestination: A flag that is set to true
if the next node to process the message is the
correct final destination for the message.

After wrapping the message, the function
RouteMessageByNumericID is called to actu-
ally forward the message to the next node. This
function will be called on each node that the mes-
sage is routed through (including the originating
node). RouteMessageByNumericID checks to
see if the final destination for the message is itself

and invokes the function DeliverMessage to ef-
fect local delivery of the message if so.

Otherwise, a check is made to see if the message
has traversed all the way around the routing table
ring indicated by currH. If so, this implies that no
higher-level ring was found that matched a prefix
of the destination ID. In that case, bestNode will
contain the identity of the node on the current ring
that should be the final destination for the message;
the message will be forwarded to that node.

If the message has not fully traversed the current
ring then RouteMessageByNumericID checks
to see if the local node is also a member of a higher-
level ring that matches a prefix of the destination
ID. If so, then a search of that ring is initiated. If
not, then a check is made to see if the local node is
closer to the destination ID than the best node found
on the ring so far. In either case the message will be
forwarded to the next member of the routing ring to
traverse.2

The expected number of hops traversed by a mes-
sage when routing by numeric ID is O(logN) with
high probability. For a proof see Section 8.3.

3.6 Node Join and Departure

To join a SkipNet, a newcomer must first find the
top-level ring that corresponds to the newcomer’s
numeric ID. This amounts to routing a message to
the newcomer’s numeric ID, as described in Sec-
tion 3.5.

The newcomer first finds its neighbors in this top-
level ring, using a search by name ID within this
ring only. Starting from one of these neighbors, the
newcomer searches for its name ID at the next lower
level for its neighbors at this lower level. This pro-
cess is repeated for each level until the newcomer
reaches the root ring. For correctness, none of the
existing nodes point to the newcomer until the new
node joins the root ring; the newcomer then sends
messages to its neighbors along each ring to indi-
cate that it should be inserted next to them.

Figure 7 is a pseudo-code representation of this
algorithm. The joining node calls InsertNode,
passing in the name ID and numeric ID it will use.

2The choice of going around a ring in a clockwise or
counter-clockwise direction is arbitrary; we have chosen to go
in a clockwise direction.

7

InsertNode (nameID , numericID) {
msg = new (JoinMessage) ;
msg . o p e r a t i o n = findTopLevelRing ;
msg . jo in ingNode = loca lNode ;
msg . nameID = nameID ;
msg . numericID = numericID ;
RouteByNumericID (numericID , msg) ;

}

/ / C a l l e d when a message t h a t has been r o u t e d by nameID
/ / or numericID r e a c h e s i t s f i n a l d e s t i n a t i o n .
Del iverMessage (msg) {

. . .
e l s e i f (msg . o p e r a t i o n = = findTopLevelRing) {

Inser tNodeIntoRings (msg . joiningNode ,
msg . nameID , msg . numericID) ;

}
. . .

}

Inser tNodeIntoRings (joiningNode , nameID , numericID) {
msg = new (Col lec tRingNeighborsMessage) ;
msg . rout ingOperat ion = c o l l e c t R i n g N e i g h b o r s ;
msg . jo in ingNode = loca lNode ;
msg . nameID = nameID ;
msg . numericID = numericID ;
msg . currH = LongestCommonPrefix (loca lNode . numericID ,

numericID) ;
msg . r ingNeighbors = new Node [msg . currH] ;
msg . d o I n s e r t i o n s = f a l s e ;

Co l l ec tRingNe ighbors (msg) ;
}

/ / Invoked f o r e v e r y message a r r i v i n g a t a node t h a t has
/ / msg . r o u t i n g O p e r a t i o n s e t t o c o l l e c t R i n g N e i g h b o r s .
Col l ec tRingNe ighbors (msg) {

i f (msg . d o I n s e r t i o n s) {
f o r (i = 0 ; i < msg . r ingNeighbors . Length ; i ++)

AtomicDis trRout ingTableInser t (i , msg . r ingNe ighbors [i]) ;
re turn ;

}

whi le (msg . currH >= 0) {
nbr = loca lNode . RoutingTable [clockWise] [msg . currH] ;
i f (LiesBetween (loca lNode . nameID , msg . nameID ,

nbr . nameID , c lockWise)) {
msg . r ingNeighbors [msg . currH] = nbr ;
msg . currH = msg . currH − 1;

} e l s e {
SendToNode (msg , nbr) ;
re turn ;

}
}

msg . d o I n s e r t i o n s = t rue ;
SendToNode (msg , msg . jo in ingNode) ;

}

Figure 7. SkipNet node insertion algorithm.

This function creates a message that will be routed
towards the joining node’s numeric ID. The mes-
sage will end up at a node belonging to the top-level
ring that the new node should join. There, the mes-
sage will be passed in to the general-purpose mes-
sage delivery routine DeliverMessage.

That routine will initiate the sec-
ond phase of node insertion by calling
InsertNodeIntoRings, which creates a
new message that will be used to gather up the
neighbor nodes of all rings into which the joining
node should insert itself. The state encoded by this
message includes the following fields:

joiningNode: The identity of the newly joining
node.

nameID: The name ID of the newly joining node.

numericID: The numeric ID of the newly join-
ing node.

currH: The ring in which an insertion neighbor is
currently being searched for.

ringNeighbors: An array of insertion neigh-
bor nodes.

doInsertion: A flag that is set to true if the ar-
ray of ringNeighbors has been completely
filled in and the next node to process the mes-
sage is the newly joining node (which should
then do the actual insertions into each ring).

To actually process an insertion-
neighbors collection message the function
CollectRingNeighbors is called. This
function will be called on each node that the
message created by InsertNodeIntoRings is
routed through.
CollectRingNeighbors checks to see if

the collection of insertion neighbors is complete and
it’s time to do the actual insertion of the newly join-
ing node into all the relevant rings. If not, then the
neighbor node for the current ring is checked to see
if it is the right node to insert before. If yes, then the
insertion neighbor is recorded in the message and
search is initiated for the next-lower level ring. If
not, then the message is forwarded to the neighbor
along the current ring. Once neighbors have been
found for all ring levels, the completed list of in-
sertion neighbors is sent back to the newly joining
node.

The key observation for this algorithm’s effi-
ciency is that a newcomer joins a ring at a certain
level only after joining a higher level ring. As a re-
sult, the search by name ID within the ring to be
joined will typically not traverse all members of the
ring. Instead, the range of nodes traversed is limited
to the range between the newcomer’s neighbors at
the higher level. Therefore, with high probability,
a node join in SkipNet will traverse O(logN) hops
(for a proof see Section 8.4).

The basic observation in handling node depar-
tures is that SkipNet can route correctly as long
as the bottom level ring is maintained. All point-
ers but the level-0 ones can be regarded as rout-
ing optimization hints, and thus not necessary to

8

maintain routing protocol correctness. Therefore,
like Chord and Pastry, SkipNet maintains and re-
pairs these rings’ memberships lazily, by means of
a background repair process. However, when a node
voluntarily departs from the SkipNet, it can proac-
tively notify its neighbours to repair their pointers
immediately, instead of doing the lazy repair later.

To maintain the bottom ring correctly, each Skip-
Net node maintains a leaf set that points to addi-
tional nodes along the bottom ring. We describe the
leaf set next.

3.7 Leaf Set

Every SkipNet node maintains a set of pointers
to the L/2 nodes closest in name ID on the left side
and similarly on the right side. We call this set of
pointers a leaf set. Several previous peer-to-peer
systems [27] incorporate a similar architectural fea-
ture; in Chord [31] they refer to this as a successor
list.

These additional pointers in the bottom level ring
provide two benefits. First, the leaf set increases
fault tolerance. If a search operation encounters a
failed node, a node adjacent to the failed node will
contain a leaf set pointer with a destination on the
other side of the failed node, and so the search will
eventually move past the failed node. Repair is also
facilitated by repairing the bottom ring first, and re-
cursively relying on the accuracy of lower rings to
repair higher rings. Without a leaf set, it is not clear
that higher level pointers (that point past a failed
node) sufficiently enable repair. If two nodes fail,
it may be that some node in the middle of them be-
comes invisible to other nodes looking for it using
only higher level pointers. Additionally, in the node
failure scenario of an organizational disconnect, the
leaf set pointers on most nodes are more likely to
remain intact than higher level pointers. The re-
siliency to node failure that leaf sets provide (with
the exception of the organizational disconnect sce-
nario) was also noted by [31].

A second benefit of the leaf set is to increase
search performance by subtracting a noticeable ad-
ditive constant from the required number of search
hops. When a search message is within L/2 of its
destination, the search message will be immediately
forwarded to the destination. In our current imple-
mentation we use a leaf set of size L = 16, just as

Pastry does.

3.8 Background Repair

SkipNet uses the leaf set to ensure with good
probability that the neighbor pointers in the level
0 ring point to the correct node. As is the case in
Chord [30], this is all that is required to guarantee
correct, if possibly inefficient, routing by name ID.
For an intuitive argument of why this is true, sup-
pose that some higher-level pointer does not point
to the correct node, and that the search algorithm
tries to use this pointer. There are two cases. In the
first case, the incorrect pointer points further around
the ring than the routing destination. In this case the
pointer will not be used, as it goes past the destina-
tion. In the second case, the incorrect pointer points
to a location between the current location and the
destination. In this case the pointer can be safely
followed and routing will proceed from wherever it
points. The only potential loss is routing efficiency.
In the worst case, correct routing will occur using
the level 0 ring.

Nonetheless, for efficient routing, it is important
to ensure as much as possible that the other pointers
are correct. SkipNet employs two background algo-
rithms to detect and repair incorrect ring pointers.

The first of these algorithms builds upon the in-
variant that a correct set of ring pointers at level h
can be used to build a correct set of pointers in the
ring above it at level h + 1. Each node periodically
routes a message a short distance around each ring
that it belongs to, starting at level 0, verifying that
the pointers in the ring above it point to the cor-
rect node and adjusting them if necessary. Once the
pointers at level h have been verified, this algorithm
iteratively verifies and repairs the pointers one level
higher. At each level, verification and repair of a
pointer requires only a constant amount of work in
expectation.

The second of these algorithms performs local re-
pairs to rings whose nodes may have been inconsis-
tently inserted or whose members may have disap-
peared. In this algorithm nodes periodically con-
tact their neighbors at each level saying “I believe
that I am your left(right) neighbor at level h”. If
the neighbor agrees with this information no reply
is necessary. If it doesn’t, the neighbor replies say-
ing who he believes his left(right) neighbor is, and

9

a reconciliation is performed based upon this infor-
mation to correct any local ring inconsistencies dis-
covered.

4 Useful Locality Properties of SkipNet

In this section we discuss the useful locality prop-
erties that SkipNet is able to provide, and their con-
sequences.

4.1 Content and Routing Path Locality

Given the basic structure of SkipNet, de-
scribing how SkipNet supports content and path
locality is straightforward. Incorporating a
node’s name ID into a content name guaran-
tees that the content will be hosted on that
node. As an example, to store a document doc-
name on the node john.microsoft.com, naming it
john.microsoft.com/doc-name is sufficient.

SkipNet is oblivious to the naming convention
used for nodes’ name IDs. Our simulations and
deployments of SkipNet use DNS names for name
IDs, after suitably reversing the components of the
DNS name. In this scheme, john.microsoft.com
becomes com.microsoft.john, and thus all nodes
within microsoft.com share the com.microsoft pre-
fix in their name IDs. This yields path locality for
organizations in which all nodes share a single DNS
suffix (and hence share a single name ID prefix).

4.2 Constrained Load Balancing

As mentioned in the Introduction, SkipNet sup-
ports Constrained Load Balancing (CLB). To im-
plement CLB, we divide a data object’s name
into two parts: a part that specifies the set of
nodes over which DHT load balancing should be
performed and a part that is used as input to
the DHT’s hash function. In SkipNet the spe-
cial character ‘!’ is used as a delimiter be-
tween the two parts of the name. For example,
the name msn.com/DataCenter!TopStories.html in-
dicates load balancing over nodes whose names be-
gin with the prefix msn.com/DataCenter. The suf-
fix, TopStories.html, is used as input to the DHT
hash function, and this determines on which of the
nodes within msn.com/DataCenter to place the data
object.

To search for a data object that has been stored
using CLB, we first search for the appropriate sub-
set of nodes using search by name ID. To find the
specific node within the subset that stores the data
object, we perform a search by numeric ID within
this subset for the hash of the suffix.

The search by name ID is unmodified from the
description in Section 3.4, and takes O(logN) mes-
sage hops. The search by numeric ID is constrained
by a name ID prefix and thus at any level must effec-
tively step through a doubly-linked list rather than a
ring. Upon encountering the right boundary of the
list (as determined by the name ID prefix boundary),
the search must reverse direction in order to ensure
that no node is overlooked. Reversing directions in
this manner affects the performance of the search
by numeric ID by at most a factor of two, and thus
O(logN) message hops are required in total.

Note that both traditional system-wide DHT se-
mantics as well as explicit content placement are
special cases of constrained load balancing: system-
wide DHT semantics are obtained by placing the
‘!’ hashing delimiter at the beginning of a docu-
ment name. Omission of the hashing delimiter and
choosing the name of a data object to have a prefix
that matches the name of a particular SkipNet node
will result in the object being placed on that SkipNet
node.

Constrained load balancing can be performed
over any naming subtree of the SkipNet but not over
an arbitrary subset of the nodes of the overlay net-
work. In this respect it has flexibility similar to a
hierarchical file system’s. Another limitation is that
the domain of load balancing is encoded in the name
of a data object. Thus, transparent remapping to a
different load balancing domain is not possible.

4.3 Fault Tolerance

Previous studies [18, 21] have shown that net-
work connectivity failures in the Internet today are
due primarily to Border Gateway Protocol (BGP)
misconfigurations and faults. Other hardware, soft-
ware and human failures play a lesser role. As a
result, node failures in overlay systems are not in-
dependent, but instead, nodes belonging to the same
organization or AS domain tend to fail together. In
consequence, we have focused the design of Skip-
Net’s fault-tolerance to handle failures occurring

10

along organizational boundaries. SkipNet’s toler-
ance to uncorrelated, independent failures is much
the same as previous overlay designs (e.g., Chord
and Pastry), and is achieved through similar mecha-
nisms.

The key observation in failure recovery is that
maintaining correct neighbor pointers in the level 0
ring is enough to ensure correct functioning of the
overlay. Since each node maintains a leaf set of L
level 0 neighbors, level 0 ring pointers can be re-
paired by replacing them with the leaf set entries
that point to the nearest live nodes following the
failed node. The live nodes in the leaf set may be
contacted to repopulate the leaf set fully.

As described in Section 3.8, SkipNet also em-
ploys a lazy stabilization mechanism that gradually
updates all necessary routing table entries in the
background when a node fails. Any query to a live,
reachable node will still succeed during this time;
the stabilization mechanism simply restores optimal
routing.

4.3.1 Failures along Organization Boundaries

In previous peer-to-peer overlay designs [25, 30,
27, 36], node placement in the the overlay topol-
ogy is determined by a randomly chosen numeric
ID. As a result, nodes within a single organization
are placed uniformly throughout the address space
of the overlay. While a uniform distribution enables
the O(logN) routing performance of the overlay
it makes it difficult to control the effect of phys-
ical link failures on the overlay network. In par-
ticular, the failure of a inter-organizational network
link will manifest itself as multiple, scattered link
failures in the overlay. Indeed, it is possible for
each node within a single organization that has lost
connectivity to the Internet to become disconnected
from the entire overlay and from all other nodes
within the organization. Section 9.4 reports experi-
mental results that confirm this observation.

Since SkipNet name IDs tend to encode organiza-
tional membership, and nodes with common name
ID prefixes are contiguous in the overlay, failures
along organization boundaries do not completely
fragment the overlay, but instead result in ring seg-
ment partitions. Consequently, a significant fraction
of routing table entries of nodes within the discon-
nected organization still point to live nodes within

the same network partition. This property allows
SkipNet to gracefully survive failures along organi-
zation boundaries. Furthermore, the disconnected
organization’s SkipNet segment can be efficiently
re-merged with the external SkipNet when connec-
tivity is restored, as described in Section 6.

4.4 Security

Our discussion of the benefits of content and
path locality assumes an access control mechanism
on choice of name ID. SkipNet does not directly
provide this mechanism but rather assumes that it
is provided at another layer. Our use of DNS
names for name IDs does provide this: Arbitrary
nodes cannot create global DNS names with the mi-
crosoft.com suffix.

Path locality allows SkipNet to guarantee some
security beyond what previous peer-to-peer systems
offer: Messages between two machines within a
single administrative domain that corresponds to a
common prefix in name ID space will never leave
the administrative domain. Thus, these messages
are not susceptible to traffic analysis or denial-of-
service attacks by machines located outside of the
administrative domain. Indeed, SkipNet even pro-
vides resiliency to the Sybil attack [9]: creating an
unbounded number of nodes outside microsoft.com
will not allow the attacker to see any traffic internal
to microsoft.com.

An attacker might attempt to target a particular
domain (for example, microsoft.com) by choosing
to join SkipNet with a name ID that is adjacent to
the target (for example, microsofta.com). Suppose
microsoft.com consists of M nodes. In this case,
the attacker expects to see an O((logM)/M) frac-
tion of the messages passing between microsoft.com
nodes and the outside world, under a uniform traffic
assumption.

In Chord, a system that lacks path locality, in-
serting oneself adjacent to a target node and inter-
cepting a constant fraction of the traffic to the target
(assuming that messages are routed using only the
Chord finger table and not the Chord successor list)
may require computing as many SHA-1 hashes as
there are nodes in the system. In contrast, in Skip-
Net there is no computational overhead to generat-
ing a name ID, but it is impossible to insert oneself
into SkipNet in a place where one lacks the admin-

11

istrative privileges to create that name ID. It does
seem that in SkipNet, it may be possible to target
the connection between an entire organization and
the outside world with fewer attacking nodes than
would be necessary in other systems lacking path
locality. We believe that path locality is a desirable
property even though it facilitates this kind of at-
tack.

Recent work [3] on improving the security of
peer-to-peer systems has focused on certification of
node identifiers, tests for the success of routing,
and the use of redundant routing paths. While our
present discussion has focused on the security bene-
fits of content and path locality, the SkipNet design
could also incorporate the techniques from this re-
cent work.

4.5 Range Queries

Since SkipNet’s design is based on and inspired
by Skip Lists, it inherits their functionality and flex-
ibility in supporting efficient range queries. In par-
ticular, since nodes and data are stored in name
ID order, documents sharing common prefixes are
stored over contiguous ring segments. Answering
range queries in SkipNet is therefore equivalent to
routing along the corresponding ring segment. Be-
cause our current focus is on SkipNet’s architec-
ture and locality properties, we do not discuss range
queries further in this paper.

5 SkipNet Enhancements

This section presents several optimizations and
enhancements to the basic SkipNet design.

5.1 Sparse and Dense Routing Tables

The basic SkipNet Routing Table structure and
algorithms described in Section 3 may be modified
in order to improve routing performance. Thus far
in our discussions, SkipNet numeric IDs consist of
128 random binary digits. However, the random
digits need not be binary. Indeed, Skip Lists using
non-binary random digits are well-known [23].

If the numeric IDs in SkipNet consist of non-
binary digits, this changes the ring structure de-
picted in Figure 4, the number of pointers we expect
to store, and the expected search cost. We denote the
number of different possibilities for a digit by k —

in the binary digit case, k = 2. If k = 3, the root
ring of SkipNet still is just a single ring, but there
are 3 (not just 2) level one rings, 9 level two rings,
etc. As k increases, it becomes less likely that nodes
will match in any given number of digits, and thus
the total number of pointers will decrease. Because
there are fewer pointers, we also expect that it will
take more hops to get to any particular node. For
increasing values of k, the number of pointers de-
creases to O(logk n) while the number of hops re-
quired for search increases to O(k logk n). We call
the Routing Table that results from this modification
a sparse R-Table with parameter k.

It is also possible to build a dense R-Table. As
in the sparse construction, suppose that there are
k possibilities for each digit. Suppose additionally
that we store k − 1 pointers to contiguous nodes
at each level and in both directions. In this case,
the expected number of search hops decreases to
O(logk n), while the expected number of pointers
at a node increases to O(k logk n) — this is the op-
posite tradeoff from the sparse construction. These
results are formally proved in Section 8. For intu-
ition as to why we store k− 1 pointers per direction
per level, note that a node’s kth neighbor at level h
has a good chance of also being its first neighbor at
level h + 1.

Our density parameter, k, bears some similar-
ity to Pastry’s density parameter, b. Pastry always
generates binary numeric IDs but divides bits into
groups of b. This is analogous to our scheme for
choosing numeric IDs with k = 2b.

Implementing node join and departure in the case
of sparse R-Tables requires no modification to our
previous algorithms. For dense R-Tables, the node
join message must traverse (and gather information
about) at least k−1 nodes in both directions in every
ring containing the newcomer, before descending to
the next ring. As before, node departure merely re-
quires notifying every neighbor.

If k = 2, the sparse and dense constructions are
identical. Increasing k makes the sparse R-Table
sparser and the dense R-Table denser. Any given
degree of sparsity/density can be well-approximated
by appropriate choice of k and either a sparse or a
dense R-Table. Our implementation chooses k = 8
to achieve a good balance between state per node
and routing performance.

12

5.2 Duplicate Pointer Elimination

Two nodes that are neighbours in a ring at level
h may also be neighbours in a ring at level h + 1.
In this case, these two nodes maintain “duplicate”
pointers to each other at levels h and h + 1. In-
tuitively, routing tables with more distinct pointers
yield better routing performance than tables with
fewer distinct pointers, and hence duplicate pointers
reduce the effectiveness of a routing table. Replac-
ing a duplicate pointer with a suitable alternative,
such as the following neighbor in the lower ring, im-
proves routing performance by a moderate amount
(typically around 20%). Routing table entries ad-
justed in this fashion can only be used when routing
by name ID since they violate the invariant that a
node point to its closest neighbor on a ring, which
is required for correct routing by numeric ID.

5.3 Incorporating Network Proximity: The P-
Table

In SkipNet, a node’s neighbors are determined by
a random choice of ring memberships and by the
ordering of identifiers within those rings. Accord-
ingly, the SkipNet overlay is constructed without
direct consideration of the physical network topol-
ogy, potentially hurting routing performance. For
example, when sending a message from the node
saturn.com/nodeA to the node chrysler.com/nodeB,
both in the USA, the message might get routed
through the intermediate node jaguar.com/nodeC in
the UK. This would result in a much longer path
than if the message had been routed through another
intermediate node in the USA.

To deal with this problem, we introduce a second
routing table called the P-Table, which is short for
the proximity table. Our P-Table design is inspired
by Pastry’s proximity-aware routing tables [4]. To
incorporate network proximity, the key observation
is that any node that is roughly the right distance
away in name ID space can be used as an acceptable
routing table entry that will maintain the underlying
O(logN) hops routing behavior. For example, it
doesn’t matter whether a routing table entry at level
3 points to the node that is exactly 8 nodes away
or to one that is 7 or 9 nodes away; statistically the
number of forwarding hops that messages will take
will end up being the same. However, if the 7th or

9th node is nearby in network distance then using
it as the routing table entry can yield substantially
better routing performance.

For the remainder of this discussion, we will re-
fer to the basic SkipNet routing table described in
Section 3 as the R-Table. We use information al-
ready contained in a node’s R-Table to bootstrap
the P-Table construction process. Recall that the R-
Table entries are expected to point to nodes that are
exponentially increasing distances away. We con-
struct routing entries for the P-Table by choosing
nodes that interleave adjacent entries in the R-Table.
In other words, the R-Table entries when sorted by
name ID define the endpoints of contiguous seg-
ments of the root ring, and the P-Table construc-
tion process finds a node that is near to the joining
node within each of those segments. We determine
that two nodes are near each other by estimating the
round-trip latency between them.

The following section provides a detailed de-
scription of the algorithm that a SkipNet node uses
to construct its P-Table. After the initial P-Table is
constructed, SkipNet constantly tries to improve the
quality of its P-Table entries, as well as adjust to
node joins and departures, by means of a periodic
stabilization algorithm. The periodic stabilization
algorithm is very similar to the initial construction
algorithm presented below. Finally, in Section 8.8
we argue that P-Table routing performance and P-
Table construction are efficient.

5.3.1 P-Table Construction

Recall that the R-Table has only two configura-
tion parameters: the value of k and either sparse or
dense construction. The P-Table inherits these pa-
rameters from the R-Table upon which it is based.
In certain cases it is possible to construct a P-Table
with parameters that differ from the R-Table’s by
first constructing a temporary R-Table with the the
desired parameters. For example, if the R-Table is
sparse, one may construct a dense P-Table by first
constructing a temporary dense R-Table to use as
input to the P-Table construction algorithm.

To begin P-Table construction, the entries of the
R-Table (whether temporary or not) are copied to
a separate list, where they are sorted by name ID
and duplicate entries are eliminated. Duplicates and
out-of-order entries can arise due to the probabilistic

13

nature of constructing the R-Table. Next, the join-
ing node constructs a P-Table join message that con-
tains the sorted list of endpoints: a list of j nodes
defining j−1 intervals. The node then sends this P-
Table join message to a node that should be nearby
in terms of network distance, called the seed node.

Any node that receives a P-Table join message
uses its own P-Table entries to fill in the intervals
with “candidate” nodes. As a practical considera-
tion, we limit the maximum number of candidates
per interval to 10 in order to avoid accumulating too
many nodes. After filling in any possible intervals,
the node examines the join message to see if any of
the intervals are still empty. If there are still unfilled
intervals, the node forwards the join message, using
its own P-Table entries, towards the furthest end-
point of the unfilled interval that is farthest away
from the joining node. If all the intervals have at
least one candidate, the node sends the completed
join message back to the joining node.

When the original node receives its own join
message, it iterates through each interval choosing
one of the candidate nodes as its P-Table entry for
that interval. The final choice between candidate
nodes is performed by estimating the network la-
tency to each candidate and choosing the closest
node.

We summarize a few remaining key details of
P-Table construction. Since SkipNet maintains
doubly-linked rings, construction of a P-Table in-
volves defining intervals that cover the address
space in both the clockwise and counter-clockwise
directions from the joining node. Hence two join
messages are sent from the same starting node. In
our simulator, the seed node of the P-Table join
message is in fact the nearest node in the system.
For a real implementation, we make the follow-
ing simple proposal: The seed node should be de-
termined by estimating the network latency to all
nodes in the leaf set and choosing the closest leaf
set node. Since SkipNet name IDs incorporate nam-
ing locality, a node is likely to be close in terms of
network proximity to the nodes in its leaf set. Thus
the closest leaf set node is likely to be an excellent
choice for a seed node.

The P-Table is updated periodically in order that
the P-Table segment endpoints accurately reflect the
distribution of name IDs in the SkipNet, which may

change over time. The only difference between P-
Table construction and P-Table update is that for
update, the current P-Table entries are considered
as candidate nodes in addition to the candidates re-
turned by the P-Table join message. The P-Table
entries may also be incrementally updated as node
joins and departures are discovered through ordi-
nary message traffic.

5.4 Incorporating Network Proximity: The C-
Table

We add a third table, the C-Table, to incorporate
network proximity when searching by numeric ID,
much as the P-Table incorporated network proxim-
ity when searching by name ID. Constrained Load
Balancing (CLB), because it involves searches by
both name ID and numeric ID, takes advantage of
both the P-Table and the C-Table. Because search
by numeric ID as part of a CLB search must obey
the CLB search name constraint, C-Table entries
breaking the name constraint cannot be used. When
such an entry is encountered, the CLB search must
revert to using the R-Table.

The C-Table has identical functionality and de-
sign to the routing table that Pastry maintains [27].
The suggested parameter choice for Pastry’s routing
table is b = 4 (i.e. k = 16), while our implemen-
tation chooses k = 8, as mentioned in Section 5.1.
As is the case with searching by numeric ID using
the R-Table, and as is the case with Pastry, search-
ing by numeric ID with the C-Table requires at most
O(logN) message hops.

For concreteness, we describe the C-Table in the
case that k = 8, although this description could be
inferred from [27]. At each node the C-Table con-
sists of a set of arrays of node pointers, one array
per numeric ID digit, each array having an entry for
each of the eight possible digit values. Each entry of
the first array points to a node whose first numeric
ID digit matches the array index value. Each en-
try of the second array points to a node whose first
digit matches the first digit of the current node and
whose second digit matches the array index value.
This construction is repeated until we arrive at an
empty array.

14

5.4.1 C-Table Construction and Update

The details of C-Table construction can be found
in [4]. The key idea is: For each array in the C-
Table, route to a nearby node with the necessary
numeric ID prefix, obtaining its C-Table entries at
that level, and then populate the joining node’s array
with those entries. Since several candidate nodes
may be available for a particular table entry, the can-
didate with the best network proximity is selected.
Section 8.8 shows that the cost of constructing a C-
Table is O(logN) in terms of message traffic. As in
Pastry, the C-Table is updated lazily, by means of a
background stabilization algorithm.

We report experiments in Section 9.5 showing
that use of the C-Table during CLB search reduces
the RDP (Relative Delay Penalty). An adaptation
of the argument presented in [4] for Pastry explains
why this should be the case.

5.5 Virtual Nodes

Economies of scale and the ability to multiplex
hardware resources among distinct web sites have
led to the emergence of hosting services in the
World Wide Web. We anticipate a similar demand
for hosting virtual nodes on a single hardware plat-
form in peer-to-peer systems. In this section, we
describe a scheme for scalably supporting virtual
nodes within the SkipNet design. For ease of ex-
position, we describe only the changes to the R-
Table; the corresponding changes to the P-Table and
C-Table are obvious and hence omitted.

Nothing in the SkipNet design prevents multiple
nodes from co-existing on a single machine; how-
ever, scalability becomes a concern as the number
of virtual nodes increases. As shown in Section 8.2,
a single SkipNet node’s R-Table will probably con-
tain roughly logN pointers. If a single physical
machine hosts v virtual nodes, the total number of
R-Table pointers for all virtual nodes is therefore
roughly v logN . As v increases, the periodic main-
tenance traffic required for each of those pointers
poses a scalability concern. To alleviate this po-
tential bottleneck, the present section describes a
variation on the SkipNet design that reduces the
expected number of pointers required for v virtual
nodes to O(v + log n), while maintaining logarith-
mic expected path lengths for searches by name ID.

In Section 8.6 we provide mathematical proofs for
the performance of this virtual node scheme.

Although Skip Lists have comparable routing
path lengths as SkipNet, Section 3 mentioned two
fundamental drawbacks of Skip Lists as an overlay
routing data structure:

• Nodes in a Skip List experience markedly dis-
proportionate routing loads.

• Nodes in a Skip List have low average edge
connectivity.

Our key insight is that neither of these two Skip List
drawbacks apply to virtual nodes. In the context of
virtual nodes, we desire that:

• A peer-to-peer system must avoid imposing a
disproportionate amount of work on any given
physical machine. It is less important that vir-
tual nodes on a single physical machine do pro-
portionate amounts of work.

• Similarly, each physical machine should have
high edge connectivity. It is less important
that virtual nodes on a single physical machine
have high edge connectivity.

In light of these revised objectives, we can relax
the requirement that each virtual node has roughly
log n pointers. Instead, we allow the number of
pointers per virtual node to have a similar distribu-
tion to the number of pointers per data record in a
Skip List. More precisely, all but one of the vir-
tual nodes independently truncate their numeric IDs
such that they have length i ≥ 0 with probability
1/2i+1. The one remaining virtual node keeps its
full-length numeric ID, in order to ensure that the
physical machine has at least log n expected neigh-
bours. As a result, in this scheme, the expected
number of total pointers for a set of v virtual nodes
is 2v + log n + O(1).

When a virtual node routes a message, it can use
any pointer in the R-Table of any co-located virtual
node. Simply using the pointer that gets closest to
the destination (without going past it) will maintain
path locality and logarithmic expected routing per-
formance.

The interaction between virtual nodes and DHT
functionality is more complicated. DHT function-
ality involves searching for a given numeric ID.

15

Search by numeric ID terminates when it reaches
a ring from which it cannot go any higher; this is
likely to occur in a relatively high-level ring. By
construction, virtual nodes are likely only to be
members of low-level rings, and thus they are likely
not to shoulder an equal portion of the DHT stor-
age burden. However, because at least one node per
physical machine is not virtualized, the storage bur-
den of the physical machine is no less than it would
be without any virtual nodes.

6 Recovery from Organizational Discon-
nects

In this section, we characterize the behavior of
SkipNet with respect to a common failure mode:
when organizations become disconnected from the
Internet. We describe and evaluate the recovery al-
gorithms used to repair the SkipNet overlay when
such failures occur. One key benefit of SkipNet’s lo-
cality properties is graceful degradation in response
to disconnection of an organization due to router
misconfigurations and link and router faults [18].
Because SkipNet orders nodes according to their
names, and assuming that organizations assign node
names with one or a few organizational prefixes, an
organization’s nodes are naturally arranged into a
few contiguous overlay segments. Should an orga-
nization become disconnected, its segments remain
internally well-connected and intra-segment traffic
can be routed with the same O(logM) hop effi-
ciency as before, where M is the maximum number
of nodes in any segment.

By repairing only a few key routing pointers on
the “edge” nodes of each segment, the entire organi-
zation can be connected into a single SkipNet. Intra-
segment traffic is still routed in O(logM) hops,
but inter-segment traffic may require O(logM)
hops for every segment that it traverses. In total,
O(S logM) hops may be required for inter-segment
traffic, where S is the number of segments in the or-
ganization.

A background process can repair the remain-
ing broken routing pointers, thereby eliminating the
performance penalty borne by inter-segment traffic.
SkipNet’s structure enables this repair process to be
done proactively, in a manner that avoids unneces-
sary duplication of work. When the organization

reconnects to the Internet, these same repair opera-
tions can be used to merge the organization’s seg-
ments back into the global SkipNet.

In contrast, most previous scalable, peer-to-peer
overlay designs [25, 30, 27, 36] place nodes in the
overlay topology according to a unique random nu-
meric ID. Disconnection of an organization in these
systems will result in its nodes fragmenting into
many disjoint overlay pieces. During the time that
these fragments are reforming into a single overlay,
if they are even able to do so, network routing may
be unreliable and efficiency may be poor.

6.1 Recovery Algorithms

When an organization is disconnected from the
Internet its nodes will at least be able to communi-
cate with each other over IP but will not be able to
communicate with nodes outside the organization.
If the organization’s nodes’ names employ one of
several organizational prefixes then the global Skip-
Net will partition itself into several disjoint, but in-
ternally well-connected, segments. Figure 8 illus-
trates this situation.

Because of SkipNet’s routing locality property,
message traffic within each segment will be un-
affected by disconnection and will continue to be
routed with O(logM) efficiency. Cross-segment
traffic among the global portions of the SkipNet
will also remain largely unaffected because, unless
the disconnecting organization represents a sizeable
portion of the entire overlay, most cross-segment
pointers among global segments will remain valid.
This will not be the case for the segments of the
disconnected organization. Thus, the primary repair
task after both disconnection and reconnection con-
cerns the merging of overlay segments.

The algorithms employed in both the disconnec-
tion and reconnection cases are very similar: Skip-
Net segments must discover each other and then be
merged together. For the disconnect case segments
are merged into two disjoint SkipNets. For the re-
connect case, segments of the two disjoint SkipNets
are merged into a single SkipNet.

6.1.1 Discovery Techniques

When an organization disconnects, its segments
may not be able to find each other using only Skip-
Net pointers. This is because there is no guaran-

16

tee that non-contiguous segments will have pointers
into each other. We solve this problem by assuming
that organizations will divide their nodes into a rela-
tively small number of name segments and requiring
that they designate some number of nodes in each
segment as “well-known”. Each node in an orga-
nization maintains a list of these well-known nodes
and uses them as contact points between the various
overlay segments.

When an organization reconnects, the organi-
zational and global SkipNets discover each other
through their segment edge nodes. Each node main-
tains a “leaf set” that points to the eight closest
nodes on each side of itself in the level 0 ring. If
a node discovers that one side of its leaf set, but
not the other, is completely unreachable then it con-
cludes that a disconnect event has occurred and that
it is an edge node of a segment. These edge nodes
keep track of their unreachable leaf set pointers
and periodically ping them for reachability; should
a pointer become reachable, the node initiates the
merge process. Note that merging two previously
independent SkipNets together—for example, when
a new organization joins the system—is function-
ally equivalent to reconnecting a previously con-
nected one, except some other means of discovery
is needed.

6.1.2 Connecting SkipNet Segments at Level 0

We divide the segment merge process into two
steps: repair of the pointers comprising level 0 rings
and repair of the pointers for all higher-level rings.
The first step can be done quickly, as it only in-
volves repair of the level 0 pointers of the “edge”
nodes of each segment. Once the first step has been
done it will be possible to route messages correctly
among nodes in different segments and to do so with
O(S logM) efficiency, where S is the total num-
ber of segments and M is the maximum number of
nodes within a segment. As a consequence, the sec-
ond, more expensive step can be done as a back-
ground task, as described in Section 6.1.3.

The key idea for connecting SkipNet segments
at level 0 is to discover the relevant edge nodes by
having a node in one segment route a message to-
wards the name ID of a node in the other segment.
This message will be routed to the edge node in the
first segment that is nearest to other node’s name

SkipNet B

SkipNet B

SkipNet A

SkipNet A

s1

s2

s3

s0

d1

d0

n1

n2 d2

d3

Figure 8. Two partitioned SkipNets to be merged.

Level0Connect (n1 , n2) {
edgeNodes = GatherEdgeNodeInfo (n1 , n2 , n u l l)
Connect a l l edge node p a i r s in one atomic o p e r a t i o n .

}

GatherEdgeNodeInfo (n1 , n2 , msg) {
n2 r o u t e s msg to n1 in i t s SkipNet . Msg w i l l a r r i v e a t d1 .
d1 appends d1 and next neighbor , d0 , to msg c o n t e n t s .
d1 sends msg d i r e c t l y to n1 over IP .
n1 r o u t e s msg to d0 in i t s SkipNet . Msg w i l l a r r i v e a t s1 .
i f (memberOf (s0 , msg c o n t e n t s)) / / => a l l segments t r a v e r s e d

re turn msg c o n t e n t s
e l s e / / => Message needs t o d i s c o v e r more edge nodes

s1 appends s1 and next neighbor , s0 , to msg c o n t e n t s .
re turn GatherEdgeNodeInfo (s0 , d0 , msg)

}

Figure 9. SkipNet level 0 ring connection algorithm.

ID. Messages routed in this fashion can be used to
gather together a list of all segments’ edge nodes.
The actual inter-segment pointer updates are then
done as a single atomic operation among the seg-
ment edge nodes, using distributed two-phase com-
mit. This avoids routing inconsistencies.

To illustrate, Figure 8 shows two SkipNets to be
merged, each containing two different name seg-
ments. Suppose that node n1 knows of node n2’s
existence. Node n1 will send a message to node
n2 (over IP) asking it to route a search message to-
wards n1 in SkipNet B. n2’s message will end up
at node d1 and, furthermore, d1’s neighbor on Skip-
Net B will be d0. d1 sends a reply to n1 (over IP)
telling it about d0 and d1. n1 routes a search mes-
sage towards d0 on SkipNet A to discover s1 and
s0 in the same manner. The procedure is iteratively
invoked using s0 and d0 to gain information about
s2, s3, d2, and d3. Figure 9 presents the algorithm
in pseudo-code.

Immediately following level 0 ring connection,
messages sent to cross-segment destinations will be
routed efficiently. Cross-segment messages will be
routed to the edge of each segment they traverse and

17

1

10

0

010011
Level 2
Pointers

Level 1
Pointers

Level 0
Pointers

Numeric
ID 10...

Numeric
ID 01...

Numeric
ID 00...

Numeric
ID 11...

1

11

0

011000

Numeric
ID 11...

Numeric
ID 01...

Numeric
ID 10...

Numeric
ID 00...

Left Segment Being Connected Right Segment Being Connected

Segment boundary

...

Figure 10. Nodes whose pointers have been repaired at
the boundary of two SkipNet segments.

/ / C a l l e d i n i t i a l l y w i th l e v e l h =0 a t node
/ / t o t h e l e f t o f t h e merge p o i n t
PostMergeRepair (h) {

Find c l o s e s t node to l e f t whose numeric ID matches mine
in the f i r s t h b i t s and whose ID d i f f e r s from mine in the
next b i t , by f o l l o w i n g l e v e l h p o i n t e r s to the l e f t .

On my node :
cont = FixMyRightPointer (h+1)
i f (cont) PostMergeRepair (h+1)

In p a r a l l e l , on the other node :
cont2 = FixMyRightPointer (h+1)
i f (cont) PostMergeRepair (h+1)

}

FixMyRightPointer (h) {
Search r i g h t us ing l e v e l h−1 p o i n t e r s u n t i l a node i s found

t h a t matches my numeric id in h b i t s .
Connect our l e v e l h p o i n t e r s .
i f (p o i n t e r s are both from the same segment) re turn f a l s e
e l s e re turn true

}

Figure 11. Level h ring repair algorithm for a single
inter-segment boundary.

will then hop to the next segment using the level
0 pointer connecting the segments. This leads to
O(S logM) routing efficiency. When an organiza-
tion reconnects its fully repaired SkipNet at level 0
to the global one, traffic destined for nodes external
to the organization will be routed in O(logM) hops
to an edge node of the organization’s SkipNet. The
level 0 pointer connecting the two SkipNets will be
traversed and then O(logN) hops will be needed to
route traffic within the global SkipNet. Note that
traffic that does not have to cross between the two
SkipNets will not incur this routing penalty.

6.1.3 Repairing Routing Pointers following
Level 0 Ring Connection

Once the level 0 ring connection phase has com-
pleted we can update all remaining pointers that
need repair using a background task. We present
here a proactive algorithm that avoids unnecessary
duplication of work through appropriate ordering of

repair activities.
The key idea is that we will recursively repair

pointers at one level by using correct pointers at the
level below to find the desired nodes in each seg-
ment. Pointers at one level must be repaired across
all segment boundaries before a repair of a higher
level can be initiated. To illustrate, consider Fig-
ure 10, which depicts a single boundary between
two SkipNet segments after pointers have been re-
paired. Figure 11 presents an algorithm in pseudo-
code for repairing pointers above level 0 across a
single boundary. We begin by discussing the single
boundary case, and later we extend our algorithm to
handle the multiple boundary case.

Assume that the level 0 pointers have already
been correctly connected. There are two sets of two
pointers to connect between the segments at level
1: the ones for the routing ring labeled 0 and the
ones for the routing ring labeled 1 (see Figure 4).
We can repair the level 1 ring labeled 0 by travers-
ing the level 0 ring from one of the edge nodes until
we find nodes in each segment belonging to the ring
labeled 0. The same procedure is followed to cor-
rectly connect the level 1 ring labeled 1. After the
level 1 rings, we use the same approach to repair the
four level 2 rings.

Because rings at higher levels are nested within
rings at lower levels, repair of a ring at level h +
1 can be initiated by one of the nodes that had its
pointer repaired for the enclosing ring at level h. A
repair operation at level h + 1 is unnecessary if the
level h ring (a) contains only a single member or (b)
does not have an inter-segment pointer that required
repair. The latter termination condition implies that
most rings—and hence most nodes—in the global
SkipNet will not, in fact, need to be examined for
potential repair.

The total work involved in this repair algorithm is
O(M log(N/M)), where M is the size of the dis-
connecting/reconnecting SkipNet segment and N is
the size of the external SkipNet. Note that rings at
level h+ 1 can be repaired in parallel once their en-
closing rings at level h have been repaired across
all segment boundaries. Thus, the repair process for
a given segment boundary parallelizes to the extent
supported by the underlying network infrastructure.
We provide a theoretical analysis of the total work
and total time to complete repair in Section 8.7.

18

To repair multiple segment boundaries, we sim-
ply call the algorithm described above once for each
segment boundary. In the current implementation,
we perform this process iteratively, waiting for the
repair operation to complete on one boundary be-
fore initiating the repair at the next boundary. In fu-
ture work, we plan to investigate initiating the seg-
ment repair operations in parallel — the open ques-
tion is how to avoid repair operations from different
boundaries interfering with each other.

7 Design Alternatives

The locality properties provided by SkipNet can
also be obtained by means of suitable extensions to
existing overlay networks. However, we argue that
SkipNet does so in a more natural and often in a
more efficient manner. In this section we describe
design alternatives to SkipNet and compare them
with SkipNet’s approach.

DHT-based overlay networks depend on random
assignment of node IDs in order to obtain a uniform
distribution of nodes within the address space they
use. To support explicit content placement for a sin-
gle data object, one may choose a node ID that di-
rectly corresponds to the hash ID of that data object.
In order to assign more than one data object to the
same node one could do either of the following:

• One could virtualize the overlay nodes so that
each node joins the overlay once per data object.
This has the disadvantage that one must maintain
a separate routing table for each data object to be
assigned to a given physical overlay node.

• One could employ a two-part naming scheme,
as in SkipNet, wherein data object names consist
of a virtual node name followed by a node-relative
name. The virtual node name is hashed to obtain an
ID used to select a physical node on which to place
the virtual node’s data. The physical node hosting
this data assigns itself this hashed ID and joins the
overlay. As a result, the DHT will route requests for
the virtual node’s data objects to it.

The cost of the first approach is prohibitive if a
single node needs to store more than a few hun-
dred data objects. The second approach is essen-
tially equivalent to the SkipNet approach for con-
tent placement, except that both node and data ob-
ject names are translated to a numeric address space

instead of being used directly.
Path locality could be added to a DHT-based

overlay by ensuring that specially-marked local
messages are not forwarded outside of a given or-
ganizational boundary. The information would be
used to exclude routing table entries from use that
violate the routing constraint. Unfortunately this ap-
proach cannot guarantee path locality: There may
not be a path to a destination with the constraint ap-
plied. Furthermore, even if a path is available, it
may end up being inefficient.

Overlay networks such as Pastry can partially
mitigate this problem using their support for net-
work proximity [4]. However, Pastry’s network
proximity support depends on having a “nearby”
node to use as a “seed” node when joining an over-
lay. If the “nearby” node is not within the same
organization as the joining node, Pastry might not
be able to provide path locality. Furthermore, this
problem is exacerbated for organizations that con-
sist of multiple separate “islands” of nodes that are
far apart in terms of network distance. In con-
trast, SkipNet is able to guarantee path locality, even
across organizations that consist of separate clusters
of nodes, as long as they are contiguous in name ID
space.

Constrained load balancing can be achieved by
maintaining multiple overlay networks, one per
DHT required. This imposes a cost in terms of both
routing table state and complexity, since physical
nodes must maintain separate routing tables for each
DHT they join. Furthermore, when a new DHT is
created to load balance data across a set of nodes,
all nodes must be informed about their membership
in the new overlay. Worse yet, these new members
will now have to inherit the burden associated with
maintaining routing tables in the new DHT. In con-
trast, SkipNet is able to provide many DHTs using a
single set of routing tables per node and new DHTs
can be created simply by having clients create ap-
propriately structured data object names.

Given the naming approach suggested in Sec-
tion 4.1, a simple alternative to searches by name
ID (but not CLB searches) through a SkipNet over-
lay would be to route directly with IP after a DNS
lookup. SkipNet has three key advantages over this
approach. First, in the presence of node failures,
overlay routing provides seamless reassignment of

19

traffic to nearby nodes within the same organiza-
tion. Second, higher level abstractions such as mul-
ticast [5, 29, 26] and load-aware replication [33] are
easy to implement on top of SkipNet. Third, DNS
failures do not impact data availability, since no ex-
plicit name lookups are made.

8 Analysis of SkipNet

In this section we analyze various properties of
and costs of operations in SkipNet. Each subsection
begins with a summary of the main results followed
by a brief, intuitive explanation. The remainder of
each subsection proves the results formally.

8.1 Searching by Name ID

Searches by name ID in a dense SkipNet take
O(logk N) hops in expectation, and O(k logk N)
hops in a sparse SkipNet. Furthermore, these
bounds hold with high probability. (Refer to Sec-
tion 5.1 for the definition of ‘sparse’, ‘dense’, and
parameter k; the basic SkipNet design described in
Section 3 is a sparse SkipNet with k = 2). We
formally prove these results in Theorem 8.5 and
Theorem 8.2. Intuitively, searches in SkipNet re-
quire this many hops for the same reason that Skip
List searches do: every node’s pointers are approx-
imately exponentially distributed, and hence there
will most likely be some pointer that halves the re-
maining distance to the destination. A dense Skip-
Net maintains roughly a factor of k more pointers
and makes roughly a factor of k more progress on
every hop.

For the formal analysis, we will consider a sparse
R-Table first, and then extend our analysis to the
dense R-Table. It will be helpful to have the follow-
ing definitions: The node from which the search op-
eration begins is called the source node and the node
at which the search operation terminates is called
the destination node. The search operation visits
a sequence of nodes, until the destination node is
found; this sequence is called the search path. Each
step along the search path from one node to the next
is called a hop. Throughout this subsection we will
refer to nodes by their name IDs, and we will denote
the name ID of the source by s, and the name ID of
the destination by d.

The rings to which s belongs induce a Skip List
structure on all nodes, with s at the head. To analyze

the search path in SkipNet, we consider the path
that the Skip List search algorithm would use on the
induced Skip List; we then prove that the SkipNet
search path is no bigger the Skip List search path.
Let P be the SkipNet search path from s to d using
a sparse R-Table. Let Q be the path that the Skip
List search algorithm would use in the Skip List in-
duced by node s. Note that both search paths begin
with s and end with d, and all the nodes in the paths
lie between s and d. To see that P and Q need not
be identical, note that the levels of the pointers tra-
versed in a Skip List search path are monotonically
non-increasing; in a SkipNet search path this is not
necessarily true.

To characterize the paths P and Q, it will be help-
ful to let F (x, y) denote the longest common pre-
fix in x and y’s numeric IDs. The following useful
identities follow immediately from the definition of
F :

F (x, y) = F (y, x) (1)

F (x, y) < F (y, z) ⇒ F (x, z) = F (x, y) (2)

F (x, y) ≤ F (y, z) ⇒ F (x, z) ≥ F (x, y) (3)

F (x, y) > f, F (x, z) > f ⇒ F (y, z) > f (4)

The Skip List search path, Q, includes every node
x between s and d such that no node closer to d has
more digits in common with s. Formally, Q con-
tains x ∈ [s, d] if and only if �y ∈ [x, d] such that
F (s, y) > F (s, x).

The SkipNet search path P contains every node
between s and d such that no node closer to d
has more digits in common with the previous node
on the path. This uniquely defines P by speci-
fying the nodes in order; the node following s is
uniquely defined, and this uniquely defines the sub-
sequent node, etc. Formally, x ∈ [s, d] immedi-
ately follows w in P if and only if it is the closest
node following w such that �y ∈ [x, d] satisfying
F (w, y) > F (w, x).

Lemma 8.1. Let P be the SkipNet search path from
s to d using a sparse R-Table and let Q be the path
that the Skip List search algorithm would use in
the induced Skip List. Then P is a subsequence of
Q. That is, every node encountered in the SkipNet
search is also encountered in the Skip List search.

20

Proof: Suppose for the purpose of showing a con-
tradiction that some node x in P does not appear in
Q. Let x be the first such node. Clearly x �= s be-
cause s must appear in both P and Q. Let w denote
x’s predecessor in P ; since x �= s, x is not the first
node in P and so w is indeed well-defined. Node w
must belong to Q because x was the first node in P
that is not in Q.

We first consider the case that F (s, x) >
F (s, w), i.e., x shares more digits with s than w
does. We show that this implies that w is not in
Q, the Skip List search path (a contradiction). Re-
ferring back to the Skip List search path invariant,
x ∈ [w, d] plays the role of y, thereby showing that
w is not in Q.

We next consider the case that F (s, x) =
F (s, w), i.e., x shares equally many digits with s
as w does. We show that this implies that x is in
Q, the Skip List search path (a contradiction). Re-
ferring back to the Skip List search path invariant,
�y ∈ [w, d] such that F (s, y) > F (s, w). Combin-
ing the assumption of this case, F (s, w) = F (s, x),
with [x, d] ⊂ [w, d], we have that �y ∈ [x, d] such
that F (s, y) > F (s, x), and therefore x is in Q.

We consider the last case F (s, x) < F (s, w),
i.e., x shares fewer digits with s than w does. We
show that this implies that x is not in P , the Skip-
Net search path (a contradiction). Applying Iden-
tity 2 yields that F (s, x) = F (w, x), i.e., x shares
the same number of digits with w as it does with
s. By the assumption that x is not in Q, the Skip
List search path, there exists y ∈ [x, d] satisfying
F (s, y) > F (s, x). Combining F (s, y) > F (s, x)
with the case assumption, F (s, w) > F (s, x) and
applying Identity 4 yields F (w, y) > F (s, x).
Since F (s, x) = F (w, x), this y also satisfies
F (w, y) > F (w, x). Combining this with y ∈ [x, d]
implies that y violates the SkipNet search path in-
variant for x; x is not in P . �

A consequence of Lemma 8.1 is that the length
of the Skip List search path bounds the length of the
SkipNet search path. In the following theorem, we
prove a bound on the length of the SkipNet search
path as a function of D, the distance between the
source s and the destination d, by analyzing the Skip
List search path. Note that our high-probability re-

sult holds for arbitrary values of D; to the best of
our knowledge, analyses of Skip Lists and of other
overlay networks [31, 27] prove bounds that hold
with high probability for large N . Because of the
SkipNet design, we expect that D
 N will be a
common case. There is no reason to expect this in
Skip Lists or other overlay networks.

It will be convenient to define some standard
probability distribution functions. Let fn,1/k(g) be
the distribution function of the binomial distribu-
tion: if each experiment succeeds with probability
1/k, then fn,1/k(g) is the probability that we see ex-
actly g successes after n experiments. Let Fn,1/k(g)
be the cumulative distribution function of the bino-
mial distribution: Fn,1/k(g) is the probability that
we see at most g successes after n experiments. Let
Gg,1/k(n) be the cumulative distribution function of
the negative binomial distribution: Gg,1/k(n) is the
probability that we see g successes after at most n
experiments.

We use the following two identities below:

Gg, 1
k
(n) = 1 − Fn, 1

k
(g − 1) (5)

Fn, 1
k
(αn− 1) < 1−α

1−αkfn, 1
k
(αn) for α < 1

k (6)

Identity 5 follows immediately from the definitions
of our cumulative distribution functions, F and G.
Identity 6 follows from [7, Theorem 6.4], where we
substitute our αn for their k, our 1/k for their p, and
our 1 − 1/k for their q.

Theorem 8.2. Using a sparse R-Table, the expected
number of search hops in SkipNet is

O(k logk D)

to arrive at a node distance D away from the source.
More precisely, there exist constants z0 =

√
e and

t0 = 9, such that for t ≥ t0, the search requires no
more than (tk logk D + t2k) hops with probability
at least 1 − 3/zt

0.

Proof: By Lemma 8.1, it suffices to upper bound
the number of hops in the Skip List search path; we
focus on the Skip List search path for the remainder
of the proof. Define g to be t + logk D. Let X
be the random variable giving the maximum level
traversed in the Skip List search path. We now show
that Pr[X ≥ g] is small. Note that the probability

21

that a given node matches s in g or more digits is
1/kg. By a simple union bound, the probability that
any node between s and d matches s in g or more
digits is at most D/kg. Thus,

Pr[X ≥ g] ≤ D/kg

= 1/kg−logk D

= 1/kt

Let Y be the random variable giving the number
of hops traversed in a Skip List search path, and de-
fine m to be tkg, i.e., m = (tk logk D + t2k). We
will upper bound the probability that Y takes more
than m hops via:

Pr[Y > m] = Pr[Y > m and X < g]
+Pr[Y > m and X ≥ g]

≤ Pr[Y > m and X < g]
+Pr[X ≥ g]

It remains to show that the probability the search
takes more than m hops without traversing a level
g pointer is small. The classical Skip List analy-
sis [24] upper bounds this probability using the neg-
ative binomial distribution, showing that Pr[Y >
m and X < g] ≤ 1 −Gg,1/k(m). Using Identity 5,
we have 1 − Gg,1/k(m) = Fm,1/k(g − 1). Setting
α = 1/tk and applying Identity 6 gives the follow-
ing upper bound:

Fm, 1
k
(g−1) = Fm, 1

k
(αm−1) <

1 − α

1 − αk
fm, 1

k
(αm)

Note that 1−α
1−αk is at most 2, since t and k are both at

least 2. This yields that Fm,1/k(g − 1) is less than:

2
(
m

g

)
(1/k)g(1 − 1/k)m−g

= 2
(
tkg

g

)
(1/k)g(1 − 1/k)tkg(1 − 1/k)−g

< 2
(tkg)g

g!
(1/k)ge−tg(1 − 1/k)−g

< 2eg log tkg

(
1√
2πg

(g
e

)−g
)
e−g log ke−tgeg

< 2eg log tkge−g log gege−g log ke−tgeg

≤ 2eg(log t+log k+log g)−g log g+g−g log k+g−tg

= 2eg log t+g+g−tg

= 2e(−t+log t+2)g

For t ≥ 9, we have −t + log t + 2 < −t/2 < 0
and so e(−t+log t+2)g < e−t/2. Thus,

Fm,1/k(g) < 2e−t/2

Combining our results and letting z0 =
√
e yields

Pr[Y > m] ≤ Pr[Y > m and X < g] + Pr[X ≥ g]

≤ 2/et/2 + 1/kt

< 3/zt
0

Setting t0 = 9, for t ≥ t0, we have that Pr[Y >
m] < 3/zt

0. That is, Pr[Y ≤ m] ≥ 1 − 3/zt
0. The

expectation bound straightforwardly follows. �

We now consider the case of searching by name
ID in a SkipNet using a dense R-Table. Recall that a
dense R-Table points to the k−1 closest neighbours
in each direction at each level. Note that it would be
possible to use the same approach to create a ‘dense
Skip List’, but such a structure would not be useful
because in a Skip List, comparisons are typically
more expensive than hops. Whenever we refer to a
Skip List, we are always referring to a sparse Skip
List. Define P to be the SkipNet search path with
a dense R-Table and, as before, let Q be the path
that the Skip List search algorithm would use in the
induced Skip List.

To characterize the path P , it will be helpful to
let G(x, y, h) denote to be the number of hops be-
tween nodes x and y in the ring that contains them
both at level h. If h > F (x, y) (meaning nodes x
and y are not in the same ring at level h), we define
G(x, y, h) = ∞. Note that node x has a pointer to
node y at level h if and only if G(x, y, h) < k. At
each intermediate node on the SkipNet search path
we hop using the pointer that takes us as close to the
destination as possible without going beyond it. The
formal characterization is: x ∈ [s, d] immediately
follows w in P if and only if G(w, x, F (w, x)) < k
and �y, h such that x < y ≤ d and G(w, y, h) < k.

Lemma 8.3. Let P be the SkipNet search path with
a dense R-Table and let Q be the path that the Skip
List search algorithm would use in the induced Skip
List. Then P is a subsequence of Q.

22

Proof: The proof begins by defining the same
quantities as in the proof of Lemma 8.1. Suppose
for the purpose of showing a contradiction that some
node x in P does not appear in Q. Let x be the first
such node; clearly x �= s because s must appear in
both P and Q. Let w denote x’s predecessor in P ;
since x �= s, x is not the first node in P and so w
is indeed well-defined. Node w must belong to Q
because x was the first node in P that is not in Q.

We consider the three cases that F (s, x) >
F (s, w), F (s, x) = F (s, w), F (s, x) < F (s, w)
separately. The first two were shown to lead to a
contradiction in the proof of Lemma 8.1 without ref-
erence to the SkipNet search path; thus it remains to
consider only the case F (s, x) < F (s, w).

Let l = G(w, x, F (w, x)) be the number of hops
between w and x in the highest ring that contains
them both. Since x ∈ P , we must have l < k (from
the characterization of the dense SkipNet search
path). Since x �∈ Q, there must exist y ∈ [x, d]
such that F (s, y) > F (s, x) (from the characteri-
zation of the Skip List search path). Since w ∈ Q
and y ∈ [w, d], it cannot be the case that F (s, y) >
F (s, w), otherwise that would contradict the fact
that w ∈ Q (using the Skip List search path char-
acterization again). Therefore F (s, y) ≤ F (s, w),
and Identity 3 yields that F (w, y) ≥ F (s, y). Ap-
plying Identity 2 to F (s, x) < F (s, w) (the case as-
sumption) implies F (w, x) = F (s, x). Putting the
inequalities together yields F (w, y) ≥ F (s, y) >
F (s, x) = F (w, x). We apply the conclusion,
F (w, y) > F (w, x), in the rest of the proof to de-
rive a contradiction.

Consider the ring containing w at level F (w, y).
Node y must be in this ring but node x cannot be
because F (w, y) > F (w, x). Starting at w, con-
sider traversing this ring until we encounter z, the
first node on this ring with x < z (to the right of x).
Such a node z must exist because y is in this ring
and x < y. Note that x < z ≤ y ≤ d.

Since this ring at level F (w, y) is a strict subset of
the ring at at level F (w, x) (in particular, x is not in
it), it takes at most l < k hops to traverse from w to
z. We now have x < z ≤ d and G(w, z, F (w, y)) <
k, which contradicts the fact that x ∈ Q. �

Lemma 8.4. Let P be the SkipNet search path from
s to d using a dense R-Table. Let Q be the search

path from s to d in the induced Skip List. Let m be
the number of hops along path Q and let g be the
maximum level of a pointer traversed on path Q.
Then the number of hops taken on path P is at most
m

k−1 + g + 1.

Proof: Let Q = (s, q1, . . . , qm) be the sequence
of nodes on path Q, where qm = d. By choice of
g, F (s, qi) ≤ g for all i ≥ 1. Thus, the qi nodes
are partitioned into levels according to the value of
F (s, qi). Recall that F (s, qi) is monotonically non-
increasing with i since Q is a Skip List search path.
Thus the nodes in each partition are contiguous on
path Q.

Suppose P contains qi. Using the dense R-Table,
it is possible to advance in one hop to any node in
the Skip List path that is at most k− 1 hops away at
level F (s, qi). Thus, if there are li nodes at level i
in P , then Q contains at most
li/(k − 1)� of those
nodes. Summing over all levels, Q contains at most
m

k−1 + g + 1 nodes. �

Theorem 8.5. Using a dense R-Table, the expected
number of search hops is

O(logk D)

to arrive at a node distance D away from the source.
More precisely, for constants z0 =

√
e and t0 =

9, and for t ≥ t0, the search completes in at most
(2t+ 1) logk D + 2t2 + t+ 1 hops with probability
at least 1 − 3/zt

0.

Proof: As in the proof of Theorem 8.2, with prob-
ability at least 1 − 3/zt

0 the number of levels in the
Skip List search path is at most g = t + logk D,
and the number of hops is at most m = tkg =
(tk logk D + t2k). Applying Lemma 8.4, the num-
ber of hops in the dense SkipNet search path is

m

k − 1
+ g + 1 =

tkg

k − 1
+ g + 1

≤ 2tg + g + 1 = (2t + 1)g + 1
= (2t + 1)(t + logk D) + 1

= (2t + 1) logk D + 2t2 + t + 1

�

23

8.2 Correspondence between SkipNet and
Tries

The pointers of a SkipNet effectively make every
node the head of a Skip List ordered by the nodes’
name IDs. Simultaneously, every node is also the
root of a trie [10] on the nodes’ numeric IDs. Thus
the SkipNet simultaneously implements two distinct
data structures in a single structure. One implica-
tion is that we can reuse the trie analysis to deter-
mine the expected number of non-null pointers in
the sparse R-Table of a SkipNet node. This extends
previous work relating Skip Lists and tries by Pa-
padakis in [22, pp. 38]: The expected height of
a Skip List with N nodes and parameter p corre-
sponds exactly to the expected height of a 1

p -ary trie
with N + 1 keys drawn from the uniform [0, 1] dis-
tribution.

Recall that ring membership in a SkipNet is de-
termined as follows: For i ≥ 0, two nodes belong to
the same ring at level i if the first i digits of their nu-
meric ID match exactly. All nodes belong to the one
ring at level 0, which is called the root ring. Note
that if two nodes belong to ring R at level i > 0
then they must also belong to the same ring at level
i−1, which we refer to as the parent ring of ring R.
Moreover, every ring R at level i ≥ 0 is partitioned
into at most k disjoint rings at level i + 1, which
we refer to as the child rings of ring R. Thus, the
rings naturally form a Ring Tree which is rooted at
the root ring.

Given a Ring Tree, one can construct a trie as fol-
lows. First, remove all rings whose parent ring con-
tains a single node — this will collapse any subtree
of the trie that contains only a single node. Every
remaining ring that contains a single node is called
a leaf ring; label the leaf ring with the numeric ID of
its single node. The resulting structure on the rings
is a trie containing all the numeric IDs of the nodes
in the SkipNet.

Let YN be the random variable denoting the num-
ber of non-null right (equivalently, left) pointers at a
particular node in a SkipNet containing N nodes.
Papadakis defines DN to be the random variable
giving the depth of a node in a k-ary trie with keys
drawn from the uniform [0, 1] distribution. Note that
YN is identical to the random variable giving the
depth of a node’s numeric ID in the trie constructed

above, and thus we have YN = DN .
We may use this correspondence and Papadakis’

analysis to show that E[YN] = 1 + V 1
k
(N), where

V 1
k
(N) is (as defined in [17]):

V 1
k
(N) =

1
N

N∑
g=2

(
N

g

)
(−1)g g · (1/k)g−1

1 − (1/k)g−1

Knuth proves in [17, Ex. 6.3.19] that V 1
k
(N) =

logk N + O(1), and thus the expected number of
right (equivalently, left) non-null pointers is given
by E[YN] = logk N + O(1).

8.3 Searching by Numeric ID

SkipNet supports searches by numeric ID as well
as searches by name ID. Searches by numeric ID
in a dense SkipNet take O(logk N) hops in expec-
tation, and O(k logk N) in a sparse SkipNet. We
formally prove these results in Theorem 8.6. Intu-
itively, search by numeric ID corrects digits one at
a time and needs to correct at most O(logk N) dig-
its. In the sparse SkipNet correcting a single digit
requires about O(k) hops, while in the dense case
only O(1) hops are required.

Theorem 8.6. The expected number of hops in a
search by numeric ID using a sparse R-Table is
O(k logk N). In a dense R-Table, the expected
number of hops is O(logk N). Additionally, these
bounds hold with high probability (i.e., the number
of hops is close to the expectation).

Proof: We use the same upper bound as in the proof
of Theorem 8.2,

Pr[search takes more than m hops]
≤ Pr[more than m hops and at most g levels]

+ Pr[more than g levels]

and bound the two terms separately. In Theo-
rem 8.2 we showed that the maximum number of
digits needed to uniquely identify a node is g =
O(logk N) with high probability, and thus no search
by numeric ID will need to climb more than this
many levels. This upper bounds the right-hand term.
The number of hops necessary on any given level in
the sparse R-Table before the next matching digit is

24

found is upper bounded by a geometric random vari-
able with parameter 1/k. The sum of g of these ran-
dom variables has expectation gk, and this random
variable is close to its expectation with high prob-
ability (by standard arguments). Thus the expected
number of hops in a search by numeric ID using a
sparse R-Table is O(k logk N), and additionally the
bound holds with high probability.

For a search by numeric ID using a dense R-
Table, we upper bound the number of hops neces-
sary on any given level differently. Informally, in-
stead of performing one experiment that succeeds
with probability 1/k repeatedly, we perform k − 1
such experiments simultaneously. Formally, the
probability of finding a matching digit in one hop
is now 1− (1−1/k)k−1 ≥ 1/2. Therefore the anal-
ysis in the case of a sparse R-Table need only be
modified by replacing the parameter 1/k with 1/2.
Thus the expected number of hops in a search by nu-
meric ID using a dense R-Table is O(logk N), and
additionally the bound holds with high probability.
�

8.4 Node Joins and Departure

We now analyze node join and departure opera-
tions using the analysis of both search by name ID
and by numeric ID from the previous sections. As
described in Section 3.6, a node join can be imple-
mented using a search by numeric ID followed by
a search by name ID, and will require O(k logk N)
hops in either a sparse or a dense SkipNet. Imple-
menting node departure is even easier: As described
in Section 3.6, a departing node need only notify its
left and right neighbors at every level that it is leav-
ing, and that the left and right neighbors of the de-
parting node should point to each other. This yields
a bound of O(logk N) hops for the sparse SkipNet
and O(k logk N) for the dense SkipNet, where hops
measure the total number of hops traversed by mes-
sages since these messages may be sent in parallel.

Theorem 8.7. The number of hops required by a
node join operation is O(k logk N) in expectation
and with high probability in either a sparse or a
dense SkipNet.

Proof: The join operation can be decomposed into
a search by numeric ID, followed by a Skip List

search by name ID. Because of this, the bound on
the number of hops follows immediately from The-
orem 8.2 and Theorem 8.6. It only remains to estab-
lish that the join operation finds all required neigh-
bors of the joining node.

For a sparse SkipNet, the joining node needs a
pointer at each level h to the node whose numeric
ID matches in h digits that is closest to the right or
closest to the left in the order on the name IDs. For a
dense SkipNet, the joining node must find the same
nodes as in the sparse SkipNet case, and then notify
k − 2 additional neighbors at each level.

The join operation begins with a search for a node
with the most numeric ID digits in common with
the joining node. The search by name ID opera-
tion for the joining node starts at this node, and it
is implemented as a Skip List search by name ID;
the pointers traversed are monotonically decreasing
in height, in contrast to the normal SkipNet search
by name ID. Whenever the Skip List search path
drops a level, it is because the current node at level h
points to a node beyond the joining node. Therefore
this last node at level h on the Skip List search path
is the closest node that matches the joining node in
h digits. This gives the level h neighbor on one side,
and the joining node’s level h neighbor on the other
side is that node’s former neighbor. The message
traversing the Skip List search path accumulates this
information about all the required neighbors on its
way to the joining node. This establishes the cor-
rectness of the join operation. �

8.5 Node Stress

We now analyze the distribution of load when
performing searches by name ID using R-Tables.
To analyze the routing load, we must assume some
distribution of routing traffic. We assume a uni-
form distribution on both the source and the des-
tination of all routing traffic. Under some routing
algorithms (which happen not to preserve path lo-
cality), the distribution of routing load is obviously
uniform. For example, if routing traffic were always
routed to the right, the load would be uniform. If the
source and destination name ID do not share a com-
mon prefix, then path locality is not an issue and the
SkipNet routing algorithm may randomly choose a

25

direction in which to route — such traffic is uni-
formly distributed.

If the SkipNet routing algorithm can preserve
path locality, it does so by always routing in the di-
rection of the destination (i.e., if the destination is
to the right of the source, routing proceeds to the
right). We show that in this case load is approxi-
mately balanced: very few nodes’ loads are much
smaller than the average load. We also shows that
no node’s load exceeds the average load by more
than a constant factor with high probability; this re-
sult is relevant whether the routing algorithm pre-
serves path locality or not. In the interest of sim-
plicity, our proof assumes that k = 2; a similar re-
sult holds for arbitrary k. Also, we have previously
given an upper bound of O(log d) on the number of
hops between two nodes at distance d. In order to
estimate the average load, we assume a tight bound
of Θ(log d) without proof.

Theorem 8.8. Consider an interval on which we
preserve path locality containing N nodes. Then the
uth node of the interval bears a Θ(log min{u,N−u}

log N)
fraction of the average load in expectation.

Proof: We first establish the expected load on node
u due to routing traffic between a particular source
l and destination r. The search path can only en-
counter u if, for some h, the numeric IDs of l and
u have a common prefix of length h but no node
between u and r has a longer common prefix with
l. We observe that every node’s random choice of
numeric ID digits is independent, and apply a union
bound over h to obtain the following upper bound
on the probability that the search encounters u. De-
note the distance from u to r by d.

Pr[search encounters u]

≤
∑
h≥0

Pr[u and l share h digits]

· Pr[no node between u and r shares more]

=
∑
h≥0

1
2h

·
(
1 − 1

2h+1

)d

Denote the term in the above summation by
H(h). Because H(h) falls by at most a factor of
2 when h increases by 1, we can upper bound the

summation using:∑
h≥0

H(h) ≤ 2 ·
∫

h≥0
H(h)dh

Making the change of variables α = 1 − 1
2h+1 , and

hence dα = ln 2
2h+1 · dh, we obtain:∫

h≥0
H(h)dh =

∫ 1

α=1/2

2
ln 2

· αd · dα

=
2

ln 2
· 1d+1 − (1

2)d+1

d + 1
= O(1/d)

This completes the analysis of a single
source/destination pair. A similar single pair
analysis was also noted in [1]. We complete our
theorem by considering all source/destination pairs.

Our bound on the average load of a node is given
by the total number of source/destination pairs mul-
tiplied by the bound on search hops divided by the
total number of nodes. Summing over all the routing
traffic that passes through u and dividing by the av-
erage load yields the proportion of the average load
that u carries. To within a constant factor, this is:∑

l∈[1,u−1]

∑
r∈[u+1,r]

(
1

|u−l| + 1
|u−r|

)
(
(
N
2

)
logN)/(N)

=
u log(N − u) + (N − u) log u

((N − 1) logN)/2

= Θ
(log min{u,N − u}

logN

)
�

Corollary 8.9. The number of nodes with expected
load less than Θ(α · average load) is Nα.

Proof: Apply Theorem 8.8 and note that log u
log N < α

implies that u < Nα. �
This completes the analysis showing that few

nodes expect to do much less work than the aver-
age node in the presence of path locality. Our next
theorem shows that it is very unlikely any node will
carry more than a constant factor times the average
load; this analysis is relevant whether the routing
policy maintains path locality or not.

Theorem 8.10. With high probability, no node
bears more than a constant factor times the average
load.

26

Proof: Consider any node u. There are at most N
nodes to the left of u and at most N nodes to the
right. As in the previous theorem, let l and r denote
nodes to the left and right of u respectively. Then
the Skip List path from l to r (of which the SkipNet
path is a subsequence) encounters u only if there is
some number h such that l and u share exactly h
bits, but no node between u and r shares exactly h
bits with u. Considering only routing traffic pass-
ing from left to right affects our bound by at most a
factor of two.

Let Lh be a random variable denoting the num-
ber of l that share exactly h bits with u. Let Rh

denote the number of r such that no node between
u and r shares exactly h bits with u. (Note that if
r shares exactly h bits with u, it must share more
than h bits with l, and thus routing traffic from l to
r does not pass through u.) The analysis in the pre-
vious paragraph implies that the load on u is exactly∑

h LhRh. We desire to show that this quantity is
O(N logN) with high probability.

The random variable Lh has the binomial dis-
tribution with parameter 1/2h+1. From this obser-
vation, standard arguments (that we have made ex-
plicit in earlier proofs in this section) show that Lh

has expectation N/2h+1, and for h ∈ [0, logN −
log logN], Lh = O(N/2h+1) with high probabil-
ity. The number of l that share more than logN −
log logN bits with u is logN in expectation, and
is O(logN) with high probability; these l (whose
number of common bits with u we do not bound)
can contribute at most O(N logN) to the final to-
tal.

To analyze the random variables Rh, we intro-
duce new random variables R′

h that stochastically
dominate Rh. In particular, let R′

h be the dis-
tance from u to the first node after node R′

h−1 that
matches u in exactly h bits. Also, let R′

0 = R0.
We define additional random variables Yh using the
recurrence R′

h =
∑h

i=0 Yi. The Yh are completely
independent of each other; Yh only depends on the
random bit choices of nodes after the nodes that de-
termine Yh−1.

The random variable Yh is distributed as a geo-
metric random variable with parameter 1/2h+1 (and
upper bounded by N). We rewrite the quantity we

desire to bound as∑
h

LhRh =

O(N logN) +
log N−log log N∑

h=0

O
(N

2h+1

)
·

h∑
i=0

Yi

Using that the N/2h+1 form a geometric series, we
apply the upper bound

log N−log log N∑
h=0

N

2h+1
·

h∑
i=0

Yi ≤
log N−log log N∑

h=0

2N
2h+1

·Yh

We have that
∑

h LhRh equals O(N logN) plus
the sum of (slightly fewer than) logN independent
random variables, where the hth random variable is
distributed like a geometric random variable with
parameter 1/2h multiplied by O(N/2h), and thus
has expectation O(N). This yields the O(N logN)
bound with high probability. �

8.6 Virtual Node Analysis

We outlined in Section 5.5 a scheme by which
a single physical node could host multiple virtual
nodes. Using this scheme, the bounds on search
hops are unaffected, and the number of pointers
per physical node is only O(k logk N + kv) in the
dense case, where v is the number of virtual nodes.
In the sparse case, the number of pointers is just
O(logk N + v).

Intuitively, we obtain this by relaxing the re-
quirement that nodes after the first have height
O(logk N). We instead allow node heights to be
randomly distributed as they are in a Skip List. Be-
cause Skip List nodes maintain a constant number
of pointers in expectation, we add only O(k) point-
ers per virtual node in the dense case, and O(1) in
the sparse case. Search are still efficient, just as they
are in a Skip List.

Theorem 8.11. Consider a single physical node
supporting v virtual nodes using the scheme of
Section 5.5. In the dense case, searches require
O(logk D) hops, and the number of pointers is
O(k logk N + kv). In the sparse case, searches re-
quire O(k logk D) hops, and the number of pointers
is O(logk N + v). All these bounds hold in expec-
tation and with high probability.

27

Proof: The bound on the number of pointers is by
construction. Consider the sparse case. The lead-
ing term in the bound, O(logk N), is due to the one
virtual node that is given all of its SkipNet point-
ers. The additional virtual nodes have heights given
by geometric random variables with parameter 1/2,
which is O(1) in expectation. The claimed bound
on the number of pointers immediately follows, and
the dense case follows by an identical argument
with an additional factor of k.

We now analyze the number of search hops, fo-
cusing first on the sparse case. Because we might
begin the search at a virtual node that does not
have full height, we will break the analysis into
two phases. During the first phase, the search path
uses pointers of increasing level. At some point, we
encounter a node whose highest pointer goes be-
yond the destination. From this point on (the sec-
ond phase), we consider the Skip List search path to
the destination that begins at this node. As in Theo-
rem 8.2, the rest of the actual search path will be a
subsequence of this Skip List path.

As in Theorem 8.2, the maximum level of any
pointer in this interval of D nodes is O(logk D) with
high probability. Suppose that some particular node
t is the first node encountered whose highest pointer
points beyond the destination. In this case, the first
phase is exactly a search by numeric ID for t’s nu-
meric ID, and therefore the high probability bound
of Theorem 8.6 on the number of hops applies. The
second phase is a search from t for d, and the high
probability bound of Theorem 8.2 on the number
of hops applies. There is a subtlety to this second
argument — although some or all of the intermedi-
ate nodes may be virtual, the actual search path is
necessarily a subset of the search path in the Skip
List induced by t (by the arguments of Lemma 8.1
and Lemma 8.3). We previously supposed that t was
fixed; because there are at most D possibilities for t,
considering all such possibilities increases the prob-
ability of requiring more than O(k logk D) hops by
at most a factor of D. Because the bound held with
high probability initially, the probability of exceed-
ing this bound remains negligible.

This yields the result in the sparse case. An iden-
tical argument holds in the dense case. �

8.7 Ring Merge

We now analyze the performance of the proactive
algorithm for merging disjoint SkipNet segments,
as described in Section 6. Consider the merge of a
single SkipNet segment containing M nodes with a
larger SkipNet segment containing N nodes. In the
interest of simplicity, our discussion assumes that
k = 2; a similar analysis applies for arbitrary k.
Recall that the expected maximum level of a ring in
the merged SkipNet is O(logN) with high proba-
bility (Section 8.2). Intuitively, the expected time
to repair a ring at a given level after having reached
that level is O(1) and ring repair occurs in parallel
across all rings at a given level. This suggests that
the expected time required to perform the merge op-
eration is O(logN), and we will show this formally
in Theorem 8.12 under the assumption that the un-
derlying network accommodates unbounded paral-
lelization of the repair traffic. In practice, the band-
width of the network may impose a limit: doing
many repairs in parallel may saturate the network
and hence take more time.

The expected amount of work required by the
merge is O(M log(N/M)) = O(N). We first give
an intuitive justification for this. The merge op-
eration repairs at most four pointers per SkipNet
ring. Since the total number of rings in the merged
SkipNet is O(N) and the expected work required
to repair a ring is O(1), the expected total work
performed by the merge operation is O(N). Ad-
ditionally, if M is much less than N , the bound
O(M log(N/M)) proved in Theorem 8.13 is much
less than O(N).

Now consider an organization consisting of S
disjoint SkipNet segments, each of size at most M ,
merging into a global SkipNet of size N . In this
case, the merge algorithm sequentially merges each
segment of the organization one at a time into the
global SkipNet. The total time required in this
case is O(S logN) and the total work performed
is O(SM log(N/M)); these are straightforward
corollaries of Theorem 8.12 and Theorem 8.13.

Theorem 8.12. The time to merge a SkipNet seg-
ment of size M with a larger SkipNet segment of
size N is O(logN) with high probability, assuming
sufficient bandwidth in the underlying network.

Proof: After repairing a ring, the merge operation

28

branches to repair both child rings in parallel, un-
til there are no more child rings. Using the anal-
ogy with tries from Section 8.2, consider any path
along the branches from the root ring to a ring with
no children. We show that this path uses O(logN)
hops with high probability. Union bounding over all
such paths will complete the theorem.

We can assume that the height of any pointer
is at most c1 logN . The number of hops to tra-
verse this path is then upper bounded by a sum of
c1 logN geometric random variables with param-
eter 1/2. We now show that this sum is at most
c2 logN = O(logN) with high probability. Ap-
plying the same reduction as in Section 8.1, using
Identity 5 and Identity 6, we obtain the following
upper bound on the probability of taking more than
c2 logN hops:

Fc2 log N,1/2(c1 logN)

≤ 1 − c1/c2
1 − 2c1/c2

fc2 log N,1/2(c1 logN)

=

(
1 − c1/c2
1 − 2c1/c2

)(
c2 logN

c1 logN

)
(1/2)c2 log N

≤
(

1 − c1/c2
1 − 2c1/c2

)
(c2 logN)c1 log N

(c1 logN)!
(1/2)c2 log N

≤
(

1 − c1/c2
1 − 2c1/c2

)
(c2 logN)c1 log N(

c1 log N
e

)c1 log N
2−c2 log N

<

(
1 − c1/c2
1 − 2c1/c2

)(c2 · e
c1

)c1 log N
2−c2 log N

Choosing c2 = max{7c1, 7}, this is at most
2N−2. Applying a union bound over the N pos-
sible paths completes the proof. �

Theorem 8.13. The expected total work to merge
a SkipNet segment of size M with a larger SkipNet
segment of size N is O(M log(N/M)).

Proof: Suppose all the pointers at level i have been
repaired and consider any two level i + 1 rings that
are children of a single level i ring. To repair the
pointers in these two child rings, the nodes adjacent
to the segment boundary at level i must each find
the first node in the direction away from the segment

boundary who differs in the ith bit. The number of
hops necessary to find either node is upper bounded
by a geometric random variable with parameter 1/2.
Only O(1) additional hops are necessary to finish
the repair operation.

By considering a particular order on the random
bit choices, we show that the number of additional
hops incurred in every ring repair operation are in-
dependent random variables. Let all the level i bits
be chosen before the level i+ 1 bits. Then the num-
ber of hops incurred in fixing any two level i + 1
rings that are children of the same level i ring de-
pends only on the level i + 1 random bits of those
two rings. Also, only rings that require repair ini-
tiate a repair operation on their children. Therefore
we can assume that the level i rings from which we
will continue the merge operation are fixed before
we choose the level i+ 1 bits. Hence the number of
hops incurred in repairing these two child rings is
independent of the number of hops incurred in the
repair of any other ring.

We now consider the levels of the pointers that
require repair. For low levels, we use the bound
that the number of pointers needing repair at level
i is at most 2i because there are at most 2i rings at
this level. For higher levels, we prove a high prob-
ability bound on the total number of pointers that
need to be repaired, showing that the total number
is M(logN + O(1)) with high probability in M .

A node of height i cannot contribute more than
i pointers to the total number needing repair. We
upper bound the probability that a particular node’s
height exceeds h by:

Pr[height > h] ≤ N + M

2h
≤ 2N

2h
=

1
2h−log N−1

Thus each node’s height is upper bounded by a geo-
metric random variable starting at (logN + 1) with
parameter 1/2, and these random variables are in-
dependent. By standard arguments, their sum is at
most M(logN + 3) with high probability in M .

The contribution of the first logM levels is
at most 2M pointers, while the remaining levels
contribute at most M(logN + 3 − logM) with
high probability. In total, the number of point-
ers is O(M log(N/M)). The total number of
hops is bounded by the sum of this many geomet-
ric random variables. This sum has expectation

29

O(M log(N/M)) and is close to this expectation
with high probability, again by standard arguments.
�

8.8 Incorporating the P-Table and the C-Table

We first argue that our bounds on search by nu-
meric ID, node join, and node departure continue
to hold with the addition of C-Tables to SkipNet.
Search by numeric ID corrects at least one digit on
each hop, and there are never more than O(logk N)
digits to correct (Section 8.2). Construction of a C-
Table during node join amounts to a search by nu-
meric ID, using C-Tables, from an arbitrary Skip-
Net node to the joining node. This yields the same
bound on node join as on search by numeric ID.
During node departure, no work is performed to
maintain the C-Table.

We only give an informal argument that search
by name ID, node join, and departure continue to be
efficient with the addition of P-Tables. Intuitively,
search by name ID using P-Tables encounters nodes
that interleave the R-Table nodes and since the R-
Table nodes are exponentially distributed in expec-
tation, we expect the P-Table nodes to be approx-
imately exponentially distributed as well. Thus
search should still approximately divide the distance
to the destination by k on each hop.

P-Table construction during node join is more in-
volved. Suppose that the intervals defined by the R-
Table are perfectly exponentially distributed. Find-
ing a node in the furthest interval is essentially a
single search by name ID, and thus takes O(logk N)
time. Suppose the interval we are currently in con-
tains g nodes. Finding a node in the next closest
interval (containing at least g/k nodes) has at least
constant probability of requiring only one hop. If
we don’t arrive in the next closest interval after the
first hop, we expect to be much closer, and we ex-
pect the second hop to succeed in arriving in the
next closest interval with good probability. Iterat-
ing over all intervals, the total number of hops is
O(k logk N) to fill in every P-Table entry.

This completes the informal argument for con-
struction of P-Tables during node join. As with
C-Tables, no work is performed to maintain the P-
Table during node departure.

9 Experimental Evaluation

To understand and evaluate SkipNet’s design and
performance, we used a simple packet-level, dis-
crete event simulator that counts the number of
packets sent over a physical link and assigns either
a unit hop count or specified delay for each link, de-
pending upon the topology used. It does not model
either queuing delay or packet losses because mod-
eling these would prevent simulation of large net-
works.

We implemented three overlay network designs:
Pastry, Chord, and SkipNet. The Pastry implemen-
tation is described in Rowstron and Druschel [27].
Our Chord implementation is the one available on
the MIT Chord web site [14], adapted to operate
within our simulator. For our simulations, we run
the Chord stabilization algorithm until no finger
pointers need updating after all nodes have joined.
We use two different implementations of SkipNet: a
“basic” implementation based on the design in Sec-
tion 3, and a “full” implementation that uses the en-
hancements described in Section 5. For “full” Skip-
Net, we run two rounds of stabilization for P-Table
entries before each experiment.

All our experiments were run both on a Merca-
tor topology [32] and a GT-ITM topology [35]. The
Mercator topology has 102, 639 nodes and 142, 303
links. Each node is assigned to one of 2, 662 Au-
tonomous Systems (ASs). There are 4, 851 links be-
tween ASs in the topology. The Mercator topology
assigns a unit hop count to each link. All figures
shown in this section are for the Mercator topol-
ogy. The experiments based on the GT-ITM topol-
ogy produced similar results.

Our GT-ITM topology has 5050 core routers gen-
erated using the Georgia Tech random graph gener-
ator according to a transit-stub model. Application
nodes were assigned to core routers with uniform
probability. Each end system was directly attached
by a LAN link to its assigned router (as was done
in [5]). We used the routing policy weights gen-
erated by the Georgia Tech random graph genera-
tor [35] to perform IP unicast routing. The delay of
each LAN link was set to 1ms and the average delay
of core links was 40.5ms.

30

9.1 Methodology

We measured the performance characteristics of
lookups using the following evaluation criteria:

Relative Delay Penalty (RDP): The ratio of the
length of the overlay network path between two
nodes to the length of the IP-level path between
them.

Physical network distance: The absolute length
of the overlay path between two nodes, in terms of
the underlying network distance. In contrast, RDP
measures the penalty of using an overlay network
relative to IP. However, since part of SkipNet’s goal
is to enable the placement of data near its clients,
we also care about the absolute length in network
distance of the path traversed by a DHT lookup. For
the Mercator topology the length of the path is given
in terms of physical network hops since the Merca-
tor topology does not provide link latencies. For
the GT-ITM topology we use latency, measured in
terms of milliseconds.

Number of failed lookups: The number of un-
successful lookup requests in the presence of fail-
ures.

We also model the presence of organizations
within the overlay network; each participating node
belongs to a single organization. The number of or-
ganizations is a parameter to the experiment, as is
the total number of nodes in the overlay. For each
experiment, the total number of client lookups is
twice the number of nodes in the overlay.

The format of the names of participating nodes
is org-name/node-name. The format of data ob-
ject names is org-name/node-name/random-obj-name.
Therefore we assume that the “owner” of a particu-
lar data object will name it with the owner node’s
name followed by a node-local object name. In
SkipNet, this results in a data object being placed
on the owner’s node; in Chord and Pastry, the ob-
ject is placed on a node corresponding to the MD-5
hash of the object’s name. For constrained load bal-
ancing experiments we use data object names that
include the ‘!’ delimiter following the name of the
organization.

We model organization sizes two ways: a uni-
form model and a Zipf-like model.

• In the uniform model the size of each organi-

zation is uniformly distributed between 1 and
N – the total number of application nodes in
the overlay network.

• In the Zipf-like model the size of an organiza-
tion is determined according to a distribution
governed by x−1.25+0.5 and normalized to the
total number of overlay nodes in the system.
All other Zipf-like distributions mentioned in
this section are defined in a similar manner.

We model three kinds of node locality: uniform,
clustered, and Zipf-clustered.

• In the uniform model, nodes are uniformly
spread throughout the overlay.

• In the clustered model, the nodes of an or-
ganization are uniformly spread throughout a
single randomly chosen autonomous system in
the Mercator topology and throughout a ran-
domly chosen stub network in GT-ITM. In
Mercator we ensure that the selected AS has
at least 1/10-th as many core router nodes as
overlay nodes. In GT-ITM we place organi-
zations above a certain size on ”stub clusters”.
These are stub networks that all connect to the
same transit link.

• For Zipf-clustered, we place organizations
within ASes or stub networks, as before. How-
ever, the nodes of an organization are spread
throughout its AS or stub network as follows:
A “root” physical node is randomly placed
within the AS or stub network and all over-
lay nodes are placed relative to this root, at
distances modeled by a Zipf-like distribution.
In this configuration most of the overlay nodes
of an organization will be closely clustered to-
gether within their AS or stub network. This
configuration is especially relevant to the Mer-
cator topology, in which some ASes span large
portions of the entire topology.

Data object names, and therefore data placement,
is modelled similarly. In a uniform model, data
names are generated by randomly selecting an or-
ganization and then a random node within that or-
ganization. In a clustered model, data names are
generated by selecting an organization according to

31

a Zipf-like distribution and then a random member
node within that organization. For Zipf-clustered,
data names are generated by randomly selecting an
organization according to a Zipf-like distribution
and then selecting a member node according to a
Zipf-like distribution of its distance from the “root”
node of the organization. Note that for Chord and
Pastry, but not SkipNet, hashing spreads data ob-
jects uniformly among all overlay nodes in all these
three models.

We model locality of data access by specifying
what fraction of all data lookups will be forced to
request data local to the requestor’s organization.
Finally, we model system behavior under Internet-
like failures and study document availability within
a disconnected organization. We simulate domain
isolation by failing the links connecting the organi-
zation’s AS to the rest of the network in Mercator
and by failing the relevant transit links in GT-IM.

Each experiment is run ten different times, with
different random seeds, and the average values are
presented. For SkipNet, we used 128-bit random
identifiers and a leaf set size of 16 nodes. For Pastry
and Chord, we used their default configurations [14,
27].

Our experiments measured the costs of sending
overlay messages to overlay nodes using the dif-
ferent overlays under various distributions of nodes
and content. Data gathered included:

Application Hops: The number of application-
level hops required to route a message via the over-
lay to the destination

Relative Delay Penalty (RDP): The ratio be-
tween the average delay using overlay routing and
the average delay using IP routing.

Experimental parameters varied included:

Overlay Type: Chord, Pastry, Basic SkipNet, or
Full SkipNet.

Topology: Mercator (the default) or GT-ITM.
Message Type: Either DHT Lookup (the de-

fault), indicating that messages are DHT lookups,
or Send, indicating that messages are being sent to
randomly chosen overlay nodes.

Nodes (N): Number of overlay nodes. Most ex-
periments vary N from 28 through 216 increasing by
powers of two. Some fix N at 216.

Lookups: Number of lookup requests routed per
experiment. Usually 2 ×N .

Trials: The number of times each experiment is
run, each with different random seed values. Usu-
ally 10. Results reported are the average of all runs.

Organizations: Number of distinct organization
names content is located within. Typical values in-
clude 1, 10, 100, and 1000 organizations. Nodes
within an organization are located within the same
region of the simulated network topology. For Mer-
cator topologies they are located within the same
Autonomous System (AS). In a GT-ITM topology
for small organizations they are all nodes attached
to the same stub network and for large organizations
they are all nodes connected to a chosen core node.

Organization Sizes: One of Uniform – indi-
cating randomly chosen organization sizes between
1 and N in size or Zipf – indicating organization
sizes chosen using a 1

x1.25 Zipf distribution with the
largest organization size being 1

2N .
Node Locality: One of Uniform or Zipf. Con-

trols how node locations cluster within each organi-
zation. Uniform spreads nodes randomly among the
nodes within an organization’s topology. Zipf sorts
candidate nodes by distance from a chosen root
node within an organization’s topology and clusters
nodes using a Zipf distribution near that node.

Document Locality: One of Uniform, By Org,
or By Node. Uniform spreads document names uni-
formly across all nodes. By Org applies a Zipf
distribution causing larger organizations to have a
larger share of documents, with documents uni-
formly distributed across nodes within each orga-
nization.

% Local: Fraction of lookups that are con-
strained to be local to documents within the client’s
organization. Non-local lookups are distributed
among all documents in the experiment.

Overlay-specific parameter defaults were:

Chord: NodeID Bits = 40.
Pastry: NodeID Bits = 128, Bits per Digit (b) =

4, Leaf Set size = 16.
SkipNet: Basic configuration: Random ID Bits

= 128, Leaf Set size = 16, ring branching factor (k)
= 2. Full configuration: Same as basic, except k =
8 and adds use of P-Table for proximity awareness
and C-Table for efficient numeric routing.

32

0

1

2

3

4

5

6

7

8

9

1,000 10,000 100,000
Number of Nodes

R
el

at
iv

e
D

el
ay

 P
en

al
ty

 (
R

D
P
)

Chord
Basic SkipNet
Full SkipNet
Pastry

Figure 12. RDP as a function of network size. Con-
figuration: 1000 organizations with Zipf-like sizes,
nodes and data names are Zipf-clustered.

Chord Basic SkipNet Full SkipNet Pastry

16.3 41.7 73.5 63.2

Table 1. Average number of unique routing entries
per node in an overlay with 216 nodes.

9.2 Basic Routing Costs

To understand SkipNet’s routing performance we
simulated overlay networks with N = 2i nodes,
where i ranges from 10 to 16. We ran experiments
with 10, 100, and 1000 organizations and with all
the permutations obtainable for organization size
distribution, node placement, and data placement.
The intent was to see how RDP behaves under var-
ious configurations. We were especially curious to
see whether the non-uniform distribution of data ob-
ject names would adversely affect the performance
of SkipNet lookups, as compared to Chord and Pas-
try.

Figure 12 presents the RDPs measured for both
implementations of SkipNet, as well as Chord and
Pastry, for a configuration in which organization
sizes, node placement, and data placement are all
governed by Zipf-like distributions. Table 1 shows
the average number of unique routing table entries
per node in an overlay with 216 nodes. All other
configurations, including the completely uniform
ones, exhibited similar results to those shown here.

Our conclusion is that basic SkipNet performs
similarly to Chord and full SkipNet performs sim-
ilarly to Pastry. This is not surprising since both
basic SkipNet and Chord do not support network
proximity-aware routing whereas full SkipNet and
Pastry do. Since all our other configurations

0

20

40

60

80

100

120

0% 20% 40% 60% 80% 100%
Fraction of Forced Local Lookups

P
h
ys

ic
al

 N
et

w
o
rk

 H
o
p
s

Chord
Basic SkipNet
Full SkipNet
Pastry

Figure 13. Absolute lookup request latency as
a function of data access locality (percentage of
lookup requests forced to be within a single orga-
nization). Configuration: 216 nodes, 100 organiza-
tions with Zipf-like sizes, nodes and data names are
Zipf-clustered.

produced similar results, we conclude that Skip-
Net’s performance is not adversely affected by non-
uniform distributions of names.

9.3 Exploiting Locality of Placement

RDP only measures performance relative to IP-
based routing. However, one of SkipNet’s key ben-
efits is that it enables localized placement of data.
Figure 13 shows the average number of physical
network hops for lookup requests for an experiment
configuration containing 216 overlay nodes and 100
organizations, with organization size, node place-
ment, and data placement all governed by Zipf-like
distributions. The x axis indicates what fraction of
lookups were forced to be to local data (i.e. the
data object names that were looked up were from
the same organization as the requesting client). The
y axis shows the number of physical network hops
for lookup requests.

As expected, both Chord and Pastry are oblivi-
ous to the locality of data references since they dif-
fuse data throughout their overlay network. On the
other hand, both versions of SkipNet show signif-
icant performance improvements as the locality of
data references increases. It should be noted that
Figure 13 actually understates the benefits gained by
SkipNet because, in our Mercator topology, inter-
domain links have the same cost as intra-domain
links. In an equivalent experiment run on the GT-
ITM topology, SkipNet end-to-end lookup latencies
were over a factor of seven less than Pastry’s for

33

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%
Fraction of Forced Local Lookups

P
er

ce
n
ta

g
e

o
f
F
ai

le
d
 L

o
o
ku

p
s

ChordPastry

Basic SkipNet

Full SkipNet

Figure 14. Number of failed lookup requests as
a function of data access locality (percentage of
lookup requests forced to be within a single orga-
nization) for a disconnected organization. Configu-
ration: 216 nodes, 100 organizations with Zipf-like
sizes, nodes and data names are Zipf-clustered.

100% local lookups.

9.4 Fault Tolerance to Organizational Discon-
nect

Locality of placement also improves fault toler-
ance. Figure 14 shows the number of lookup re-
quests that failed when an organization was discon-
nected from the rest of the network.

This (common) Internet-like failure had catas-
trophic consequences for Chord and Pastry. The
size of the isolated organization in this experiment
was roughly 15% of the total nodes in the system.
Consequently, Chord and Pastry will both place
roughly 85% of the organization’s data on nodes
outside the organization. Furthermore, they must
also attempt to route lookup requests with 85% of
the overlay network’s nodes effectively failed (from
the disconnected organization’s point-of-view). At
this level of failures, routing is effectively impossi-
ble. The net result is a failed lookups ratio of very
close to 100%.

In contrast, both versions of SkipNet do better
the more locality of reference there is. When no
lookups are forced to be local, SkipNet fails to ac-
cess the 85% of data that is non-local to the orga-
nization. As the percentage of local lookups is in-
creased to 100%, the percentage of failed lookups
goes to 0.

To experimentally confirm the behavior of Skip-
Net’s disconnection and merge algorithms de-
scribed in Section 6, we extended the simulator was

0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000 10000

Nodes

R
o

u
ti

n
g

 H
o

p
s

All Level Merge
Level 0 Merge

Figure 15. Number of routing hops taken to route inter-
organizational messages, as a function of network size,
after an organization’s internal SkipNet has been recon-
nected to the global SkipNet at level 0 and after the merge
has been fully completed.

to support disconnection of AS subnetworks. Fig-
ure 15 shows the routing performance we observed
between a previously disconnected organization and
the rest of the system once the organization’s Skip-
Net had been connected to the global SkipNet at
level 0. We also show the routing performance ob-
served when all higher level pointers have been re-
paired.

9.5 Constrained Load Balancing

Figure 16 explores the routing performance of
two different CLB configurations, and compares
their performance with Pastry. For each system, all
lookup traffic is organization-local data. The orga-
nization sizes as well as node and data placement
are clustered with a Zipf-like distribution. The Ba-
sic CLB configuration uses only the R-Table de-
scribed in Section 3, whereas Full CLB makes use
of the C-Table described in Section 5.4.

The Full CLB curve shows a significant per-
formance improvement over Basic CLB, justifying
the cost of maintaining extra routing state. How-
ever, even with the additional routing table, the Full
CLB performance trails Pastry’s performance. The
key observation, however, is that in order to mimic
the CLB functionality with a traditional peer-to-
peer overlay network, multiple routing tables are re-
quired, one for each domain that you want to load-
balance across.

34

0

1

2

3

4

5

6

7

8

100 1,000 10,000 100,000
Number of Nodes

R
el

at
iv

e
D

el
ay

 P
en

al
ty

 (
R

D
P
)

Basic CLB
Full CLB
Pastry

Figure 16. RDP of lookups for data that is con-
strained load balanced (CLB) as a function of net-
work size. Configuration: 100 organizations with
Zipf-like sizes, nodes and data names are Zipf-
clustered.

10 Conclusion

Other peer-to-peer systems assume that all peers
are equal. We elaborate on this by assuming that to
any particular peer, peers within the same organiza-
tion are more important than most peers in the sys-
tem. In particular, they are less likely to fail, more
likely to be near in network distance, and less likely
to be the source of an attack.

SkipNet realizes this philosophical assumption at
a functional level by providing content and path lo-
cality: the ability to control data placement, and the
guarantee that routing remains within an adminis-
trative domain whenever possible. We believe this
functionality is critical if peer-to-peer systems are
to succeed broadly as infrastructure for distributed
applications. To our knowledge, SkipNet is the first
peer-to-peer system design that achieves both con-
tent and routing path locality. SkipNet achieves
this without sacrificing performance goals of previ-
ous peer-to-peer systems: SkipNet nodes maintain a
logarithmic amount of state and SkipNet operations
require a logarithmic number of messages.

SkipNet provides content locality at any desired
degree of granularity. Constrained load balancing
encompasses placing data on a particular node, as
well as traditional DHT functionality, and any inter-
mediate level of granularity. This granularity is only
limited by the hierarchy encoded in nodes’ name
IDs.

SkipNet’s design provides resiliency to common
Internet failures that other peer-to-peer systems do
not. In the event of a network partition along an

organizational boundary, SkipNet fragments into a
small number of segments. SkipNet also provides
a mechanism to efficiently re-merge these segments
with the global SkipNet when the network partition
heals. In the face of uncorrelated and independent
node failures, SkipNet provides similar guarantees
to other peer-to-peer systems.

Our evaluation efforts have demonstrated that
SkipNet has performance similar to other peer-to-
peer systems such as Chord and Pastry under uni-
form access patterns. Under access patterns where
intra-organizational traffic predominates, SkipNet
provides better performance. We have also exper-
imentally verified that SkipNet is significantly more
resilient to network partitions than other peer-to-
peer systems.

In future work, we plan to deploy SkipNet across
a testbed of 2000 machines emulating a WAN. This
deployment should further our understanding of
SkipNet’s behavior in the face of dynamic host joins
and departures, network congestion, and other real-
world scenarios. We also plan to evaluate the suit-
ability of SkipNet as infrastructure for implement-
ing a scalable event notification service [2].

Acknowledgements

We thank Antony Rowstron, Miguel Castro, and
Anne-Marie Kermarrec for allowing us to use their
Pastry implementation and network simulator. We
also thank Scott Sheffield for his insights on the
analysis of searching by name.

References

[1] J. Aspnes and G. Shah. Skip Graphs. Accepted for pub-
lication to SODA 2003.

[2] L. F. Cabrera, M. B. Jones, and M. Theimer. Herald:
Achieving a global event notification service. In HotOS
VIII, May 2001.

[3] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D. Wallach. Security for peer-to-peer routing overlays.
In Proc. of the Fifth Symposium on Operating System De-
sign and Implementation (OSDI). USENIX, December
2002.

[4] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron.
Topology-aware routing in structured peer-to-peer over-
lay networks. In Microsoft Technical Report #MSR-TR-
2002-82, 2002.

[5] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end
system multicast. In ACM SIGMETRICS 2000, pages 1–
12, Santa Clara, CA, June 2000. ACM.

35

[6] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A Distributed Anonymous Information Storage
and Retrieval System. In Workshop on Design Issues
in Anonymity and Unobservability, pages 311–320, July
2000. ICSI, Berkeley, CA, USA.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-
troduction to Algorithms. MIT Press, Cambridge, MA,
1990.

[8] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
18th ACM Symposium on Operating Systems Principles,
Oct. 2001.

[9] J. R. Douceur. The Sybil Attack. In First International
Workshop on Peer-to-Peer Systems (IPTPS ’02), March
2002.

[10] E. Fredkin. Trie Memory. Communications of the ACM,
3(9):490–499, Sept. 1960.

[11] Gnutella. http://www.gnutelliums.com/.
[12] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scal-

able, distributed data structures for Internet service con-
struction. In Proceedings of the Fourth Symposium on
Operating Systems Design and Implementation (OSDI
2000), October 2000.

[13] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A de-
centralized, peer-to-peer web cache. In Proceedings of
the 21st Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC). ACM, July 2002.

[14] F. Kaashoek, R. Morris, F. Dabek, I. Stoica, E. Brunskill,
D. Karger, R. Cox, and A. Muthitacharoen. The Chord
Project, 2002. http://www.pdos.lcs.mit.edu/chord/.

[15] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin,
and R. Panigraphy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on
the World Wide Web. In Proceedings of the 29th Annual
ACM Symposium on Theory of Computing, pages 654–
663, May 1997.

[16] P. Keleher, S. Bhattacharjee, and B. Silaghi. Are Virtu-
alized Overlay Networks Too Much of a Good Thing?
In First International Workshop on Peer-to-Peer Systems
(IPTPS ’02), March 2002.

[17] D. E. Knuth. The Art of Computer Programming, Vol-
ume 3: Sorting and Searching. Addison-Wesley, Read-
ing, MA, 1973.

[18] C. Labovitz and A. Ahuja. Experimental Study of Inter-
net Stability and Wide-Area Backbone Failures. In Fault-
Tolerant Computing Symposium (FTCS), June 1999.

[19] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scal-
able and Dynamic Emulation of the Butterfly. In Proceed-
ings of the 21st Annual ACM Symposium on Principles of
Distributed Computing (PODC). ACM, July 2002.

[20] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-
peer Information System Based on the XOR Metric. In
Proceedings of the 1st International Workshop on Peer-
to-Peer Systems (IPTPS’02), MIT, March 2002.

[21] D. Oppenheimer and D. A. Patterson. Studying and using
failure data from large-scale Internet services. In 10th
ACM SIGOPS European Workshop, September 2002.

[22] T. Papadakis. Skip Lists and Probabilistic Analysis of Al-
gorithms. PhD thesis, University of Waterloo, 1993. Also

available as Technical Report CS93-28.
[23] W. Pugh. Skip Lists: A Probabilistic Alternative to Bal-

anced Trees. In Workshop on Algorithms and Data Struc-
tures, pages 437–449, 1989.

[24] W. Pugh. A Skip List Cookbook. Technical Report CS-
TR-2286.1, University of Maryland, 1990.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network.
In Proc. of ACM SIGCOMM, Aug. 2001.

[26] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level Multicast using Content-Addressable
Networks. In Proceedings of the Third International
Workshop on Networked Group Communication, Nov.
2001.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-
to-peer systems. In International Conference on Dis-
tributed Systems Platforms (Middleware), pages 329–
350, Heidelberg, Germany, Nov. 2001.

[28] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In 18th ACM Symposium on Operating
Systems Principles, Oct. 2001.

[29] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Dr-
uschel. Scribe: The design of a large-scale event notifi-
cation infrastructure. In Third International Workshop on
Networked Group Communications, Nov 2001.

[30] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-To-Peer
Lookup Service for Internet Applications. In Proceedings
of the ACM SIGCOMM ’01 Conference, pages 149–160,
San Diego, California, August 2001.

[31] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-To-Peer
Lookup Service for Internet Applications. Technical Re-
port TR-819, MIT, March 2001.

[32] H. Tangmunarunkit, R. Govindan, S. Shenker, and D. Es-
trin. The Impact of Routing Policy on Internet Paths. In
INFOCOM, pages 736–742, April 2001.

[33] M. Theimer and M. B. Jones. Overlook: Scalable Name
Service on an Overlay Network. In Proceedings of the
22nd International Conference on Distributed Computing
Systems (ICDCS). IEEE Computer Society, July 2002.

[34] A. Vahdat, J. Chase, R. Braynard, D. Kostic, and A. Ro-
driguez. Self-Organizing Subsets: From Each According
to His Abilities, To Each According to His Needs. In First
International Workshop on Peer-to-Peer Systems (IPTPS
’02), March 2002.

[35] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to
Model an Internetwork. In Proceedings of IEEE Infocom
’96, April 1996.

[36] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.
Tapestry: An Infrastructure for Fault-Resilient Wide-area
Location and Routing. Technical Report UCB//CSD-01-
1141, U. C. Berkeley, April 2001.

36

