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prite is an experimental network
S operating system under develop-

ment at the University of Califor-
nia at Berkeley. It is part of a larger
research project called SPUR, whose goal
is the design and construction of a high-
performance multiprocessor workstation
with special hardware support for Lisp
- applications.' One of Sprite’s primary
- goalsis to support applications running on
- SPUR workstations, but we hope that the
system will also work well for a variety of
high-performance engineering worksta-
tions. Currently, Sprite is being used on
Sun-2 and Sun-3 workstations.

Driving forces. The motivation for
building a new operating system came
from three general trends in computer

_3 l&chnology: networks, large memories,

- and multiprocessors.

Inan increasing number of research and
tngineering organizations, computing
| FOW occurs on personal workstations con-
iected by local-area networks. Larger,
Ume-shared machines are used only for
th_os@ applications that cannot achieve
dceptable performance on workstations.

Wfortunately, workstation environments
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Brent B. Welch

Sprite implements a
set of kernel calls that
provide sharing,
flexibility, and high
performance to
networked
workstations.

tend to suffer from poor performance and
difficulties of sharing and administration,
due to the distributed nature of the sys-
tems. In Sprite, we hope to hide the distri-
bution as much as possible, while
providing the sharing and communication
of time-shared machines.

The second technology trend driving the
Sprite design is the availability of ever-
larger physical memories. Today’s
engineering workstations typically contain
four to 32 megabytes of physical memory,
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and we expect memories of 100 to 500
megabytes to be commonplace within a
few vears. We believe that such large mem-
ories will change the traditional balance
between computation and input/output
by permitting all of a user’s commonly
accessed files to reside in main memory.
The “RAMdisks’’ available on many com-
mercial personal computers have already
shown this capability on a small scale. One
of our goals for Sprite is to manage phys-
ical memory in a way that maximizes the
potential for file caching.

The third driving force behind Sprite is
the imminent arrival of multiprocessor
workstations. Workstations with more
than one processor are currently under
development in several research organiza-
tions (UCB’s SPUR, Digital Equipsent
Corporation’s Firefly, and Xerox’s
Dragon are a few prominent examples),
and we expect multiprocessor worksta-
tions to be available from several major
manufacturers within a few years. We
hope that Sprite will facilitate the develop-
ment of multiprocessor applications, and
that the operating system itself will be able
1o take advantage of multiple processors
in providing system services.
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Design goals. Our overall goal for Sprite
is to provide simple, efficient mechanisms
that capitalize on the three technology
trends affecting the systern’s design. In
areas where technology factors did not
suggest special techniques, we modeled the
system as closely as possible after Berkeley
Unix.

The technology trends had only a minor
impact on the facilities Sprite provides to
application programs. For the most part,
Sprite’s kernel calls are similar to those
provided by the 4.3 BSD version of the
Unix operating system. However, we
added three facilities to encourage
resource sharing: a transparent network
file system, a simple mechanism for shar-
ing writable memory between processes on
a single workstation, and a mechanism for
migrating processes between workstations
to take advantage of idle machines.

Although the technology trends did not
have a large effect on Sprite’s kernel inter-
face, they did suggest dramatic changes in
the kernel implementation, relative to
Unix. This is not surprising, since net-
works, large memories, and multiproces-
sors were not important issues in the early
1970s when the Unix kernel was designed.
We developed the Sprite kernel from
scratch, rather than modifying an existing
Unix kernel. Some interesting features of
the kernel implementation are

& The kernel contains a remote proce-
dure call (RPC) facility that allows each
workstation’s kernel to invoke operations
on other workstations. The RPC mecha-
nisim is used extensively in Sprite to imple-
ment other features, such as the network
file system and process migration.

* Although the Sprite file system is
implemented as a collection of dormains on
different server machines, it appears to
nsers as a single hierarchy shared by all
workstations. Sprite uses a simple mech-
anism called prefix tables to manage the
name space; these dynamic structures
facilitate system administration and recon-
figuration.

* To achieve high performance in the
file system, and also to capitalize on large
physical memories, Sprite caches file data
on both server and client machines. A sim-
ple cache consistency mechanism guaran-
tees that applications running on different
workstations always use the most up-to-
date versions of files, in exactly the same
fashion as if the applications were execut-
ing on a single machine.

& The virtual memory system uses ordi-
nary files for backing storage; this simpili-
fies implementation, facilitates process
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migration, and may even improve perfor-
mance relative to schemes based on a
special-purpose swap area. Sprite retains
the code segments for programs in main
mermory, even after the programs are com-
plete, to allow quick start-up when pro-
grams are reused. Finally, the virtual
memory system negotiates with the file sys-
tem over physical memory use, permitting
the file cache to be as large as possible
without degrading virtual memory per-
formance.

e Sprite guarantees that processes
behave the same whether migrated or not.
This is achieved by designating a home
machine for each process and forwarding
location-dependent kernel calls to the
process’ home machine.

Application interface

Sprite’s application interface contains
little that is new. Kernel calls are very simi-
lar to those provided by the Berkeley ver-
sions of Unix. Indeed, we have ported
many traditional Unix applications to
Sprite with relatively little effort.

Three unusual aspects of the application
interface can be summed up in one word:
sharing. First, the Sprite file system allows
sharing of all disk storage and 1/0 devices
in the network by all processes, so they
need not worry about machine bound-
aries. Second, the virtual memory mech-
anism allows sharing of physical memory
between processes on the same worksta-
tion, so they can extract the highest possi-
ble performance from multiprocessors.
Third, Sprite implements process migra-
tion, which allows job offloading to idle
workstations and, thereby, sharing of
processing power.

File system. Almost all modern network
file systems, including Sprite’s, have the
same ultimate goal: network transparency.
Network transparency means that users
should be able to manipulate files in the
same ways they did under time-sharing on
a single machine; the distributed nature of
the file system and the techniques used to
access remote files should be invisible to
users under normal conditions. MIT’s
Locus system was one of the first to make
transparency an explicit goal®; other file
systems with varying degrees of trans-
parency are Carnegie Mellon’s Andrew’
and Sun’s NFS.*

Most network file systems fail to meet
the transparency goal in one or more ways.
The earliest systems (and even some later

systems, such as 4.2 BSD) allowed remaot:
file access only with a few special program,
(for example, rcp in 4.2 BSD); most appli
cation programs could only access filg
stored on local disks. Second-generatioy
systems, such as Apollo’s Aegis,S alioy
any application to access files on any
machine in the network, but special nameg
must be used for remote files (for example,
““file” for a local file, but “‘[ivy]file’’ for
a file stored on the Ivy server). Thirg
generation network file systems, such g
Locus, Andrew, NFS, and Sprite, provide
name transparency—that is, file location
is not indicated directly by name, and
groups of files can be moved from on
machine to another without changing their
names. '
Most third-generation systems still have
some nontransparent aspects. For exam |
ple, in Andrew and NFS only & portionof |
the file system hierarchy is shared; eachf
machine must also have a private partition |
that is accessible only to that machine. In
addition, Andrew and NES do not permi
applications running on one machine 0§
access 1/Q devices on other machines |
Locus appears to be alone among curren
systems in providing complete file trans
parency. :
Sprite, like Locus, provides compleltf
transparency, so applications running o f
different workstations see the samf
behavior they would see if all the applicz-§
tions were executing on a single time}
shared machine. A single file hierarchyi§
uniformly accessible to all workstations
Although it is possible to determine wher §
a file is stored, that information is nol
needed in normal operation. There aren g
special programs for operating on remot §
files, as opposed to local ones, and
operations that can be used only on locdl B
files. Sprite also provides transpared §
access to remote 1/0 devices. Like Uik
Sprite represents devices as special files:
unlike most versions of Unix, Sprite allo¥
any process 1o access any device, regard
less of device location.

Shared address spaces. The early v¢
sions of Unix did not permit memory sh&"
ing between user processes, except 1§
read-only code. Each process had pl'i"?te
dara and stack segments, as shown in F¥
ure 1. Since then, extensions to allow re&®
write memory sharing have been impl*
mented or proposed for several version$®
Unix, including System V, SunOS, B
keley Unix, and Mach. .

There are two reasons for provid®
shared memory. First, using a collectio?
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rocesses in a shared address space is the
most patural way to program many appli-

tions. 1S particularly convenient when
¢ appljcation consists of mostly indepen-
dent subactivities (for example, one proc-
ess 10 respond to keystm!(els and another
o respond 0 packets arriving over a net-
work); the shared addreS.s space aflows
them 1O cooperate to ach{eve a comm'gn
goal Ufor example, managing a collection
of windows on a screen). The second moti-
vation for shared memory is the advent of
multiprocessors. Decomposing an appli-
cation int@ pieces that can be executed con-
currently requires rapid communication
petween pieces. The faster the communi-
cation, the greater the degree of concur-

* ency that can be dchieved. Shared
memory provides the fastest possible com-

Stack (private)

Private Static Data

Stack (private)

Dynamic Data.

Dynamic Data

Data (sharable)

Sharable Static Data

Code (sharable)

Data (pnvate) __ Static Data
Code (sharable)
UNIX

Sprite

Figure 1. The organization of virtual memory as seen by user processes in tradi-
tional Unix (left) and Sprite (right). In both systems there are three distinct seg-
ments. The lower portion of the data segment contains static data known at
compile time, and the upper portion expands to accommodate dynamically allo-
cated data. In Unix, processes may share code, but not data or stack. In Sprite, the

1 munication, hence the greatest opportu-  data segment may be shared between processes, including both statically allocated
o} nity for concurrent execution. and dynamic data. Private static data may be stored at the top of the stack
¢ Sprite provides a particularly simple segment.
of form of memory sharing; when a process
1 invokes the Proc_Fork kernel call to cre-
Ml atea new Process, it may request that the  synchronize using hardware mutual- wake it up later. This permits efficient
:ui new process share the parent’s data seg-  exclusion instructions (for example, test-  implementation of synchronization
el ment (see Figure 2). The stack segment is  and-set) directly on shared memory. In  primitives.
el still private to each process; it contains most cases it will not be necessary to
ﬂm‘; procedure invocation records and private  invoke the kernel, so synchronization can Process migration. In an environment
| process data. For simplicity, Sprite’s beaccomplishedin justafew instructions. that has a workstation for each person,
léi mechanism provides all-or-nothing shar-  The kernel participates only when it is many machines will be idle at any given
g4 ing; a process cannot share partof its data  necessary to delay process execution (for  time. To allow users to harness this idle
an ssgment with one process and part of it example, to wait for a lock to bereleased).  computing power, Sprite provides a new
lict with another. For these situations, Sprite provides ker-  kernel call, Proc_Migrate, that will move
ti;ln‘l; We expect multiprocess applicationsto  nel calls that put a process to sleep and  a process or group of processes to anidle
hy:
ion
whe,
50
1re1.1.
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figure 2. The Unix fork operation (a) creates a new process that shares code with its parent while using private copies of the
rovidhta and stack segments. Sprite provides both the traditional fork and a shared fork (b} in which the child shares its parent’s
ectic® as well as code.
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machine. Processes sharing a heap seg-
ment must migrate together. Sprite keeps
track of which machines are idle and
selects one as the target for the migration.
The fact that a process has migrated is
transparent both to the migrated process
and to the user, as described below. The
only noticeable difference after migration
will be a reduction in the home machine’s
load.

Initially, we expect migration to be used
in two ways. First, shell commands for
manual migration will allow users to
migrate processes in much the same way
the Unix shell allows users to place
processes in the background. Second, a
new version of the Unix Make utility,
called Pmake, recompiles programs when
their source files change. Make invokes
recompilations sequentially, but Pmake is
organized to invoke multiple recompila-
tions concurrently, using process migra-
tion to offload the compilations to idle
machines. We hope to see more and more
automatic uses of migration, like Pmake,
in the future.

The idea of moving work to idle
machines is not a new one. Unfortunately,
the most widely available facilities (for
example, the rsh command of 4.2 BSD
Unix and the rex facility of Sun’s Unix)
provide only remote invocation, which is
the ability to initiate new processes on
other machines, but not the ability to move
processes once they have started execu-
tion. Process migration, which allows
processes t0 be moved at any time, has
been implemented in several systems (for
example, Locus,? V,% and Accent’) but is
not widely available. For Sprite, we
decided to implement process migration.
We think the additional flexibility migra-
tion provides is particularly important in
a workstation environment. For example,
if remote invocation is used to offload
work onto an idle machine and then the
machine’s user returns, either the foreign
processes have to be killed or the
machine’s user receives a degraded
response until the foreign processes are
complete. In Sprite, the foreign processes
can be migrated away.

One of the most important attributes of
Sprite’s migration mechanism is its trans-
parency, both to the process and to the
user. When migrated, a process will pro-
duce exactly the same results as if it were
not migrated; Sprite preserves the environ-
ment of the process as it migrates, includ-
ing files, working directory, device access,
environment variables, and anything else
that could affect process execution. In

26

addition, a migrated process appears still
to be running on the user’s home machine;
it will appear in listings of processes on that
machine and can be stopped, killed, or
debugged just like the user’s other
processes. In contrast, rsh does not pre-
serve the working directory and other
aspects of the environment, and neither
rsh nor rex allows a remotely executing
process to be examined or manipulated in
the same fashion as local processes. Other
implementations of process migration
tend not to provide complete transparency
to users, although they do provide com-
plete transparency to the migrated
processes. (How Sprite achieves execution
transparency is described in a later
section.)

Basic kernel structure

Application programs invoke kernel
functions via a collection of kernel calls.
Sprite’s basic flow of control in a kernel
call is similar to that in Unix: user
processes execute ‘‘trap’’ instructions to
switch to the supervisor state, and the ker-
nel executes as a privileged extension of the
user process, using a small per-process ker-
nel stack for procedure invocation within
the kernel.

Two features of Sprite’s basic kernel
structure support multiprocessor and net-
work operation. First, a multithreaded
synchronization structure allows the Sprite
kernel to run efficiently on multiproces-
sors. Second, a remote procedure call
facility allows kernels to invoke operations
remotely over the network.

Multithreading. Many operating system
kernels, including Unix, are single-
threaded, which means that a single lock
is acquired when a process calls the kernel
and released when the process puts itself
to sleep or returns to user state. In these
systems, processes are never preempted
while executing kernel code, except by
interrupt routines. The single-threaded
approach simplifies kernel implementa-
tion by eliminating many potential syn-
chronization problems between processes.
Unfortunately, it does not adapt wellto a
multiprocessor environment. With more
than a few processors, contention for the
single kernel lock will limit system per-
formance.

In contrast, the Sprite kernel is mul-
tithreaded, which means that several
processes may execute in the kernel at the
same time. The kernel is organized in a

monitor-like style with many small locks,
instead of a single overall lock, protecting
individual modules or data structures
Many processes may execute in the kerng
simultaneously as long as they do ng
attempt to access the same monitored code

or data. The multithreaded approach |
allows Sprite to run more efficiently op |
multiprocessors, but the multiplicity of f
locks makes the kernel more complex ang f

slightly less efficient since many locks may
have to be acquired and released over the
lifetime of each kernel call.

Remote procedure calls. In designing
Sprite for a network of workstations, one

of our most important goals was to pro. |
vide a simple, efficient way for the kernel; ¥
of different workstations to invoke each §

others’ services. The mechanism we chose
is a kernel-to-kernel RPC facility similar

to the one described by Birrell and Nel. |
son.® We chose RPC rather than a mes- |
sage style because RPC provides a simple

programming model (remote operations
appear just like local procedure calls) and

because the RPC approach is particularly f

efficient for request-response transac
tions, which we expected to be the most

common form of interaction between |

kernels.
The RPC impiementation consists of
stubs and RPC transport, as shown in Fig-

ure 3. Together they hide the fact that the
calling procedure and the called procedure
are on different machines. Each remote
call has two stubs, one on the client work-
station and one on the server. The client f
stub copies its arguments into a request |

message and returns values from a result
message, so the calling procedure is not
aware of the underlying message commu-
nication. The server stub passes arguments
from the incoming message to the desired
procedure and packages results from the

procedure, so the called procedure is not §

aware that its real caller is on a different
machine, Birrell and Nelson modified theif
compiler to generate the stubs automati
cally from a specification of procedurt
interfaces. To avoid changing our C con-

piler, we hand-generated the stubs for the §

40 or so remote operations used in the
Sprite kernel. Although this was workablé:
it would have been more convenient if an
automated stub-generator had beel
available.

The second part of the RPC implemen
tation is RPC transport. It delivers més
sages across the network and assigh®
incoming requests to kernel processes thal
execute the server stubs and called proc®
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dures. The goal of RPC transport is to pro-
vide the most efficient possible
. communication between the stubs while
ensuring that messages are delivered relia-
bly. Sprite’s RPC transport uses two tech-
niques to gain efficiency: implicit
acknowledgments and fragmentation.
Since network transmission is not per-
fectly reliable, each request and response
. Mmessage must be acknowledged; if no
acknowledgment is received within a
reasonable time, the sender retransmits.
To reduce the overhead associated with
| Processing acknowledgment packets,
Sprite uses the scheme described by Birrell
and Nelson, where each request or
fesponse message serves as an implicit
acknowledgment for the previous response
Or request message from that client,

el

i .
the Tespectively, In the common case of short,
e closely spaced operations, only two

t Packets are transmitted for each remote
call: one for the request and one for the
Tesponse.

The simplest way to implement RPC is
tlimit the total size of the arguments or
"esults for any given RPC so that each
tquest and response message can fit into
Asingle network packet. Unfortunately,
the maximum allowable size for a network
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packet is relatively small (about 1500 bytes
for Ethernet), so this approach would
result in high overhead for bulk transfers.
The delays associated with sending a
request, dispatching to a server process,
and returning a response would be
incurred for each 1500 bytes. Since remote
file access is one of RPC’s most common
uses, we were unwilling to accept this per-
formance limitation.

Sprite’s RPC mechanism differs from
the Birrell-Nelson scheme in that it uses
fragmentation to ship large blocks of data
{up to 16 kilobytes) in a single remote oper-
ation. If a request or reply message is too
long to fit in a single packet, RPC trans-
port breaks the message into multiple
packets (fragments), which it transmits in
order without waiting for acknowledg-
ment. The receiving RPC transport reas-
sembles the fragments into a single large
message. A single acknowledgment for all
the fragments uses the implicit
acknowledgment scheme described above.
When packets are lost in transmission, the
acknowledgment indicates which frag-
ments have been received so that only lost
fragments are retransmitted.

Sprite kernels trust each other, and we
assume that the network wire is physically

Figure 3. Sprite’s remote procedure call mechanism makes it appear as if a remote procedure can be invoked directly (a). The
! getual situation (b) is that stub procedures copy procedure arguments and results into and out of messages, and a transport
mechanism delivers the messages reliably and assigns server processes to reguests,

secure (all workstations on the network
must run the Sprite kernel or some other
trustworthy software). Thus, the RPC
mechanism does not use encryption, nor
do the kernels validate RPC operations
except to prevent user errors and detect
system bugs. The RPC mechanism is used
only by the kernels and is not directly visi-
ble to user applications.

Figure 4 shows the measured perfor-
mance of the Sprite RPC mechanism. Fig-
ure 4a shows that the minimum round-trip
time for the simplest possible RPCis about
2.8 milliseconds between Sun-3/75 work-
stations, with an additional 1.2 milli-
seconds for each kilobyte of data. Figure
4b shows that throughputs greater than
700 kilobytes per second (nearly 60 percent
of the total Ethernet bandwidth of 10
megabits per second) can be achieved
between two workstations if each RPC
transfers a large amount of data. Without
fragmentation (at most 1500 bytes trans-
mitted per RPC) the throughput is reduced
by more than a factor of two. The meas-
urements in Figure 4 are for operations
between kernels. User-visible performance
is slightly worse; for example, a user proc-
ess can achieve a throughput of only 475
kilobytes per second when it reads a file
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that is cached in the main memory of a  mounted on their parents; the leaves where In Sprite, we use a more dynamif ascend

remote server and the kernel makes four-  mounting occurs, such as **/a” in Figure  approach to managing the domain stru  thetop

kilobyte RPC requests. 5, are called mount points,) As the oper-  ture, which we call prefix tables. Eachdif refer te

ating system traverses the components of  ent machine’s kernel maintains a privazf absolut
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In designing the Sprite file system fora from being visible to users. domain (that is, the common prefix sharel f the init

network environment, we were particu- The interesting naming issues arehowto by the names of all files in the domain), thef Penent

larly concerned about two implementation  keep teack of the domain structure and  name of the server on which that domainf returns.

issues: how to manage the file name space how to handle file names that cross isstored, and an additional token to pas afileta

inaway that simplifies system administra- domain boundaries. Theseissues are par-  to the server to identify the domain (st Process

tion, and how to manage the filedataina ticularly interesting in a network environ-  Table 1). Prefix tables are not normalif ! “.’ a

way that provides high performance. Fur- ment where the domains may be storedon  visible to user processes. 1 uwnm th

thermore, we felt that it was important to  different servers and where the server con- tleh |

provide easy administration and high per-  figuration may change frequently. Unix Locating a file. In Sprite, as in Unis 0 The_]

formance without compromising users’ and most of its derivatives (such as NFS)  application programs refer to files by giv | “°mair

ability to share files. use static mount tables to keep track of  ing either an absofute path name for thf gbsoh_ﬂ

To users, the Sprite file systemis asin-  domains; the mount tables are established ~ file (one starting at the file system rodt f 1Omaln

gle hierarchy, just as in time-shared Unix. by reading a local configuration file at  suchas “/d/k/p/r’ in Figure 5) or a ref* f eOokup:

To system administrators, the file system  boot-time. This makes it difficult for the tive path name, which is interpreted # f u)}(pecu

is a coliection of domains, which are simi-  systems to respond to configuration starting at a previously specified wor kine Ofe 100

lar to file systems in Unix. Each domain  changes. In our NFS clusters, for example, ~directory (if the working directory £ re tr‘le

contains a tree-structured portion of the  any change to the domain structure typi-  ““/d/k/p’” in Figure 5, then the relatit |} aqure

overall hierarchy. The domains are joined  cally requires each user to modify thecon- name “‘r’’ refers to the same file 5§ to Solut

into a single hierarchy by overlaying the figuration file on their workstation and  */d/k/p/r’). To look up an absotute pai g rorn PIe

leaves of some domains with the roots of  reboot. Even in small clusters we have name, a client kernel matches the namiff —~0tse
other domains as illustrated in Figure 5.  found that such changes occur distress-  against ail entries in its prefix table 2§ M

(In Unix terms, the subdomains are ingly often. chooses the entry with the longest matc! § n
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. orefix. Inthe example of Figure 3, the
lpgp me <“/d/k/p/r” will match three
file 1@ in the table, of which the entry for
entrlesz has the longest prefix. The client
ser.Verthe prefix from the file name and
SIrlp:he RPC facility to send the remainder
g‘ﬁhe name (“‘p/r”’) to the se.rver, along
with the token from the prefix table en-
1y (5)- The server uses the tok}:n to locate
the root directory of the domain, looks pp
the remainder of th-e ﬁle name, and I’Epllf?s
with a token identifying the_ file. The cli-
ent can then issuf: read, write, and close
requests by making RPCs to the server
with the file’s token.

Sprite handles wor.king directorieslby
opening the working cirectory and storing
its token and server address as part of th.e
process’ state. When a file name is speci-
fied relative to the working directory, the
dient kernel uses the token and server
address corresponding to the working
directory rather than those from a prefix
{able entry. Thus, absolute and relative
path name lookups appear identical to the
§erver,

There are several cases where the initial
server that receives a file name cannot
completely process the name. These cor-
respond to situations where the file's name
crosses a domain boundary. For example,
" components in a name (which refer
to the parent directory) could cause it to
ascend back up the hierarchy and out
the top of the domain; or the name could
refer to a symbolic link containing an
absolute file name for a different domain;
or a relative path name could start at the
current working directory and descend
into a new domain. In each of these cases,
the initial server processes as marny com-
ponents of the file name as it can, then
returns a new name to the client instead of
afile token. The client takes the new name,
processes it with its prefix table, and sends
it to a new server. This process repeats
until the name is completely resolved (see
Welch and Ousterhout® for details).

The prefix approach bypasses the root
domain (and its server) when looking up
absolute names of files in nonroot
domains, Since a large fraction of all name
lookups involves absolute path names, we
£xpect this approach to reduce the load on
the root server and increase the scalability

- Of the system relative to schemes that

elative! Tequire root server participation for every

ile &
re pail
' nanté
Ie and

absolute path name. It may also let the sys-
tem provide limited service even when the
T00t server is down.

natct| Managing prefix tables. One of the
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Figure 5. Although the Sprite file system hehaves as if it were a single hierarchy (a),
it is actually divided up into domains (b). Each domain may be stored on 2

different server.

greatest advantages of prefix tables is that
they are created dynamically and updated
automatically when the system configura-
tion changes. To add a new entry to its pre-
fix table, a client broadcasts a prefix name
to all servers. The server storing the
domain replies with its address and the
token corresponding to the domain. The
client uses this information to create a new
prefix table entry. Initially, each client
starts out with an empty prefix table and
broadcasts to find the entry for “/.”* As
it uses more files, it gradually adds entries
to its prefix table.

How does a client know when to add a
new prefix to its table? The file at the
mount point for each domain is a special

Table 1. A prefix table corresponding
to the domain structure of Figure 5.*

Prefix Server Token
/ X 17
Jaf Y 63
/d/ Y 44
/dsk/ Z 5

#*Prefix tables are loaded dynamically, so
they need not hold complete file information
at any given time.

link, called a remote link, which identifies
the file as the mount point for a new

domain. For example, in Figure 5 the file

“/d/k” in server Y’s domain is a remote
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Server

Disk

Figure 6. Caches in the Sprite file system. When a process makes a file access, it is
presented first to the cache of the process’ workstation (file traffic), If not satisfied
there, the request is passed either to a local disk, if the file is stored locally (disk
traffic), or to the server where the file is stored (server traffic). Servers also main-

tain caches to reduce their disk traffic.

link. A remote link is similar to a symbolic
link in that it stores a file name; for remote
links, this is the prefix name (that is, the
file's absolute name), Whenever a remote
link is encountered in file name lookup,
the server returns to the client the prefix
name and the remainder of the name being
looked up. The client uses the broadcast
protocol to make a new prefix table entry
and then reprocesses the remainder of the
name. Remote links do not store any net-
work address information; they simply
indicate the presence of a domain. This
feature permits the system to adapt quickly
to changes in configuration.

Prefix table entries are treated as hints
and are adjusted automatically as the sys-
tem configuration changes. When a client
sends an open request to a server, it is pos-
sible for the request to fail with a timeout
(if the server has crashed) or arejection (if
the server no longer stores the domain). In
either case, the client invalidates the pre-
fix table entry for the domain and rebroad-
casts. If the domain has moved, the new
server will respond to the rebroadcast, and
the client will establish a new prefix table
entry and retry the open. In this case, the
configuration change will be invisible to
user processes. If the server has crashed,
then the broadcast will timeout; each addi-
tional open will also broadcast and
timeout. During the time the server is
down, user processes will receive errors
analogous to disk-off-line errors in time-
shared Unix. Eventually, the domain will
become available again, and the next open
will reestablish the prefix table entry.
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Adding a new domain to the file system
requires only adding a remote link at the
mount point for the domain and arrang-
ing for the server to respond to requests.

Managing file data—
client and server caches

The Sprite file system is impleniented
using large caches of recently used file
blocks stored in the main memories of
both clients and servers. The caches pro-
vide two benefits that are especially impor-
tant when most of the workstations are
diskless. First, the caches improve file sys-
tem performance by eliminating disk
accesses and network transactions. Sec-
ond, they reduce the loading on the net-
work and the servers, which increases the
scalability of the system. Sprite’s caches
use a consistency protocol that allows
applications on different workstations to
share files just as if they were running on
a single time-sharing system.

Basic cache design. Each client and
server workstation maintains a large cache
of recently accessed file blocks, as shown
in Figure 6. The caches are organized on
ablock basis, rather than a whole-file basis
as in the Andrew file system,’ and are
stored in main memory rather than on a
local disk. Blocks are currently four kilo-
bytes. Each block in the cache is identified
by a token for a file and a block location
within the file, When the Fs_Read kernel
callis invoked to read a block of a file, the

kernel first checks its cache and returns th,
information from the cache if it is presen;

If the block is not in the cache, the kerng |

reads it from disk (if the file is on a logy
disk) or requests it from a server; in eithg
case, the block is added to the cache,
replacing the least-recently used block. |;
the block is requested from a server, the
server checks its own cache before issuing

adisk I/O and adds the block to its cache |

if the block was not already there.
Sprite uses a delayed-write approach
handle file writes. When an applicatiog
issues an Fs_Write kernel call, the kerng
simply writes the block into its cache ang
returns to the application. The block is ngt

written through to the disk or server unt g

it is ejected from the cache or 30 second;

have elapsed since the block was last mod:. |
fied. This policy is similar to the one used §
in time-shared Unix. It means some recen §

work may be tost in a system crash, buti
provides much higher performance to
applications than a policy based on write.
through, since the application can con-
tinue without waiting for information to
be flushed to disk. For applications with
special reliability requirements, Sprite pro-
vides a kernel call to flush one or mor
blocks of a file to disk.

Cache consistency, When clients cache
files, a consistency problem arises: Wha §
happens if one client modifies a file thatis |

cached by other clients? Can subsequent
return ‘‘stale’’ data? Most network fi

limited guarantees about consistency. It
NFS, for example, other clients with tht

file open may see stale data until they clost f

the file and reopen it. Sprite guarantet!
consistency; each Fs_.Read kernel cal
always returns the most up-to-date dat
for a file, regardless of how the file is beins
used around the network. This means tha
application programs running on differes!
workstations under Sprite behave as if the}
were all running on a single, time-shared
Unix system.

cache consistency, we considered two SEP'
arate cases. The first case is sequenttﬂf
write-sharing, where a file is modified bY

one workstation, read later by anothe! .

workstation, but never open on bolf
workstations at the same time. We eXP.ecl
this 1o be the most common form of wii
sharing. The second case is concurrt
write-sharing, where one workstati?’
modifies a file while it is open on anoth?
workstation. Our solution to this situati®
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it f Figure 7. Client degradation and network traffic as a function of maximum client cache size for diskless Sun-3/75s with client

Ol caches using an unloaded Sun-3/180 file server. For each point the cache size was allowed to vary up fo the given maximum.
0L part (a) plots degradation, which is the additional time required by a diskless workstation to complete the benchmark, relative

TG} (ransmifted in packet headers and control packets as well as file data.

0r

ismore expensive, but we do not expect it
to occur very often.
ek Sprite uses version numbers to handle
- sequential write-sharing. When a client
o1l opens a file, the server returns the file’s
current version number, which the client
compares to the version number associated
log _ withits cached blocks for the file. If they
6 aredifferent, the file must have been modi-
 fied recently on some other workstation.
da%4 In this case, the client discards ail cached
el blocks for the file and reloads its cache
0} from the server when the blocks are
?reif teeded, Because of Sprite’s delayed-write
4 policy, the server does not always have cur-
A% Tent file data (the last writer need not have
i flushed dirty blocks back to the server
8 % whenit closed the file). Servers handle this
’ 5“?! Situation by keeping track of the last writer
mﬂmg for each file; when a client other than the
=d b’] st writer opens the file, the server forees
Othﬂ the last writer to write all its dirty blocks
botf back 10 the server’s cache. This guarantees
Xpe- t?l&t the server has up-to-date file informa-
Wik ton whenever a client needs it.
e Ff’r toncurrent write-sharing, where the
atlleis open on two or more workstations
ot &nd at feast ope of them is writing the file,

atit Sprite disables client caching for that file.

o
=5
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1

.

When the server receives an open request
that will cause concurrent write-sharing, it
flushes dirty blocks back from the current
writer (if any) and notifies all clients hav-
ing the file open that they should not cache
the file anymore. Cache disabling is done
on a file-by-file basis, and only when con-
current write-sharing occurs. A file may be
cached simultaneously by several active
readers.

There are two potential disadvantages
Lo Sprite’s cache consistency mechanism,
First, it results in substantially slower file
access when caching has been disabled.
Fortunately, measurements and simula-
tions in Nelson et al.'® and Ousterhout et
al.'! show that files tend to be open for
only short periods and are rarely write-
shared, so cache disabling seldom occurs.
Second, the Sprite approach depends on
the fact that the server is notified whenever
a file is opened or closed. This prohibits
performance optimizations (such as name
caching) in which clients open files with-
out contacting the files’ servers. Qur
benchmark results in Nelson et al.' sug-
gest that such optimizations would provide
little performance improvement.

It is important to distinguish between

i to the time to complete the benchmark with a local disk and four-megabyte cache; (b) plots network traffic, inciuding bytes

consistency and correct synchronization.
Sprite’s mechanism provides consistency;
each read will return the most up-to-date
data. However, the cache consistency
mechanism will not guarantee that appli-
cations perform their reads and writes in
a sensible order. For this to occur, appli-
cations must synchronize their actions on
the file using the Fs_Lock system call or
other available communication mechan-
isms. The cache consistency provided by
Sprite simply eliminates the network issues
and reduces the problem to that of time-
sharing systems.

File system performance. To measure
the benefits of caching, we ran a series of
file-intensive benchmark programs on
Sun-3/75 workstations. A single
Sun-3/180 file server was used for all cli-
ent I/O and paging traffic. Because the
benchmarks do not involve file sharing,
they do not measure the overhead
associated with cache consistency. (For
descriptions of the benchmarks and addi-
tional performance measurements, see
Nelson et al.'%

Figure 7 shows that diskless worksta-
tions with caches of a few megabytes can
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Figure 8. Effects of server contention when multiple diskless clients ran the most intensive benchmark (Andrew) simultane- mel
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’ Stack aCkmg File power (for example, SPUR or the Sun J titic
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networks will be needed to support th f 1€t
next generation of workstations after tha As
Figure 8 shows that client cachirs day
Zeroes _ - _ : reduces the server load by about a fac Fig
o— Data Pag__be In/Out Backjng File of two and suggests that a single servtf : Sep
: could support 10 or more active client f 8
Object Page In - o d g
) —3 without excessive performance degra T
File Code tion. Normal users are rarely as active® k 1o
the benchmark in Figure 8; Howard # '?;e‘
al.? and Nelson et al.'* estimate that Oﬂz pre
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Figure 9. Sprite’s paging structure. The code is paged in on-demand from the proc- msts'mcle of the belnchmfgrk presents 3?; [ ma
ess’ object file; since the code is read-only, it need not be written to backing storage eq'f“"a ent to at least five average | in
. g This suggests that a Sun-3/180 Sprite i § 18
and can be reloaded from the object file when needed. An ordinary file is used to EE  the

back each data and stack segment. Initialized portions of the data segment are read
in from the object file on [irst reference, then written to the backing file during
page replacement and reused from there. For the stack segment and the uninitial-
ized portions of the data segment, pages are filled with zeros on first reference,

then paged to and from the backing files.

achieve performance within one to 12 per-
cent of workstations with local disks,
whereas diskless workstations without
caches typically run 10 to 40 percent slower
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than workstations with disks. It also shows
that client caching reduces network traf-
fic by a factor of four or more. Without
client caching, we believe that Ethernet’s

server can support at least 50 user work [
stations. _

In comparisons with Sun’s NFS, Spi“ §
completed the Andrew benchmark 307§
cent faster and generated only about 0%
fourth the server load. Since oul
servers can support 10 to 20 clients, i
NFS comparison supports our estimate?
at least 50 clients per Sprite file server- 8
Nelson et al.!® for more information ¢
the NFS comparison.)
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yirtual memory

gprite’s virtual memory implementation
. yraditional in many respects. For exam-
151[ jtusesa “‘clock’ algorithm variation
f;,its page replacement mech?,nism and
258 2 straightforward extension of Fhe
time-shared Unix mechanism to provide
shared read-write data sef_;_ments. These
and other aspects of_ the v:.rtual memorl%
system ar¢ described in detaii by Nelson.
This section focuses on three aspects of
he virtual memory implementation where
we intentionally deviated from Unix to
petter use networks and large physical
memories. First, Sprite uses ordinary files
for backing storage to simplify process
- migration, to share backing storage
between workstations, and to capitalize on
server caches. In addition, Sprite provides
- gticky segments’’ and a dynamic trade-
off of physical memory between the virtual
memory system and the file cache; these
t } mechanisms were implemented to make
the best possible use of physical memory
as a cache for programs and files.

Backing storage. Backing storage is the
portion of disk used to hold pages that
have been swapped out of physical mem-
ory. Most versions of Unix use a special
I disk partition for backing storage and
of manage that partition with special
oit algorithms. In networked Unix systems,
iy each machine has its own private disk par-
i tition for backing storage. In contrast,
i} Sprite uses ordinary files, stored in the
the network file system, for backing storage.
] A separate backing file is used for each
ing data and stack segment, as illustrated in
s Figure 9. Bach workstation is assigned a
vil-$éparate directory in which to create back-
-1 Ing files for its processes.

ey There are several advantages to paging
'ea:-fIOm files. First, it simplifies the imple-
d 4 Mentation of virtual memory by reusing
emthe existing file mechanisms. Second, it
ot/ Provides flexibility not present when each
seriMachine uses a private partition for back-
: finestorage, Many workstations may store
olfteir backing files in the same file system
domain; this uses disk space more effi-
prit“ently than schemes based on statically
prllocateq private partitions. The network
o le.S.VStem also simplifies backing file allo-
NAon on local disks or remote servers and
, (Rblifies process migration by making all
atetcking files accessible to all workstations.
(&, “acking files also have interesting per-
yn i ““F“CE consequences, In Sprite, remote
reking files are cached in the main mem-
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ories of servers, just like all other files. Qur
initial measurements show that a client can
read random pages from a file in the
server’s cache faster than from a local
disk, which means that a server with a large
cache may provide better paging perfor-
mance than a local disk. We think that
CPU and network speeds are likely to
increase at a much faster rate than disk
speeds over the next few years, which will
make remote paging to and from a server’s
cache even more attractive in the future.

Sticky segments. When a program starts
execution, the pages in its code and data
scgments are loaded on-demand from the
program’s object file when page faults
occur, To reduce this cost for frequently
invoked programs, Sprite keeps a pro-
gram’s code pages in memory even after
the program exits. The pages remain in
memory until they are replaced using the
normal clock mechanism. We call this
mechanism sticky segments. If the same
object file is reinvoked, then the new pro-
cess can be started more guickly by reus-
ing the sticky segment. If the object file is
modified between executions, then the
sticky segment will be discarded on the
next execution. Data and stack segments
are modified during execution, so they
cannot be retained after the process com-
pletes.

Double caching. Double caching (cach-
ing the same file block in two different
memory locations) is a potential issue
because the virtual memory system is a
user of the file system. A naive implemen-
tation might cause pages being read from
backing files to end up in both the file
cache and the virtual memory page pool;
pages being eliminated from the virtual
memory page pool might simply get
moved to the file cache, where they would
have to age again before being sent to the
server. To avoid these inefficiencies, the
virtual memory system bypasses the local
file cache when reading and writing back-
ing files. A similar problem occurs when
demand-loading code from its executable
file. In this case, the pages may already be
inthe file cache (for example, because the
program was just-recompiled). If so, the
page is copied to the virtual memory page
pool and the block in the file cache is given
an infinite age so that it will be replaced
before anything else in memory. The sticky
segment mechanism will cache the page in
the virtual memory system, so it is not
necessary to keep it in the fiie cache as well.
For the portions of object files cor-

responding to data pages, Sprite permits
double caching to provide faster program
start-up (the dirty data pages are discarded
on program exit, but clean ones can be
quickly reloaded from the file cache).

Although the virtual memory system
bypasses its local file cache when reading
and writing backing files, the backing files
will be cached on servers. This makes
servers’ memories into an extended main
memory for their clients, Servers do not
cache backing files for their own
processes, since this would constitute dou-
ble caching; they only cache backing files
for their clients.

Virtual memory-file system negotiation,
The virtual memory system and file systern
have conflicting needs for physical mem-
ory. File system performance is best when
the file cache is as large as possible, while
virtual memory performance will be best
when the file cache is as small as possible
so that most of the physical memory may
be used for virtual memory. To get the best
overall performance, Sprite allows the file
cache on cach workstation to grow and
shrink in response to ¢hanging demands
on the machine’s virtual memory and file
system. This is accomplished by having the
two modules negotiate over physical mem-
ory usage. The result is that small 1/0-
intensive programs, like compilers, may
use almost all of the memory for 2 file
cache, while large CPU-bound programs
may use almost all of the memory for their
virtual address spaces.

The file system and the virtual memory
system manage separate pools of physical
memory pages. Each module keeps an
approximate time-of-last-access for each
page (using different techniques in each
module). Whenever either module needs
additional memory (because of a page
fault or a miss in the file cache), it com-
pares the age of its oldest page with the age
of the oldest page from the other module,
replacing whichever is older. This allows
memory to flow back and forth between
the virtual memory page pool and the file
cache, depending on the needs of the cur-
rent applications.

We also considered more centralized
approaches to trading off physical mem-
ory between the virtual memory page pool
and the file cache. One possibility would
be to access all information through the
virtual memory system. To access a file, it
would first be mapped into a process’ vir-
tual address space and then read or writ-
ten just like virtual memory, as in Apollo’s
Acgis system’ or Mach.'? This approach
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Table 2. The time required to migrate a process on Sun-3/75 workstations,*

Action

Cost or speed

Flush dirty pages
Demand-load pages
Transfer info for open files
Flush file cache

Migrate smallest possible process

150 msec

585 Kbytes/sec

545 Kbytes/sec
14 msec/file

585 Kbytes/sec

*The total time depends on how many dirty pages the process has (these must be flushed to
the server during migration), how large its address space is {pages must be loaded on-demand
on the process’ new host), how many open files it has, and how many dirty blocks for those
files are cached locally (they must be flushed). ‘““Smallest possible process®’ refers to a process
with no open files and one page each of code, data, and stack.

Table 3. Costs and benefits of process migration, measured by running several

compilations concurrently.*

Program Execution time Improvement
Local Migrated

One compilation 15.5 sec 15.9 sec —3%

Two compilations 30 sec 17 sec 43%,

Three compilations 45 sec 18 sec 60%

Four compilations 60 sec 20 sec 67%

*In the ““local’’ column, all the compilations were run concurrently on a single machine. In
the “*migrated’’ column, one compilation was run locally and each of the others was migrated
to a different workstation (except for the “‘one compilation’’ row, where the single compila-

tion was migrated).

would eliminate the file cache entirely; the
standard page replacement mechanisms
wouid automatically balance physical
memory use between file and program
information.

We rejected the mapped-file approach
for several reasons, the most important
one being that it would have forced us to
use a more complicated cache consistency
scheme. Since a mapped-file approach
requires a file’s pages to be cached in a
workstation’s memory before they can be
accessed, we would not have been able to
implement cache consistency by refusing
to cache shared files. A second reason for
rejecting the mapped-file approach is that
we wished to retain the Unix notion that
I/O devices and files aré accessed in
exactly the same fashion; a mapped-file
framework, with the assumed ability to
access bytes in random order, does not
seem natural for device [/O, which is most
often sequential.
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Process migration

Sprite's implementation of process
migration differs from other implementa-
tions, such as those in the V System,®
Accent,” or Locus,” in two major ways.
The first difference is the way in which a
process’ virtual memory is transferred
between machines, and the second differ-
ence is the way migration is made transpar-
ent to the migrated process.

The simplest approach to process migra-
tion is

* ““freeze’” the process (prevent it from

executing any more);

* transfer its state to the new machine,
including registers and execution
state, virtual memory, and file access;

* “‘unfreeze’ the process on its new
machine so that it can continue
executing.

The virtual memory transfer is the dop, fp
inant cost in migration, so various techk
niques have been applied to reduceit. F,
example, V uses precopying, where Ihe‘
process continues executing while its mer,
ory is transferred. The process is then fy,
zen, and any pages that have beg
modified are recopied. . Accent uses }
“lazy” approach in which the virggfw
memory image is left on the old machifthe RP(
and transferred to the new machine o f This BU
page at a time when page faults ocgy the 51
Locus checks for a read-only code segmeyf 1ome-
and reopeas it on the new machine, rathg stll 2pr
than copying it from the old machine; tjf ¢SS
allows the process to share a preexistinp appear
copy of the code on the new machire,jf 104¢: 2
there is one. nated

In Sprite, backing files simplify g} " the |
transfer of the virtual memory image. Tyf £ €
old machine simply pages out the proge} 10168
dirty pages and transfers informatigf 50¢@
about the backing files to the targf %!
machine. If the code segment alreaj or forw
exists on the new machine, the migratiy mac.le o
process shares it, as in Locus. Pages g arelnve
reloaded in the process’ new machine gf '™
demand, using the standard virtual mem-L, was pal
ory mechanisms. Thus, the process nes tache
only be frozen long enough to write outis fekes
dirty pages. The Sprite approach requirif betweer
processes to be frozen longer than wilh Fal]s, 0.
either V or Accent, but it requires less dauf i?;oss'
copying than V and does not require pag table) i
fault servicing by the old machine afte Tal;l
unfreezing on the new machine. uremerl

The second, and more important, issiz process.
in process migration is achieving transpz: tbefore
ent remote execution. A migrated proces the il
must produce the same results it woul  millise
produce if it were not migrated, and spt § We ex]::
cial coding must not be required forf -
process to be migratable. For messag L will b;e
based systems like V and Accent, tras  workst
parency is achieved by redirecting ti* In thisl
process’ message traffic to its new homé Mumbe
Since processes communicate with ther®'k .. @
of the world only by sending and recelV#E e ...
messages, this is sufficient to guarant® Mtation
transparency . In contrast, Sprite proccSSf shows
communicate with the rest of the world ¥k aecey
invoking kernel calls. Kernel calls are 10" ¥ e e;
mally executed on the invoking machi® benehy,
{unless they make RPCs to other kernel) Much |
and some kernel cails will produce diffe" § tig, '
ent results on different machines. F/f Ouster
example, Sprite kernels maintain sha™ ¥ proqe
environment variables; Proc_GetEnvir? ‘
may return different results on differe”
machines.

Sprite achieves transparency in a fastt
jon similar to Locus by assigning €&




I

ocess 8 home .noa‘e. A process’ home
is the machine on which the process
node ted, unless the process was created
wascre? ra,ted process; in this case, the
by & I:;,ghome node is the same as the
proc: node of its parent. ‘Whenever a pro-
hort vokes a kernel call whose results are
cess 11.1 e-dependent, the kernel call is for-
macg;z to the process’ home node (using
| r;]ierc mechanism) and executed there.
1 This guarantess tha!: tl_le process proFiuces
1 (e same results as‘lf it were executing at
nome. TO the outside wqud, the process
ill appears to be executing at hom-e. I-ts
process identifier doe§ n_ot change; it will
appear in a process listing on the hom_e
node; and it can be debugged and termi-
nated in the same way as other processes
on the home node.

For each kernel call, we thus had two
choices: either transfer all the state
associated with the call at migration time
so that the call can be executed remotely,
or forward home all invocations of the call
made by migrated processes. For calls that
areinvoked frequently, such as all the file
systemn calls, we chose the first course (this
was particularly simple for files, since the
cache consistency mechanism already
takes care of moving the file’s data

between caches). For infrequently invoked
* calls, or those whose state is difficult or
impossible to transfer (for example, calls
that deal with the home node’s process
table}, we chose the forwarding approach.

Table 2 gives some preliminary meas-
wrements of process migration costs. If a
process is migrated when it starts execution
(before it has generated many dirty pages),
| themigration requires only a few hundred
miliiseconds on Sun-3/75 workstations.
Weexpect this to be the most common sce-
ol n:frio. The other major use of migration
ol will be to evict migrated processes from a
" workstation whose user has just returned.
o In this case, the major factor will be the
" umber of dirty pages. Even in the worst
il tase (lall memory dirty), all processes can
" be evicted from an eight-megabyte work-
! ftation in about 15 to 20 seconds. Table 3
i shows that remote execution costs are
nf‘;\ acceptable (less than five percent penalty

'nié Overexecuting at home for a compilation
elﬂl benchmark) and that migration may allow
” Much more rapid completion of a collec-
Fﬂigon of jobs. (See Douglis and
1 uslthOl{t” for more information on
irafi Process migration in Sprite.)

1 i

:reﬂ .

s of this writing, all features dis-
'ash" cussed are operational—except
aac'r‘ for the code to choose a target

[Efruary 1988

for process migration and to evict
migrated processes when a workstation’s
user returns, which is currently under
development. In addition, Sprite supports
the Internet protocol family (IP/TCP) for
comrunication with other systems, and
Sun NFS protocol support is planned. The
Sprite kernel contains approximately
100,000 lines of code, about half of which
are comments. All but a few hundred lines
of code are in C; the remainder are writ-
ten in assembler. Sprite currently runs on
Sun-2 and Sun-3 workstations. Recently,
we began using it for all of our everyday
computing, including maintaining Sprite.
We plan to port Sprite to the SPUR multi-
processor as prototypes become available
later in 1988. We hope that Sprite will be
portable enough to run on a variety of
workstation platforms, and that it will be
attractive enough for people outside the
Sprite group to want to use it for their
everyday computing.

In conclusion, we hope that Sprite will
provide three overall features: sharing,
flexibility, and performance. Users want
sharing so that they can work coopera-
tively and use hardware resources fully.
Sprite provides sharing at several levels:
tightly coupled processes on the same
workstation may share memory; processes
everywhere may share files; and users may
share processing power using the process
migration mechanism. System administra-
tors want flexibility so that the system can
evolve gracefully. Sprite provides flexibil-
ity in the form of prefix tables, which allow
user-transparent reconfiguration of the
file system, and in the form of backing
files, which allow workstations to share
backing storage. Finally, everyone wants
performance. Sprite provides high perfor-
mance by using a special-purpose RPC
protocol for communication between ker-
nels and by using physical memory as a
flexible cache for both programs and
files, (]

Acknowledgments

Adam de Boor implemented the Pmake pro-
gram and has assisted in many other areas of
Sprite development, including porting the X11
window system. David Anderson, Jim Larus,
Rita Qusterhout, Gerald Popek, Carlo Séquin,
and the Computer referees provided helpful
comments on early drafts of this article.

The work described here was supporied, in
part, under Defense Advanced Research
Projects Agency Contract N0O0039-85-R-0269
and, in part, under National Science Founda-
tion Grant ECS-8351961.

References

1. M. Hill et al.,, “*Design Decisions in
SPUR,” Computer, Nov. 1986, pp. 8-22.

2. G. Popek and B, Walker, eds., The Locus
Distributed System Architecture, MIT
Press, Cambridge, Mass., 1985.

3. J. Howard et al., “*Scale and Performance
in a Distributed File System,’” ACM Trans.
Computer Syst., Feb, 1988.

4. R. Sandberg et al., ‘‘Design and Implemen-
tation of the Sun Network Filesystem,”’
Proc. Usenix 1985 Summer Conf., June
1985, pp. 119-130.

5. P. Leach et al., *‘The Architecture of an
Integrated Local Network,” JEEE Trans.
Selected Areas in Comm., Nov. 1983, pp.
842-857.

6. M. Theimer, K. Lantz, and D. Cheriton,
“Preemptable Remote Execution Facilities
for the V-System,”” Proc. 10th Symp. Oper-
ating Syst. Principles, Dec. 1985, pp. 2-12.

7. E. Zayas, “Attacking the Process Migration
Bottleneck,*” Proc. i1th Symp. Operating
Syst. Principles, Nov. 1987, pp. 13-24.

8. A. Birrell and B. Nelson, ‘‘Implementing
Remote Procedure Calls,”” ACM Trans.
Computer Syst., Feb. 1986, pp. 39-59.

FACULTY
POSITIONS

COMPUTER SCIENCE: Tenure-track posi-
tion available, rank open. For senior lavel
positions, a doctorate in Computer Science
or a Doctorate in a related area with
graduate level work at least equivalent to a
Master’s degree in Computer Science is re-
quirad; for junior level positions, a Master's
degree in Computer Science is required. All
candidates should have academic andior
work experience in advanced aspects of
software engineering {including structured
programming methodology), demonstrated
skill in PASCAL and either FORTRAN 77 or
COBOL, and the ability to teach courses
and direct student projects in at least two
of the following areas: microprocessing
systems, compiler construction, computer
architecture and organization, advanced
computer graphics, analysis of algorithms.

Position is nine-month, subject to availability
of funding. Salary is open, highly com-
petitive, and commensurate with qualifica-
tions and experience. Send resume and let-
ter of application indicating position desired
to: Affirmative Action Office, Salem State
College, Salem, MA 01970 by March 1,
1988.

SSC is an Equal Opportunity/Affirmative
Action Employer and actively seeks the
candidacy of minorities and women.

Salem State College

35



9. B. Welch and J. Ousterhout, “‘Prefix
Tables: A Simple Mechanism for Locating
Files in a Distributed System,”’ Proc. Sixth
Conf. Distributed Computing Syst., May
1986, pp. 184-189.

10. M. Nelson, B. Welch, and J. Ousterhout,
““Caching in the Sprite Network File Sys-
tem,”” ACM Trans. Computer Syst., Feb.
1988,

11. . Ousterhout et al,, **A Trace-Driven Anal-
ysis of the Unix 4.2 BSD File System,”
Proc. 10th Symp. Operating Syst. Princi-
ples, Dec. 1985, pp. 15-24.

12. M. Nelson, ¢“Virtual Memory for the Sprite
Operating System,’” Tech. Report
UCB/CSD 86/301, June 1986.

13. M. Accetta et al., “Mach: A New Kerne!
Foundation for Unix Development,” Proc.
Summer Usenix, July 1986, pp. 93-112.

14, F. Douglis and J. Ousterhout, “‘Process
Migration in the Sprite Operating System,”
Seventh Int’t Conf. Distributed Computing
Syst,, Sept. 1987, pp. 18-25.

Frederick Douglis is currently a PhD candidate
in the Department of Electrical Engineering and
Computer Science, University of California at
Berkeley. His research interesis include process
migration and archival storage.

He received an MS degree in computer science
from the University of California in 1987 and
a BS degree in computer science from Yale Uni-
versity in 1984. Douglis is 2 member of IEEE
and ACM.

Questions regarding this article may be addressed to Ousterhout at the Computer Science Division, Dept. of Electrical Engitlf:Erirlg

John K. Ousterhout is an associate professor in
the Department of Electrical Engineering and
Computer Sciences at the University of Califor-
nia at Berkeley. His interests include operating
systems, distributed systems, user interfaces,
and computer-aided design. He and his students
have developed several widely used programs
for computer-aided design, including Magic,
Caesar, and Crystal. Ousterhout is now leading
the development of Sprite, a network operating
system for high-performance workstations.

Ousterhout is a recipient of the ACM Grace
Murray Hopper Award, the National Science
Foundation Presidential Young Investigator
Award, the IEEE Browder J. Thompson
Award, and the UCB Distinguished Teaching
Award.

He received a BS degree in physics from Yale
University in 1975 and a PhD degree in com-
puter science from Carnegie Mellon University
in 1980.

Michael N. Nelson is a PhD candidate at the
University of California at Berkeley. His
research interests include operating systems and
distributed systems.

He received the MS and BA degrees in com-
puter science from the University of California
in 1986 and 1983, respectively.

Computer Sciences, University of California, Berkeley, CA 94720,

36

Andrew R. Cherenson is currently employed g
Silicon Graphics, Mountain View, Californj
His rescarch interests include operating systen
and distributed systems. He was a systems prg.
grammer at the Department of Chemistry, Ha.
vard College, and at the Research Institute of
Scripps Clinic, La Jolla, Calif.

He recently received an MS degree from th: |
University of California at Berkeley and
received an AB degree in biochemical sciency |
from Harvard College in 1981. Heis a memby
of IEEE and ACM.

Brent B. Welch is a PhD candidate at the ur
versity of California at Berkeley. His resed" J
interests include network operating systems*[§
distributed systems in general.

He received an MS degree in computer 3
from the University of California in 198658
a BS degree in aerospace engineering from“ g
University of Colorado, Boulder, in 1983

ce' iy



