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ABSTRACT
Machine learning, and specifically deep learning, has been hugely disruptive in many fields of
computer science. The success of deep learning techniques in solving notoriously difficult clas-
sification and regression problems has resulted in their rapid adoption in solving real-world
problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fun-
damental advancements in training deeper models were enabled by the availability of massive
datasets and high-performance computer hardware.

This text serves as a primer for computer architects in a new and rapidly evolving field.
We review how machine learning has evolved since its inception in the 1960s and track the
key developments leading up to the emergence of the powerful deep learning techniques that
emerged in the last decade. Next we review representative workloads, including the most com-
monly used datasets and seminal networks across a variety of domains. In addition to discussing
the workloads themselves, we also detail the most popular deep learning tools and show how
aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs.

The remainder of the book is dedicated to the design and optimization of hardware and
architectures for machine learning. As high-performance hardware was so instrumental in the
success of machine learning becoming a practical solution, this chapter recounts a variety of
optimizations proposed recently to further improve future designs. Finally, we present a review
of recent research published in the area as well as a taxonomy to help readers understand how
various contributions fall in context.

KEYWORDS
deep learning, neural network accelerators, hardware software co-design, DNN
benchmarking and characterization, hardware support for machine learning
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Preface
This book is intended to be a general introduction to neural networks for those with a computer
architecture, circuits, or systems background. In the introduction (Chapter 1), we define key vo-
cabulary, recap the history and evolution of the techniques, and for make the case for additional
hardware support in the field.

We then review the basics of neural networks from linear regression to perceptrons and
up to today’s state-of-the-art deep neural networks (Chapter 2). The scope and language is
presented such that anyone should be able to follow along, and the goal is to get the community
on the same page. While there has been an explosion of interest in the field, evidence suggests
many terms are being conflated and that there are gaps in understandings in the area. We hope
that what is presented here dispels rumors and provides common ground for nonexperts.

Following the review, we dive into tools, workloads, and characterization. For the practi-
tioner, this may be the most useful chapter. We begin with an overview of modern neural net-
work and machine learning software packages (namely TensorFlow, Torch, Keras, and Theano)
and explain their design choices and differences to guide the reader to choosing the right tool
for their work. In the second half of Chapter 3, we present a collection of commonly used, sem-
inal workloads that we have assembled in a benchmark suite named Fathom [2]. The workloads
are broken down into two categories: dataset and model, with explanation of why the workload
and/or dataset is seminal as well as how it should be used. This section should also help reviewers
of neural network papers better judge contributions. By having a better understanding of each
of the workloads, we feel that more thoughtful interpretations of ideas and contributions are
possible. Included with the benchmark is a characterization of the workloads on both a CPU
and GPU.

Chapter 4 builds off of Chapter 3 and is likely of greatest interest to the architect looking
to investigate accelerating neural networks with custom hardware. In this chapter, we review the
Minerva accelerator design and optimization framework [114] and include details of how high-
level neural network software libraries can be used in conglomeration with hardware CAD and
simulation flows to codesign the algorithms and hardware. We specifically focus on the Minerva
methodology and how to experiment with neural network accuracy and power, performance, and
area hardware trade-offs. After reading this chapter, a graduate student should feel confident in
evaluating their own accelerator/custom hardware optimizations.

In Chapter 5, we present a thorough survey of relevant hardware for neural network pa-
pers, and develop a taxonomy to help the reader understand and contrast different projects. We
primarily focus on the past decade and group papers based on the level in the compute stack
they address (algorithmic, software, architecture, or circuits) and by optimization type (sparsity,
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quantization, arithmetic approximation, and fault tolerance). The survey primarily focuses on
the top machine learning, architecture, and circuit conferences; this survey attempts to capture
the most relevant works for architects in the area at the time of this book’s publication. The truth
is there are just too many publications to possibly include them all in one place. Our hope is that
the survey acts instead as a starting point; that the taxonomy provides order such that interested
readers know where to look to learn more about a specific topic; and that the casual participant in
hardware support for neural networks finds here a means of comparing and contrasting related
work.

Finally, we conclude by dispelling any myths that hardware for deep learning research has
reached its saturation point by suggesting what more remains to be done. Despite the numerous
papers on the subject, we are far from done, even within supervised learning. This chapter sheds
light on areas that need attention and briefly outlines other areas of machine learning. Moreover,
while hardware has largely been a service industry for the machine learning community, we
should really begin to think about how we can leverage modern machine learning to improve
hardware design. This is a tough undertaking as it requires a true understanding of the methods
rather than implementing existing designs, but if the past decade of machine learning has taught
us anything, it is that these models work well. Computer architecture is among the least formal
fields in computer science (being almost completely empirical and intuition based). Machine
learning may have the most to offer in terms of rethinking how we design hardware, including
Bayesian optimization, and shows how beneficial these techniques can be in hardware design.

Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, and David Brooks
July 2017



1

C H A P T E R 1

Introduction
Machine learning has been capturing headlines for its successes in notoriously difficult artificial
intelligence problems. From the decisive victories of DeepMind’s AlphaGo system against top-
ranked human Go players to the wonder of self-driving cars navigating city streets, the impact of
these methods are being felt far and wide. But the mathematical and computational foundations
of machine learning are not magic: these are methods that have been developed gradually over
the better part of a century, and it is a part of computer science and mathematics just like any
other.

So what is machine learning? One way to think about it is as a way of programming
with data. Instead of a human expert crafting an explicit solution to some problem, a machine
learning approach is implicit: a human provides a set of rules and data, and a computer uses
both to arrive at a solution automatically. This shifts the research and engineering burden from
identifying specific one-off solutions to developing indirect methods that can be applied to a
variety of problems. While this approach comes with a fair number its own challenges, it has
the potential to solve problems for which we have no known heuristics and to be applied broadly.

The focus of this book is on a specific type of machine learning: neural networks. Neu-
ral networks can loosely be considered the computational analog of a brain. They consist of a
myriad of tiny elements linked together to produce complex behaviors. Constructing a practical
neural network piece by piece is beyond human capability, so, as with other machine learning
approaches, we rely on indirect methods to build them. A neural networkmight be given pictures
and taught to recognize objects or given recordings and taught to transcribe their contents. But
perhaps the most interesting feature of neural networks is just how long they have been around.
The harvest being reaped today was sown over the course of many decades. So to put current
events into context, we begin with a historical perspective.

1.1 THERISESANDFALLSOFNEURALNETWORKS
Neural networks have been around since nearly the beginning of computing, but they have some-
thing of a checkered past. Early work, such as that of McCulloch and Pitts [104], was focused
on creating mathematical models similar to biological neurons. Attempts at recreating brain-like
behavior in hardware started in the 1950s, best exemplified by the work of Rosenblatt on his
“perceptron” [117]. But interest in neural networks (both by researchers and the general public)
has waxed and waned over the years. Years of optimistic enthusiasm gave way to disillusionment,
which in turn was overcome again by dogged persistence. The waves of prevailing opinion are
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shown in Figure 1.1 overlaid on a timeline of major events that have influenced where neural
networks are today. The hype generated by Rosenblatt in 1957 was quashed by Minsky and Pa-
pert in their seminal book Perceptrons [106]. In the book, the authors dismissed what they saw
as overpromises and highlighted the technical limits of perceptrons themselves. It was famously
shown that a single perceptron was incapable of learning some simple types of functions such as
XOR. There were other rumblings at the time that perceptrons were not as significant as they
were made out to be, mainly from the artificial intelligence community, which felt perceptrons
oversimplified the difficulty of the problems the field was attempting to solve. These events pre-
cipitated the first AI winter, where interest and funding for machine learning (both in neural
networks and in artificial intelligence more broadly) dissolved almost entirely.

Rosenblatt
Perceptrons

Minsky,  Papert
Perceptrons

Rumelhart, et al.
Backpropagation

Hochreiter
Vanishing Gradient

Krizhevsky, et al.
AlexNet

LeCun, et al.
LeNet-5

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Deep Learning

Hype Curve

Figure 1.1: A review of the rise and fall of neural networks over years. Highlights the three major
peaks: early 1960s (Rosenblatt), mid-1980s (Rumelhart), and now (deep learning).

After a decade in the cold, interest in neural networks began to pick up again as researchers
started to realize that the critiques of the past may have been too harsh. A new flourishing of
research introduced larger networks and new techniques for tuning them, especially on a type of
computing called parallel distributed processing—large numbers of neurons working simultane-
ously to achieve some end. The defining paper of the decade came when Rumelhart, Hinton, and
Williams proposed their method for backpropagation in 1986 [119]. While others have rightly
been credited for inventing the technique earlier (most notably Paul Werbos who had proposed
the technique twelve years before [140]), this brought backpropagation into the mainstream and
changed attitudes toward neural networks. Backpropagation leveraged a simple calculus to allow
for networks of arbitrary structure to be trained efficiently. Perhaps most important, this allowed
for more complicated, hierarchical neural nets. This, in turn, expanded the set of problems that
could be attacked and sparked interest in practical applications.

Despite this remarkable progress, overenthusiasm and hype once again contributed to
looming trouble. In fact, Minsky (who partially instigated and weathered the first winter) was
one of the first to warn that the second winter would come if the hype did not die down. To
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keep research money flowing, researchers began to promise more and more, and when they
fell short of delivering on their promises, many funding agencies became disillusioned with the
field as a whole. Notable examples of this include the Lighthill report from England [103]
and the cancellation of the Speech Understanding Research program from DARPA in favor of
more traditional systems. This downturn was accompanied by a newfound appreciation for the
complexity of neural networks. As especially pointed out by Lighthill, for these models to be
useful in solving real-world problems would require incredible amounts of computational power
that simply was not available at the time.

While the hype died down and the money dried up, progress still moved on in the back-
ground. During the second AI winter, which lasted from the late 1980s until the mid-2000s,
many substantial advances were still made. For example, the development of convolutional neu-
ral networks [89] (see Section 3.1.1) in the 1990s quietly grew out of similar models introduced
earlier (e.g., the Neocognitron [48]). However, two decades would pass before widespread in-
terest in neural networks would arise again.

1.2 THETHIRDWAVE
In the late 2000s, the second AI winter began to thaw. While many advances had been made on
algorithms and theory for neural networks, what made this time around different was the setting
to which neural networks awoke. As a whole, since the late 1980s, the computing landscape had
changed. From the Internet and ubiquitous connectivity to smart phones and social media, the
sheer volume of data being generated was overwhelming. At the same time, computing hardware
continued to follow Moore’s law, growing exponentially through the AI winter. The world’s most
powerful computer at the end of the 1980s was literally equivalent to a smart phone by 2010.
Problems that used to be completely infeasible suddenly looked very realistic.

1.2.1 A VIRTUOUSCYCLE
This dramatic shift in circumstances began to drive a self-reinforcing cycle of progress and op-
portunity (Figure 1.2). It was the interplay between these three areas—data, algorithms, and
computation—that was directly responsible for the third revival of neural networks. Each was
significant on its own, but the combined benefits were more profound still.

These key factors form a virtuous cycle. Asmore complex, larger datasets become available,
new neural network techniques are invented. These techniques typically involve larger models
with mechanisms that also require more computations per model parameter. Thus, the limits
of even today’s most powerful, commercially available devices are being tested. As more pow-
erful hardware is made available, models will quickly expand to consume and use every avail-
able device. The relationship between large datasets, algorithmic training advances, and high-
performance hardware forms a virtuous cycle. Whenever advances are made in one, it fuels the
other two to advance.
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Large datasets and new application areas demand new techniques

Fast hardware makes
previously-intractable

problems feasible

Sophisticated models
require more

computational power

Data Algorithms

Computation

Figure 1.2: The virtuous cycle underpinning the modern deep learning revival.

BigData With the rise of the Internet came a deluge of data. By the early 2000s, the problem
was rarely obtaining data but instead, trying tomake sense of it all. Rising demand for algorithms
to extract patterns from the noise neatly fit with many machine learning methods, which rely
heavily on having a surfeit of data to operate. Neural networks in particular stood out: compared
with simpler techniques, neural nets tend to scale better with increasing data. Of course, with
more data and increasingly complicated algorithms, ever more powerful computing resources
were needed.

Big Ideas Many of the thorny issues from the late 1980s and early 1990s were still ongoing
at the turn of the millennium, but progress had been made. New types of neural networks took
advantage of domain-specific characteristics in areas such as image and speech processing, and
new algorithms for optimizing neural nets began to whittle away at the issues that had stymied
researchers in the prior decades. These ideas, collected and built over many years, were dusted off
and put back to work. But instead of megabytes of data and megaflops of computational power,
these techniques now had millions of times more resources to draw upon. Moreover, as these
methods began to improve, they moved out of the lab and into the wider world. Success begot
success, and demand increased for still more innovation.

Big Iron Underneath it all was the relentless juggernaut of Moore’s law. To be fair, computing
hardware was a trend unto itself; with or without a revival of neural networks, the demand
for more capability was as strong as ever. But the improvements in computing resonated with
machine learning somewhat differently. As frequency scaling tapered off in the early 2000s,
many application domains struggled to adjust to the new realities of parallelism. In contrast,
neural networks excel on parallel hardware by their very nature. As the third wave was taking
off, computer processors were shifting toward architectures that looked almost tailor-made for
the new algorithms and massive datasets. As machine learning continues to grow in prevalence,
the influence it has on hardware design is increasing.
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This should be especially encouraging to the computer architect looking to get involved

in the field of machine learning. While there has been an abundance of work in architectural
support for neural networks already, the virtuous cycle suggests that there will be demand for new
solutions as the field evolves. Moreover, as we point out in Chapter 3, the hardware community
has only just begun to scratch the surface of what is possible with neural networks and machine
learning in general.

1.3 THEROLEOFHARDWARE INDEEPLEARNING
Neural networks are inveterate computational hogs, and practitioners are constantly looking for
new devices that might offer more capability. In fact, as a community, we are already in the
middle of the second transition. The first transition, in the late 2000s, was when researchers
discovered that commodity GPUs could provide significantly more throughput than desktop
CPUs. Unlike many other application domains, neural networks had no trouble making the
leap to a massively data-parallel programming model—many of the original algorithms from
the 1980s were already formulated this way anyway. As a result, GPUs have been the dominant
platform for neural networks for several years, and many of the successes in the field were the
result of clusters of graphics cards churning away for weeks on end [135].

Recently, however, interest has been growing in dedicated hardware approaches. The rea-
soning is simple: with sufficient demand, specialized solutions can offer better performance,
lower latency, lower power, or whatever else an application might need compared to a generic
system. With a constant demand for more cycles from the virtuous cycle mentioned above,
opportunities are growing.

1.3.1 STATEOFTHEPRACTICE
With neural networks’ popularity and amenability to hardware acceleration, it should come as
no surprise that countless publications, prototypes, and commercial processors exist. And while
it may seem overwhelming, it is in fact just the tip of the iceberg. In this section, we give a brief
look at the state of the art to highlight the advances that have been made and what more needs
to be done. Chapter 5 provides a more comprehensive look at the field.

To reason quantitatively about the field, we look at a commonly used research dataset
called MNIST. MNIST is a widely studied problem used by the machine learning community
as a sort of lowest common denominator.While it is no longer representative of real-world appli-
cations, it serves a useful role. MNIST is small, which makes it easier to dissect and understand,
and the wealth of prior experiments on the problem means comparison is more straightforward.
(An excellent testimonial as to why datasets like MNIST are imperative to the field of machine
learning is given by Roger Grosse [56].)

Figure 1.3 shows the results of a literature survey on hardware and software implemen-
tations of neural networks that can run with the MNIST dataset. The details of the problem
are not important, but the basic idea is that these algorithms are attempting to differentiate be-
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Figure 1.3: A literature survey of neural networks reveals the disconnect between machine
learning research and computer architecture communities when designing neural network sys-
tems. References: CPUs [47, 63, 112, 130, 139], GPUs [24, 30, 32, 63, 128, 130, 139], FP-
GAs [47, 57], and ASICs [7, 18, 24, 46, 47, 83, 88, 132].

tween images of single handwritten digits (0–9). On the x-axis is the prediction error of a given
network: a 1% error rate means the net correctly matched a 99% of the test images with their
corresponding digit. On the y-axis is the power consumed by the neural network on the platform
it was tested on. The most interesting trend here is that the machine learning community (blue)
has historically focused on minimizing prediction error and favors the computational power of
GPUs over CPUs, with steady progress toward the top left of the plot. In contrast, solutions
from the hardware community (green) trend toward the bottom right of the figure, emphasiz-
ing practical efforts to constrain silicon area and reduce power consumption at the expense of
nonnegligible reductions in prediction accuracy.

The divergent trends observed for published machine learning vs. hardware results reveal a
notable gap for implementations that achieve competitive prediction accuracy with power bud-
gets within the grasp of mobile and IoT platforms. A theme throughout this book is how to
approach this problem and reason about accuracy-performance trade-offs rigorously and scien-
tifically.
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This book serves as a review of the state of the art in deep learning, in a manner that is
suitable for architects. In addition, it presents workloads, metrics of interest, infrastructures,
and future directions to guide readers through the field and understand how different works
compare.

Figure 1.4: A photo of one of the first neural network prototypes, built by Frank Rosenblatt
at Cornell. Many early neural networks were designed with specialized hardware at their core:
Rosenblatt developed the Mark I Perceptron machine in the 1960s, and Minsky built SNARC
in 1951. It seems fitting now that computer architecture is once again playing a large role in the
lively revival of neural networks.
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C H A P T E R 2

Foundations of Deep Learning
2.1 NEURALNETWORKS
The seat of human thought has long inspired scientists and philosophers, but it wasn’t until the
20th century that the mechanisms behind the brain began to be unlocked. Anatomically, the
brain is a massive network of simple, interconnected components: a neural network. Thought,
memory, and perception are products of the interactions between the elements of this network,
the result of thousands of signals being exchanged. Modern deep learning methods can trace
their origins to computational analogs of biological neural networks, so it helps to have a basic
understanding of their functionality.

Figure 2.1: Local neuron connectivity in a mouse brain. True color image produced by induced
expression of fluorescent protein [99]. Each colored patch is a single neuron cell.



10 2. FOUNDATIONSOFDEEPLEARNING

2.1.1 BIOLOGICALNEURALNETWORKS
The fundamental unit of the brain is a neuron (Figure 2.2a), a specialized cell that is designed
to pass electrochemical signals to other parts of the nervous system, including other neurons.
A neuron is comprised of three basic pieces: the soma, or body, which contains the nucleus,
metabolic machinery, and other organelles common to all cells; dendrites, which act as a neu-
ron’s inputs, receiving signals from other neurons and from sensory pathways; and an axon, an
elongated extension of the cell responsible for transmitting outgoing signals. Connections be-
tween neurons are formed where an axon of one neuron adjoins the dendrite of another at an
intercellular boundary region called a synapse. The long, spindly structure of neurons enables a
dense web, with some neurons having up to 200,000 different direct connections [102].

Axon

Dentrite

Cell Body

(Soma)

(a) Annotated visualization of the structure of
a biological neuron, reconstructed from electron
microscope images of 30 nm slices of a mouse
brain [138].
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(b) The shape of an action potential. A small
external voltage stimulus (blue) triggers a cas-
cade of charge buildup inside a neuron (red) via
voltage-gated ion channels. The activation thresh-
old is shown as a dotted line. Simulated using a
Hodgkin-Huxley model of a neuron [73] (Nobel
prize in Medicine, 1963).

Figure 2.2: The structure and operation of biological neurons.

Unlike most biological signaling mechanisms, communication between two neurons is an
electrical phenomenon. The signal itself, called an action potential, is a temporary spike in local
electrical charge difference across the cell membrane (see Figure 2.2b). This spike is the result
of specialized membrane proteins called voltage-gated channels, which act as voltage-controlled
ion pumps. At rest, these ion channels are closed, but when a small charge difference builds
up (either through the result of a chemical stimulus from a sensory organ or from an induced
charge from another neuron’s synapse), one type of protein changes shape and locks into an open
position, allowing sodium ions to flow into the cell, amplifying the voltage gradient. When the
voltage reaches a certain threshold, the protein changes conformation again, locking itself into a
closed state. Simultaneously, a second transport protein switches itself open, allowing potassium
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ions to flow out of the cell, reversing the voltage gradient until it returns to its resting state. The
locking behavior of voltage-gated channels causes hysteresis: once a spike has started, any further
external stimuli will be dominated by the rush of ions until the entire process has returned to its
rest state. This phenomenon, combined with the large local charge gradient caused by the ion
flow, allows an action potential to propagate unidirectionally along the surface of a neuron. This
forms the fundamental mechanism of communication between neurons: a small signal received
at dendrites translates into a wave of charge flowing through the cell body and down the axon,
which in turn causes a buildup of charge at the synapses of other neurons to which it is connected.

The discriminative capacity of a biological neuron stems from the mixing of incoming
signals. Synapses actually come in two types: excitatory and inhibitory, which cause the outgoing
action potential sent from one neuron to induce either an increase or decrease of charge on the
dendrite of an adjoining neuron. These small changes in charge accumulate and decay over short
time scales until the overall cross-membrane voltage reaches the activation threshold for the ion
channels, triggering an action potential. At a system level, these mutually induced pulses of
electrical charge combine to create the storm of neural activity that we call thought.

2.1.2 ARTIFICIALNEURALNETWORKS
Computational and mathematical models of neurons have a long, storied history, but most ef-
forts can be broadly grouped into two categories: (1) models that replicate biological neurons to
explain or understand their behavior or (2) solve arbitrary problems using neuron-inspired mod-
els of computation. The former is typically the domain of biologists and cognitive scientists, and
computational models that fall into this group are often described as neuromorphic computing, as
the primary goal is to remain faithful to the original mechanisms. This book deals exclusively
with the latter category, in which loosely bio-inspired mathematical models are brought to bear
on a wide variety of unrelated, everyday problems. The two fields do share a fair amount of
common ground, and both are important areas of research, but the recent rise in practical appli-
cation of neural networks has been driven largely by this second area. These techniques do not
solve learning problems in the same way that a human brain does, but, in exchange, they can
offer other advantages, such as being simpler for a human to build or mapping more naturally
to modern microprocessors. For brevity, we use “neural network” to refer to this second class of
algorithms in the rest of this book.

We’ll start by looking at a single artificial neuron. One of the earliest and still most widely
used models is the perceptron, first proposed by Rosenblatt in 1957. In modern language, a per-
ceptron is just two terms: a weighted sum of inputs xi , and a nonlinear activation function, ':

y D '

 X
i

wixi

!
The vestiges of a biological neuron are visible: the summation reflects charge accumu-

lation in the soma, and ' loosely models the activation threshold of voltage-gated membrane
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proteins. Rosenblatt, himself a psychologist, developed perceptrons as a form of neuromorphic
computing, as a way of formally describing how simple elements collectively produce higher-
level behavior [118]. However, individual perceptrons can just as easily be viewed as generalized
linear classifiers when ' has discrete outputs:

P
i wixi is a linear combination of inputs and '

is a mapping function. For instance, the linear classifier in Figure 2.3a is a weighted sum of the
x- and y-coordinates of the points, and ' is just a comparison to a fixed threshold (sums above
the threshold are red; those below, blue). In point of fact, many different interpretations of this
equation exist, largely because it is so simple. This highlights a fundamental principle of neu-
ral networks: the ability of a neural net to model complex behavior is not due to sophisticated
neurons, but to the aggregate behavior of many simple parts.

(a) Points in R2, subdivided by a single linear
classifier. One simple way of understanding lin-
ear classifiers is as a line (or hyperplane, in higher
dimensions) that splits space into two regions. In
this example, points above the line are mapped to
class 1 (red); those below, to class 0 (blue).

(b) Points in R2, subdivided by a combination
of four linear classifiers. Each classifier maps all
points to class 0 or 1, and an additional linear clas-
sifier is used to combine the four. This hierarchical
model is strictly more expressive than any linear
classifier by itself.

Figure 2.3: Simple elements can be combined to express more complex relationships. This is one
basic tenet of deep neural networks.

The simplest neural network is called amultilayer perceptron or MLP. The structure is what
it sounds like: we organize many parallel neurons into a layer and stack multiple layers together
in sequence. Figure 2.4 shows two equivalent visual representations. The graph representation
emphasizes connectivity and data dependencies. Each neuron is represented as a node, and each
weight is an edge. Neurons on the left are used as inputs to neurons on their right, and values
“flow” to the right. Alternately, we can focus on the values involved in the computation. Ar-
ranging the weights and input/outputs as matrices and vectors, respectively, leads us to a matrix
representation. When talking about neural networks, practitioners typically consider a “layer”
to encompass the weights on incoming edges as well as the activation function and its output.
This can sometimes cause confusion to newcomers, as the inputs to a neural network are often
referred to as the “input layer”, but it is not counted toward the overall depth (number of lay-
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ers). For instance, the neural network in Figure 2.4 is considered a two-layer MLP. A useful
perspective is to interpret this as referring to the number of weight matrices, or to the number
of layers of weighted sums (easier to see in Figure 2.4b). Similarly, since the number of layers is
depth, we call the number of neurons in a given layer the width of that layer. Width and depth
are often used loosely to describe and compare the overall structure of neural networks, and we
return to the significance of these attributes in Section 2.1.3.

Neuron

Weighted Edge

Input Layer Output LayerHidden
Layer

(a) Graph representation.

NeuronWeighted Edge

Input
Layer

Output LayerHidden Layer

(b) Matrix representation.

Figure 2.4: Two ways of visualizing the same multilayer perceptron.

Visualizations can be useful mental models, but ultimately they can be reduced to the
same mathematical form. Building off the expression for a single perceptron, the nth layer of an
MLP can be expressed as:

xn;i D '

0@X
j

wn;i;j xn�1;j

1A
or in vector notation,

xn D ' .wnxn�1/

We return to this expression over the course of this book, but our first use helps us understand
the role and necessity of the activation function. Historically, many different functions have been
chosen for '. The very first were step-functions , but these were superseded by continuous
variants like the sigmoid and hyperbolic tangent . Modern neural nets tend to use
a simpler function called a rectified linear unit (ReLU) . A natural question to ask when
encountering ' for the first time isWhy is it even required?Themath provides a straightforward,
satisfying answer. Assume for a minute that we replaced ' with an identity function, how would
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a two-layer MLP behave? We start with the expressions for both layers, using '.x/ D x:

x1 D w1x0

x2 D w2x1

Now we simply substitute

x2 D w2.w1x0/

Since matrix multiplication is associative and wn are constant, we can reduce the product to a
new matrix

x2 D w0x0

This leaves us with an aggregate expression, which has the same form as each original layer.This is
a well-known identity: composing any number of linear transformations produces another linear
transformation. It implies that without a nonlinear activation function ', a neural network of
any depth is identical to some single-layer network. In other words, without ', depth is a just
a pretense of complexity. What might be surprising is that even simple nonlinear functions are
sufficient to enable complex behavior. The definition of the widely used ReLU function is just
the positive component of its input:

'ReLU.x/ D

(
x � 0 W 0

x > 0 W x

In practice, neural networks can become much more complicated than the multilayer per-
ceptrons introduced here, and often they contain a variety of types of layers (see Chapter 3). Fun-
damentally, though, the underlying premise remains the same: complexity is achieved through
a combination of simpler elements broken up by nonlinearities.

2.1.3 DEEPNEURALNETWORKS
As a linear classifier, a single perceptron is actually a fairly primitive model, and it is fairly easy
to come up with noncontrived examples for which a perceptron fairs poorly, the most famous
being boolean XOR [105]. Historically, this was a source of contention in the AI community
in the late 1960s, and it was in part responsible for casting doubt on the viability of artificial
neural networks for most of the 1970s. Thus, it was a surprise in 1989 when several indepen-
dent researchers discovered that even a single hidden layer is provably sufficient for an MLP to
express any continuous function with arbitrary precision [37, 49, 74]. Unfortunately, this result,
called the Universal Approximation Theorem, says nothing about how to construct or tune such
a network, nor how efficient it will be in computing it. As it turns out, expressing complicated
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functions (especially in high dimensions) is prohibitively expensive for a two-layer MLP—the
hidden layer needs far too many neurons.

Instead, researchers turned to networks with multiple narrower layers: deep neural net-
works, or DNNs. Deep neural networks are attractive in principle: when solving a complicated
problem, it is easier to break it into smaller pieces and then build upon those results. This ap-
proach is faster and easier for humans, but a more important advantage (from a computational
point of view) is that these smaller, intermediate solutions can often be reused within the same
neural network. For instances, in understanding spoken language, it makes sense to recognize
common phonetic patterns instead of attempting to recognize each word directly from a wave-
form. In practice, modern neural networks have largely succeeded in replicating this type of
behavior. In fact, in some cases, it is possible to see exactly what kind of intermediate patterns
are being constructed by interrogating hidden layers and analyzing the output [81, 131, 146].

The trade-off and challenge with deep neural networks lies in how to tune them to solve a
given problem. Ironically, the same nonlinearities that give an MLP its expressivity also preclude
conventional techniques for building linear classifiers. Moreover, as researchers in the 1980s
and 1990s discovered, DNNs come with their own set of problems (e.g., vanishing gradient
problem explained in Section 2.2.2). Still, despite their complications, DNNs eventually ended
up enabling a wide variety of new application areas and setting off a wave of new research, one
that we are still riding today.

2.2 LEARNING

While have looked at the basic structure of deep neural networks, we haven’t yet described how
to convince one to do something useful like categorize images or transcribe speech. Neural net-
works are usually placed within the larger field of machine learning, a discipline that broadly
deals with systems the behavior of which is directed by data rather than direct instructions. The
word learning is a loaded term, as it is easily confused with human experiences such as learning
a skill like painting, or learning to understand a foreign language, which are difficult even to
explain—what does it actually mean to learn to paint? Moreover, machine learning algorithms
are ultimately still implemented as finite computer programs executed by a computer.

So what does it mean for a machine to learn? In a traditional program, most of the
application-level behavior is specified by a programmer. For instance, a finite element analy-
sis code is written to compute the effects of forces between a multitude of small pieces, and
these relationships are known and specified ahead of time by an expert sitting at a keyboard. By
contrast, a machine learning algorithm largely consists of a set of rules for using and updating
a set of parameters, rather than a rule about the correct values for those parameters. The lin-
ear classifier in Figure 2.3a has no rule that specifies that red points tend to have more positive
coordinates than blue. Instead, it has a set of rules that describes how to use and update the
parameters for a line according to labeled data provided to it. We use the word learn to describe
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the process of using these rules to adjust the parameters of a generic model such that it optimizes
some objective.

It is important to understand that there is no magic occurring here. If we construct a
neural network and attempt to feed it famous paintings, it will not somehow begin to emulate
an impressionist. If, on the other hand, we create a neural network and then score and adjust its
parameters based on its ability to simultaneously reconstruct both examples of old impressionist
artwork and modern scenery, it can be coaxed into emulating an impressionist (Figure 2.5 [51]).
This is the heart of deep learning: we are not using the occult to capture some abstract concept;
we are adjusting model parameters based on quantifiable metrics.

(a) (b)

(c) (d)

Figure 2.5: The results of a neural network constructed to combine different artistic styles with
arbitrary photographs. The source image (a) is combined with different art samples to produce
outputs with elements of each. Work and images courtesy of Gatys, Ecker, and Bethge [51].
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2.2.1 TYPESOFLEARNING
Because machine learning models are driven by data, there are a variety of different tasks that
can be attacked, depending on the data available. It is useful to distinguish these tasks because
they heavily influence which algorithms and techniques we use.

The simplest learning task is the case where we have a set of matching inputs and outputs
for some process or function and our goal is to predict the output of future inputs. This is called
supervised learning. Typically, we divide supervised learning into two steps: training, where we
tune a model’s parameters using the given sample inputs, and inference, where we use the learned
model to estimate the output of new inputs:

x; y ! M Training phase
M.x0/ ! y0 Inference phase

where M represents the model that is being trained to map x to y. The model can then infer
an output y0 from an unseen input x0. Regression and classification are examples of supervised
learning problems.

Its counterpart, unsupervised learning, is simply the same problem except without sample
outputs:

x ! M Training phase
M.x0/ ! y0 Inference phase

Because there is no given output, y can take a variety of forms. For instance, clustering is a
form of unsupervised learning where the output of M is a label for every input x (its associated
cluster). Outlier detection is another example, where M is a binary classifier (i.e., “is this point an
outlier or not?”). Generative models are a related concept: these are used to produce new samples
from a population defined by a set of examples. Generative models can be seen as a form of
unsupervised learning where no unseen input is provided (or more accurately, the unseen input
is a randomized configuration of the internal state of the model):

x ! M Training phase
M ! y0 Inference phase

where y0 is of the same type as the elements of x. Generative models can be used to generate
entirely new data, such as the stylized paintings in Figure 2.5.

There are more complicated forms of learning as well. Reinforcement learning is related to
supervised learning but decouples the form of the training outputs from that of the inference
output. Typically, the output of a reinforcement learning model is called an action, and the label
for each training input is called a reward :

x; r ! M Training phase
M.x0/ ! y0 Inference phase



18 2. FOUNDATIONSOFDEEPLEARNING
In reinforcement learning problems, a reward may not correspond neatly to an input—it may be
the result of several inputs, an input in the past, or no input in particular. Often, reinforcement
learning is used in online problems, where training occurs continuously. In these situations,
training and inference phases are interleaved as inputs are processed. A model infers some out-
put action from its input, that action produces some reward from the external system (possibly
nothing), and then the initial input and subsequent reward are used to update the model. The
model infers another action output, and the process repeats. Game-playing and robotic control
systems are often framed as reinforcement learning problems, since there is usually no “correct”
output, only consequences, which are often only loosely connected to a specific action.

2.2.2 HOWDEEPNEURALNETWORKSLEARN
So far, we have been vague about how a model’s parameters are updated in order for the model to
accomplish its learning task; we claimed only that they were “based on quantifiable metrics.” It
is useful to start at the beginning: what does a deep neural network model look like before it has
been given any data? The basic structure and characteristics like number of layers, size of layers,
and activation function, are fixed—these are the rules that govern how the model operates. The
values for neuron weights, by contrast, change based on the data, and at the outset, all of these
weights are initialized randomly. There is a great deal of work on exactly what distribution these
random values should come from [52, 65], but for our purposes, it is sufficient to say that they
should be small and not identical. (We see why shortly.)

An untrained model can still be used for inference. Because the weights are selected ran-
domly, it is highly unlikely that the model will do anything useful, but that does not prevent us
from running it. Let’s assume we have a set of training inputs x; y. For simplicity, we assume
that we are solving a supervised learning task, but the principle can be extended to other types
of learning as well. With a randomly initialized model M , we can produce an estimate Oy, which
is the output of M.x/. As we noted above, this value is unlikely to look anything like the true
values y. However, since we now have a set of true outputs and our model’s corresponding esti-
mate, we can compare the two and see how far off our model was. Intuitively, this is just a fancy
form of guess-and-check: we don’t know what the right weights are, so we guess random values
and check the discrepancy.

Loss Functions One of the key design elements in training a neural network is what function
we use to evaluate the difference between the true and estimated outputs.This expression is called
a loss function, and its choice depends on the problem at hand. A naive guess might just be to take
the difference between the two L.y; Oy/ D y � Oy, but our goal here is to find a function that will
be minimized when the two are equal—this function would cause Oy to go to negative infinity,
minimizing the loss function but doing little to help us. A second guess might be L.y; Oy/ D

jy � Oyj. This is also called the L1 norm of the difference, and it is not a terrible choice. In
practice, many DNNs used for regression problems use the L2 norm (L.y; Oy/ D .y � Oy/2), also
known as root mean squared error (RMSE).



2.2. LEARNING 19
For classification problems, RMSE is less appropriate. Assume your problem has ten cat-

egories, and for every x there is exactly one correct class y. The first issue is that classes are not
ordinal—just because class 0 is numerically close to class 1 doesn’t mean they’re any more similar
than class 5 or 9. A common way around this is to encode the classes as separate elements in a
vector. So the correct categories y would become a set of vectors each of length ten with a 1 in
the yth place and zeroes elsewhere. (This is also called one-hot encoding). With this conversion
in place, the classification problem can (mechanically, at least) be treated like a regression prob-
lem: the goal is again to make our model minimize the difference between two values, only in
this case, they are actually vectors. For a single input x, our DNN would produce a vector of ten
values Oy, which we would then compare to the true vector y of 9 zeros and 1 one. Using RMSE
as a loss function is problematic here: it tends to emphasize differences between the nine wrong
categories at the expense of the right one. While we could try to tweak this loss function, most
practitioners have settled on an alternate expression called cross-entropy loss:

L.y; Oy/ D �
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ln
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j e Oyj
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While this looks rather complicated, it is based on a fairly straightforward idea. If we force the
output of our neural network to be a probability distribution (i.e., real values between 0 and 1, and
a sum of one), and we encode our classification values as a discrete binary distribution (where the
correct class has value 1 and all other classes are 0—a one-hot encoding again), then the problem
of comparing outputs can be viewed as that of comparing two probability distributions. It turns
out that there are already good metrics for this difference. Cross-entropy is an information-
theoretic measure of how many bits are needed to describe the true distribution y using an
optimal encoding based on the distribution Oy. If Oy is a perfect (identical) estimate of y, then the
cross-entropy will simply be the entropy of y, which in our case is zero, since all the probability
mass of y is on one value. Alternately, for readers already familiar with basic machine learning,
cross-entropy can be thought of as a multiclass generalization of logistic regression. For a two-
class problem, the two measures are identical. It’s entirely possible to use a simpler measure like
absolute difference or root-mean-squared error, but empirically, cross-entropy tends to be more
effective for classification problems.

Optimization So now that we have a guess (our model’s estimate Oy) and a check (our cross-
entropy loss L), we need a way of adjusting our model to make better guesses in the future. In
other words, we want a way of adjusting the model weights to minimize our loss function. For
a simple linear classifier, it is possible to derive an analytical solution, but this rapidly breaks
breaks down for larger, more complicated models. Instead, nearly every deep neural network
relies on some form of stochastic gradient descent (SGD). SGD is a simple idea: if we visualize
the loss function as a landscape, then one method to find a local minimum is simply to walk
downhill until we cannot go any further (see Figure 2.6a).



20 2. FOUNDATIONSOFDEEPLEARNING

(a) Gradient descent algorithms are analogous to
walking downhill to find the lowest point in a val-
ley. If the function being optimized is differen-
tiable, an analytical solution for the gradient can
be computed. This is much faster and more accu-
rate than numerical methods.

(b) The vanishing gradient problem. In deep neu-
ral networks, the strength of the loss gradient
tends to fade as it is propagated backward due to
repeated multiplication with small weight values.
This makes deep networks slower to train.

Figure 2.6: In practice, deep neural networks are almost all trained using some form of stochastic
gradient descent.

The gradient, however, only tells us the direction in which to shift our estimate Oy, not how
to update our neural network to realize that shift. Since we can’t change Oy directly, we change
each weight in our network so that it produces the appropriate output for us. To achieve this
end, we rely on a technique called backpropagation. Backpropagation has a history of reinvention,
but its use in training neural networks was first mentioned by Paul Werbos [140] and brought
into the mainstream by a 1986 paper by Rumelhart, Hinton, and Williams [119]. The intuition
behind backpropagation is that elements of a neural network should be adjusted proportionally
to the degree to which they contributed to generating the original output estimate. Neurons that
pushed Oy closer to y should be reinforced, and those that did the opposite, suppressed.

Recall that computing a gradient rL.y; Oy/ is just computing partial derivatives @L
@xi

for
all inputs in x. To adjust individual weights, we simply take the component of the loss func-
tion, which corresponds to a particular weight: literally, @L

@w
for each w. Backpropagation is a

mechanism for computing all of these partial loss components for every weight in a single pass.
The key enabling feature is that all deep neural networks are fully differentiable, meaning

that every component, including the loss function, has an analytical expression for its derivative.
This enables us to take advantage of the chain rule for differentiation to compute the partial
derivatives incrementally, working backward from the loss function. Recall that the chain rule
states that for multiple functions f , g, and h:

@

@x
f .g.h.x/// D
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@g
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We would like to compute @L
@wi;j

for every weight j in every layer i . The chain rule implies
that computing the partial derivatives for layers in the front of a deep neural network requires
computing the partial derivatives for latter layers, which we need to do anyway. In other words,
backpropagation works by computing an overall loss value for the outputs of a network, then
computing a partial derivative for each component that fed into it. These partials are in turn used
to compute partials for the components preceding them, and so on. Only one sweep backward
through the network is necessary, meaning that computing the updates to a deep neural network
usually takes only a bit more time than running it forward.

We can use a simplified scalar example to run through the math. Assume we have a two-
layer neural network with only a single neuron per layer:

Oy D '1.w1.'0.w0x///

This is the same MLP formulation as before, just expanded into a single expression. Now we
need to compute the loss function L.y; Oy/. In the single-variable case, cross-entropy loss just
reduces to a difference, assuming that 0 � Oy � 1. (Typically the last-layer activation function
ensures this property.) So we lay out the expression for L.y; Oy/, simplify, and substitute our
MLP expression:

L.y; Oy/ D � ln ey

e Oy

D � ln ey� Oy

D Oy � y

D '1.w1.'0.w0x/// � y

Now we want to derive the partials with respect to w1:
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and w0,
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One key observation is to note the shared term '0
1.w1.'0.w0x/// on each partial. This sharing

extends both across every neuron in a layer and across every layer in deeper networks. Note also
that the term '0.w0x/ is just x1, the activity of the first layer. This means that not only is the
computation of the partial derivatives at each layer reused, but that, if the intermediate results
from the forward pass are saved, they can be reused as part of the backward pass to compute all
of the gradient components.

It’s also useful to look back to the claim we made earlier that weights should be initial-
ized to nonidentical values. This requirement is a direct consequence of using backpropagation.
Because gradient components are distributed evenly amongst the inputs of a neuron, a network
with identically initialized weights spreads a gradient evenly across every neuron in a layer. In
other words, if every weight in a layer is initialized to the same value, backpropagation provides
no mechanism for those weights to deviate, effectively turning an n-node layer into a one-node
layer permanently. If a neural network with linear activation functions can be said to have an
illusion of depth (Section 2.1.2), then a neural network initialized to identical values has an
illusion of width.

Vanishing and Exploding Gradients As backpropagation was taking hold in the 1980s, re-
searchers noticed that while it worked very well for shallow networks of only a couple layers,
deeper networks often converged excruciatingly slowly or failed to converge at all. Over the
course of several years, the root cause of this behavior was traced to a property of backpropa-
gation, summarized neatly in Sepp Hochreiter’s thesis in 1991 [71], which describes what we
now call the vanishing gradient problem (see Figure 2.6b). The fundamental issue is that as the
gradient of the loss function propagates backward, it is multiplied by weight values at each layer.
If these weight values are less than one, the gradient shrinks exponentially (it vanishes); if they
are greater than one, it grows exponentially (it explodes).

Many solutions have been proposed over the years. Setting a hard bound on gradient values
(i.e., simply clipping any gradient larger than some threshold) solves the exploding but not the
vanishing problem. Some involved attempting to initialize the weights of a network such that the
gradient would not diverge quickly (intuitively, attempting to balance a chaotic system) [52, 65].
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The switch to using ReLU as an activation function does tend to improve things, as it allows
gradients to grow above 1, unlike saturating functions like tanh or a sigmoid [53]. Different
neural network architectures, like long short-term memory and residual networks (discussed in
Chapter 3), also are less susceptible to the vanishing gradient problem. More modern techniques
like batch normalization [76] also offer direct solutions. Ultimately, however, one of the main
contributing factors was simply the introduction of faster computational resources. The vanish-
ing gradient problem is not a hard boundary—the gradient components are still propagating;
they are simply small. With Moore’s law increasing the speed of training a neural network ex-
ponentially, many previously untrainable networks became feasible simply through brute force.
This continues to be a major factor in advancing deep learning techniques today.
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C H A P T E R 3

Methods andModels
3.1 ANOVERVIEWOFADVANCEDNEURALNETWORK

METHODS
Chapter 2 gave an introduction to the most basic type of neural network, but the field contains
a much wider array of techniques. While it is impossible to explore every type of network and
variety of algorithm, we will cover some of the more popular methods that are currently in use.
One key point to keep in mind is that these techniques do not fundamentally change what it
is possible to learn. As we saw earlier in Section 2.1.3, neural networks are already theoretically
capable of capturing any relationship. Instead, these approaches present trade-offs in order to
produce a model that is more efficient in some ways: cheaper to compute, easier to train, or
perhaps more robust to noise. Choosing which model or method to use for a problem is part of
the art of deep learning.

In reading this section, remember that this book represents a snapshot in time. The field
of deep learning is in flux, and the techniques that we introduce here are likely to be improved
and eventually replaced with others in time. That said, scientific discovery is monotonic—the
techniques of tomorrow will almost certainly be a product of the lessons of today.

3.1.1 MODELARCHITECTURES
The first area we explore is variations on the fundamental structure of a neural network. While a
multilayer perceptron is straightforward to understand and use, many applications have charac-
teristics that can be challenging for them. Changing the rules by which a network operates can
be an effective way to make learning the domain easier.

Convolutional Neural Networks In image processing and analysis tasks, one of the key hur-
dles is a wealth of input features: image and video data have a massive number of pixels to
consider, and assigning each pixel as input to a neuron means at least as many weights to train.
Doing so, however, is somewhat odd when looked at from a mathematical perspective. Essen-
tially, each pixel is being treated as a completely independent input signal from every other
pixel. In real images, this is almost never the case—nearby pixels capture pieces of the same ob-
ject or location in the real world. This strong locality characteristic implies that a neural network
might be made simpler. Indeed, conventional image-processing algorithms have long exploited
hierarchical pipelines (e.g., SIFT [100]). In 1980, Kunihiko Fukushima proposed a variant of
a neural network he called the neocognitron [48], which reused sets of neurons to detect various
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(a) Convolutional neural networks reuse small,
learned filters by sliding them across an image. The
computation is identical to a normal perceptron at
each location.

ht h0 h1 h2 ht

A A A A A

xt x0 x1 x2 xt

(b) Recurrent neural networks incorporate the
output of their neurons as inputs to capture se-
quential dependencies in input streams.

Figure 3.1: Two varieties of neural network architectures.

local features. Today, the area is dominated by convolutional neural networks (CNNs), a related
model architecture pioneered by Yann LeCun’s group at Bell labs and later NYU [89]. Intu-
itively, a CNN works by sliding a large number of small, trainable filters across an image (See
Figure 3.1a). To train a convolutional network, the same process is applied in reverse: instead
of backpropagating the loss gradient to individual neurons, we sum the gradients for every lo-
cation that the same filter visited into a single value, which is then used to update the filter’s
weights. Mathematically, the forward operation is described by convolving a small filter with
a large input image (hence the name). The backward (training) operation involves, naturally,
deconvolving the gradients using the filters in order to produce a new set of gradients for the
preceding layer. An alternate interpretation of a CNN is as a large MLP where many of the
weights in a layer are tied together in a specific pattern. In training, when a gradient update
is applied to one of these weights, it is applied to all of them. These tied (or shared) weights
correspond to a convolutional filter, and the structure with which they are connected describes
the shape of the filter. In this interpretation, the computation of a CNN can be thought of as a
compact representation of a larger MLP with identical mathematical properties.

Modern CNNs come in several varieties as well, some of which are introduced in more
depth in Section 3.2. One of the first was the five-layer “AlexNet” model, introduced in
2012 [85]. This was one of the first models to heavily rely on GPUs for training, and it brought
together several novel methods. Its real impact, however, was the attention that it drew by beat-
ing a large field of human-crafted image recognition algorithms by a significant margin in a
head-to-head competition [120]. In subsequent years, that same competition saw rapid devel-
opments in CNN design. Google researchers introduced inception networks in 2014, which
substituted groups of smaller, simpler filters to reduce computational cost while maintaining ex-
pressivity [136]. A year later, a team at Microsoft Research Asia proposed residual networks [64],
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which leveraged duplicate links across convolutional layers, an idea also independently investi-
gated by Srivastava, Greff, and Schmidthuber [129]. (Subsequent research examined the differ-
ences and relative performance of these variants [66].)

Recurrent Neural Networks Another area that causes MLPs trouble is that of domains with
input dependencies, such as speech and language. Dependencies are relationships between in-
puts that change their meaning. For instance, in the sentence “Emil to ”, filling
the first blank with “swam” implies a very restricted set of values that are likely to appear in
the second blank, whereas filling it with “learned” is associated with a completely different set.
This is complicated by the fact that these dependencies are contextual, not positional (replacing
“Emil” with “my friend” or “a man in a hat” changes which neurons see these values). Recurrent
neural networks (RNNs) are designed to deal with the sequential dependencies that often arise in
time-series inputs. An RNN is a simple idea with complicated repercussions: neurons use out-
puts as inputs in some way. In the simplest case, this might mean that a single neuron adds its
own weighted output to a new input, as in Figure 3.1b. As more inputs are processed, the neuron
produces more outputs, which are passed back into itself again and again. RNNs that operate
in this fashion are typically called unidirectional recurrent nets. Another variant involves sev-
eral neurons that exchange their outputs across time, some forward and some backward. These
bidirectional networks require the entire input stream to be processed before they can produce
output.

Two challenges arise when using recurrent networks: first, while a recurrent neuron might
be able to use output from previous inputs, it cannot easily handle long-range dependencies.
For example, imagine the sentences “ gave me a compliment. I should thank .” A
pronoun in the second blank depends directly on the subject in the first. A unidirectional RNN
would need to learn to pass on the characteristics of the subject of the phrase through many
inputs. Second, because the output of an RNN depends (directly or indirectly) on many inputs,
the normal backpropagation algorithm no longer works. The first challenge was the motivation
behind the development of a variety of recurrent neurons, the most popular of which is the long
short-term memory or LSTM developed by Hochreiter and Schmidhuber [72]. LSTM neurons
have a separate set of connections that propagate a signal to themselves and a set of “gates” that
allow new values to be set or cleared from these connections. This acts as a form of memory,
and practically speaking, LSTMs are much more effective at capturing long-range dependen-
cies. More recently, a simplified form of this neuron, the gated recurrent unit, has also proven
popular [28].

OtherModelArchitectures Various other domains have spawnedmore exotic neural network
topologies. One popular structure is the bipyramidal encoder/decoder model, which stacks two
neural networks back to back, the first that gradually reduces the size of its layer outputs and
the second that gradually increases them again. The goal of this style of network is to learn a
compact representation of an input—a projection—which can then be expanded into a more
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complex output. One direct example of this is the autoencoder. Autoencoders are symmetric
neural nets, where the input and output for each training example are the same sample. When an
autoencoder is trained, its loss function is effectively measuring how well it can recreate its input.
These networks have been applied to compression (where the intermediate representation is the
compressed object), but they can also be used for more general feature representation problems
by exploring the semantic meaning of each projected feature.

Another recent model architecture worth mention are read/write networks. Like recurrent
neural networks, read/write nets attempt to solve the problem of dependencies in inputs. Unlike
RNNs, however, the dependencies they are designed to capture are not sequential but arbitrary.
Consider the problem of sorting a sequence of numbers: while the input has some arbitrary
order, the true dependencies between values depend on their shuffled positions (a 12 should end
up adjacent to a 13, but their positions in the input are random). Read/write networks use an
auxiliary storage structure to “remember” information for later. Memory networks [141] and
neural Turing machines [54] are the two most popular examples of read/write networks.

3.1.2 SPECIALIZEDLAYERS
Even within a model, modern neural networks utilize a variety of algorithmic tricks beyond
perceptrons. Most of these tricks are described as layers, even though they may or may not
contain anything that is trainable. Keep in mind that because deep neural networks depend on
backpropagation for learning, every component that is used must be differentiable to satisfy the
chain rule.

The most popular nonneuron layer is probably pooling. Common in image-processing
tasks, pooling layers simply aggregate the outputs of neurons from one layer. The operation
itself is usually very simple: a maximum, minimum, or mean of several values. Computation-
ally, this can save an enormous amount of time and resources, since multiplicatively decimating
the number of inputs to a layer persists through later stages. In a normal MLP, this is implicit,
since a layer with fewer neurons than its predecessor naturally has fewer outputs. In a convolu-
tional neural network, where pooling is most often used, this is not the case. As a single filter is
convolved with an input, the number of outputs remains the same, since every input also corre-
sponds to the center of one location at which the filter was applied. In practice, since multiple
filters are generally used, the output of a convolutional layer would naturally be larger than its
input. Pooling takes advantage of the same locality that convolutional filters do: if a filter records
a high local response at one location, chances are that it will also have a similar response to the
inputs immediately adjacent. For example, if an early-stage filter has learned to detect a striped
pattern, its output will be consistently high over the entirety of a striped region. Intuitively, pool-
ing simply represents the aggregate signal from a region, since convolutional filters are already
intended to summarize local behavior.

Another common method is normalization. Normalization layers jointly transform the
outputs of many neurons to conform to some constraint. Typically, this is implemented as
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stretching or shifting some or all of the outputs in a layer, and it is used to keep values within a
similar range. For instance, Krizhevsky, Sutskever, and Hinton introduced a technique called lo-
cal response normalization, whichmultiplied each value by a fractional norm of its local neighbors,
which they claim improved their network’s performance on unseen inputs [85]. More recently,
a technique called batch normalization has been used to assist in training very deep neural net-
works [76]. Unlike most other normalization techniques, batch normalization transforms the
values of a layer based on the norm across several input samples during training. This idea cor-
rects for a phenomenon called internal covariate shift, which is related to a vanishing gradient
problem. As a network learns, its weight values change, which in turn shifts the scale and mean
of the gradients produced by the network. This can cause training to become unstable or inef-
ficient as gradients grow or shrink. Ioffe and Szegedy, the authors behind batch normalization,
proposed a differentiable layer that corrects for this shift while controlling the impact on the
inference behavior of the network.

3.2 REFERENCEWORKLOADS FORMODERNDEEP
LEARNING

One of the best ways to understand how deep learning algorithms work is through experimen-
tation. For the rest of this chapter, we introduce a set of reference models to explore their com-
putational characteristics. The goal is not only to supply a set of modern networks that can be
used in architecture research, but also to provide an intuition into the fundamental features that
drive their operation.

3.2.1 CRITERIA FORADEEPLEARNINGWORKLOADSUITE
ChooseMeaningfulModels The first question is how to select the right models to reflect the
state of the art. We believe this set of workloads should have three properties: representativeness,
diversity, and impact. The first is clear: our choices should reflect the best of what the deep
learning community has come up with. Since there are easily dozens of models that could rightly
claim this status, the need to keep the size of the set to a manageable number implies a need for
diversity: each model should bring something unique to the table. Finally, the third property,
impact, is the degree to which a particular technique has changed the landscape of deep learning
research. Since we cannot predict the state of the field in five years, we instead try to choose
methods that have imparted fundamental lessons to the work that came after—lessons that
continue to be relevant to future models.

Note that we do not attempt to capture pre- or postprocessing steps on either the input
data or the model’s output. Many models depend on preprocessing for robustness and generality,
but these techniques fall outside of the scope of this paper and are handled adequately by existing
benchmark suites.
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Faithfully Reproduce the OriginalWork This leads to the question of implementation. We
are lucky in that so much of the research in the deep learning community has taken place in the
open. The vast majority of research papers make a concerted effort to describe their topology
and hyperparameters in the name of reproducibility, and many groups have opted to place ref-
erence implementations online. This is because reproducing deep learning experiments can be
challenging; small changes in the choice of tuning parameters or data preparation can lead to
large differences in outcome. So in crafting implementations for our chosen models, we adopt an
existing implementation, if one is available; translate one from a different source language if not;
or create and validate an implementation using descriptions from the original paper. All eight
Fathom workloads were rewritten to adhere to a standard model interface, expose information
to our profiling tools, and remove preprocessing or extraneous logging operations.

Similar reproducibility concerns apply to data sources as well. Whenever possible, we run
our workloads using the same training and test data as the original paper. In cases where this
is not possible (i.e., where the data is proprietary), we choose another dataset used by similar
papers in the same area. So, for instance, since we cannot train Deep Speech on Baidu’s massive,
private collection of recorded utterances, we substitute the widely cited TIMIT corpus [50].

Leverage aModernDeep Learning Framework One particularly dramatic shift in the deep
learning community in the last decade has been the widespread adoption of high-level program-
ming models. These frameworks provide two main benefits: first, they abstract the underlying
hardware interface away from the programmer. High-performance code is difficult and time-
consuming to write, regardless of whether it is vectorized C++ on a CPU, or CUDA on a GPU.
Second, they provide libraries of useful kernels contributed by a variety of people, which act
as a productivity multiplier, especially in a fast-moving environment. These frameworks have
changed the development landscape, largely for the better, and it is not possible to create a
realistic set of deep learning workloads without taking them into account.

Unfortunately, using a high-level framework also raises questions, primarily, to what ex-
tent does the choice of framework matter and which one should we choose? The answer to the
former question is, perhaps surprisingly, not all that much. This is in large part due to a case of
convergent evolution amongst the most popular libraries. Consider four of the most widely used
frameworks: Torch [33], a general machine learning library written in Lua; TensorFlow [1], the
dataflow-based second generation of Google’s DistBelief system [41]; Theano [10], a symbolic
mathematics package originally from Université de Montréal; and Caffe [78], Berkeley’s deep
learning library with a JSON front end and C++ back end. All four share very similar high-level
structure, and the authors seem to have arrived at many of the same design decisions:
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• All use a simple front-end specification language, optimized for productivity.

• All use highly tuned native back-end libraries for the actual computation. For NVidia
GPUs, all four leverage the cuDNN package [26].

• Most use an application-level, “compiler-esque” optimizer (Torch does not).

• Most are declarative, domain-specific languages (only Torch is imperative).

• Most provide support for automatic differentiation (Caffe’s layers are hand implemented).

• All have some notion of a fundamental building block or primitive operation: TensorFlow
and Theano call them operations, Torch calls them modules, and Caffe uses layers.

There will undeniably be differences in the performance characteristics of a model imple-
mented in two of these libraries. However, essential traits are retained. First, the task of writing a
model in any of these frameworks consists of assembling a pipeline of primitive operations, and
most of these primitives have direct analogues in other frameworks. This similarity is so strong,
in fact, that automatic translators exist for taking a model in one framework and emitting one
in another [40, 145], and wrapper interfaces exist for automatically generating a model in sev-
eral output frameworks [29]. Second, the performance of models written in these languages are
largely dominated by the primitive operations they contain, not the overhead of the framework
that contains them. This means that regardless of how the neural network is constructed, the
performance characteristics will depend on the number, type, and organization of these oper-
ations (we show quantitative evidence of this in Section 3.3.1). Ultimately, while an argument
could be made for choosing any one of these frameworks, the decision is somewhat arbitrary
because of the similarities.

3.2.2 THEFATHOMWORKLOADS
We have assembled a collection of eight archetypal deep learning workloads, which we call
Fathom. These are not toy problems—each of these models comes from a seminal work in the
deep learning community and have either set new accuracy records on competitive datasets (e.g.,
image classification) or pushed the limits of our understanding of deep learning (e.g., agent
planning). We offer a brief description of each workload below and a summary in Table 3.1.

Sequence-to-Sequence Translation seq2seq is a recurrent neural network for solving ma-
chine translation [135]. The technique, developed at Google in 2014, uses a multilayer pipeline
of long short-term memory (LSTM) neurons to extract the meaning of a sentence and then
re-emit it in another language. The core neural network is comprised of three 7-neuron layers
through which word tokens flow unidirectionally. The model also leverages an attention-based
model for keeping track of context in the original sentence [8]. Sequence-to-sequence trans-
lation succeeded in achieving best-of-breed accuracy, but its impact is largely derived from its
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Table 3.1: The Fathom Workloads

Model Name Style Layers Learning Task

seq2seq [135]

Recurrent 7 Supervised WMT-15 [15]

Direct language-to-language sentence translation. State-of-the-art accu-

racy with a simple, language-agnostic architecture.

memnet [133]

Memory Network 3 Supervised bAbI [142]

Facebook’s memory-oriented neural system. One of two novel architec-

tures that explore a topology beyond feed-forward lattices of neurons.

speech [62]

Recurrent, Full 5 Supervised TIMIT [50]

Baidu’s speech recognition engine. Proved purely deep-learned networks 

can beat hand-tuned systems.

autoenc [84]

Full 3 Unsupervised MNIST [90]

Variational autoencoder. An effi  cient, generative model for feature learn-

ing.

residual [64]

Convolutional 34 Supervised ImageNet [42]

Image classifi er from Microsoft Research Asia. Dramatically increased the

practical depth of convolutional networks. ILSVRC 2015 winner.

vgg [125]

Convolutional, Full 19 Supervised ImageNet [42]

Image classifi er demonstrating the power of small convolutional fi lters.

ILSVRC 2014 winner.

alexnet [85]

Convolutional, Full 5 Supervised ImageNet [42]

Image classifi er. Watershed for deep learning by beating hand-tuned 

image systems at ILSVRC 2012.

deepq [107]

Convolutional, Full 5 Reinforced Atari ALE [9]

Atari-playing neural network from DeepMind. Achieves superhuman 

performance on majority of Atari2600 games, without any preconceptions.
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elegance and flexibility. It is a canonical example of a recurrent encoder-decoder model, a tech-
nique that transforms an input into a vector in high-dimensional space, called an embedding.

End-to-EndMemoryNetworks Memory networks [141] are one of two recent efforts to de-
couple state from structure in a neural network. The development of memory networks stemmed
from the difficulty that stateful neurons have in capturing long-range dependencies. Facebook’s
AI research group solved this problem by joining an indirectly addressable memory with a neural
network, resulting in a model that can explicitly store and recall information. End-to-end mem-
ory networks [133] are an extension that removes the need for type annotations on inputs and
dramatically streamlines training. The bAbI [142] question-answer dataset is a natural language
reasoning problem, in which a model must make simple logical deductions from an unordered
sequence of statements.

Deep Speech Deep Speech was Baidu Research’s attempt at a scalable speech recognition
model [62]. The model is five fully connected layers of 2,048 neurons, each with one bidirec-
tional recurrent layer. Deep Speech is a pure deep learning algorithm in that it uses spectrograms
directly as inputs and learns to transcribe phonemes (as opposed to using a hand-tuned acoustic
model or hidden markov model as a preprocessing stage). Its connectionist temporal classifica-
tion (CTC) loss function can learn from unsegmented data, significantly reducing the cost of
producing training data [55]. Deep Speech was also notable for its emphasis on efficiency: the
researchers explicitly designed the model to perform well on a GPU. We implemented the Deep
Speech architecture using smaller window and embedding sizes to account for differences in the
TIMIT dataset [50].

Variational Autoencoder Autoencoders are a flexible, unsupervised model often used for di-
mensionality reduction, feature extraction, or generating data [68].The fundamental assumption
is that there exists a compact representation of all realistic inputs (called an embedding) that can
be used to both analyze and synthesize data. Variational autoencoders, invented by Kingma and
Welling in 2013, make a statistical assumption about the properties of this embedding to learn to
efficiently reconstruct their inputs [84]. These models are somewhat unique in that they require
stochastic sampling as part of inference, not just training.

Residual Networks Residual networks were a landmark in enabling very deep neural net-
works [64]. Researchers at Microsoft Research Asia in 2015 confronted the phenomenon where
increasing the depth of a model degrades both training and validation error. Their solution was
to add additional identity connections across every pair of convolutional layers, effectively train-
ing these layers on the difference between its input and output. This tactic enabled them to train
models over 150 layers deep, almost seven times larger than the previous state of the art, and
it won them all five tracks of the 2015 ImageNet Large-Scale Visual Recognition Competition
(ILSVRC).
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VGG-19 vgg is an implementation of the 19-layer convolutional network developed by the
Visual Geometry Group at Oxford [125]. The success of AlexNet inspired deeper convolutional
networks, and VGG was one such offspring. The key insight by Simonyan and Zisserman was
that using several convolutional layers with small filters in place of a single layer with a large one
makes the network easier to train.This technique both improved accuracy (winning the ILSVRC
localization task and placing second in the classification task against a far more complex Google
entry) and dramatically reduced the number of learnable parameters.

AlexNet AlexNet [85] was a watershed event for the deep learning community. While now
overshadowed by more advanced models, the original model made several significant contri-
butions. Foremost, it demonstrated that an automatically trained neural network could surpass
hand-tuned image classifiers by a substantial margin. It also introduced dropout as a regular-
ization mechanism and showcased the computational power of GPUs. While a large portion
of the architecture community is already working with AlexNet, its inclusion adds continuity
(allowing some degree of commensurability with prior work) as well as a reference point for the
other models in Fathom.

Deep Reinforcement Learning DeepMind startled the AI community in 2013 with a deep
reinforcement learning system that learned to win dozens of Atari games solely from pixels and
scores, sometimes beating human experts [107, 108]. Unlike supervised algorithms, reinforce-
ment learning improves its behavior as it receives in-game feedback, not by observing perfect
play. The heart of the method is a convolutional network that selects actions using two to three
convolutional layers and two to three dense layers. The model circumvented historical diffi-
culties in extending neural networks to decoupled feedback with innovative strategies such as
experience replay. We leverage the same Atari emulation environment that powered the original
implementation, the Arcade Learning Environment [9].

3.3 COMPUTATIONAL INTUITIONBEHINDDEEP
LEARNING

These models are intended to be tools, and proper tools require skill and understanding to wield
them effectively. This section is meant to build the foundation of that understanding in two
ways: First, we want to provide an intuition about the behavior of deep learning workloads. It is
important to understand, for instance, where time is actually spent and what the relationships are
between a given model and the hardware on which it runs. Second, we want to supply a quanti-
tative baseline on which the community can build. There is a good deal of folklore surrounding
deep learning, and numbers are a good way to begin to dispel some of that.
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3.3.1 MEASUREMENTANDANALYSIS INADEEPLEARNING
FRAMEWORK

Working with a high-level framework like TensorFlow is a double-edged sword. On the one
hand, it is a complex, dynamically compiled, dataflow-oriented runtime system, so it causes
problems for conventional analysis tools. Profiling at the scripting-language level with a tool
like cPython is difficult because TensorFlow is declarative, so all of the actual computation is
deferred. Low-level profiling (including call-path profiling) or hardware counter instrumenta-
tion with a tool like Linux’s perf can provide detailed performance information, but it loses all
connection to the original model: a call to a low-level library routine cannot easily be assigned to
a particular layer, for instance, because those layers only exist as internal data structures. On the
other hand, TensorFlow itself makes an attractive platform for measurement. The primitive op-
erations that are used to construct a model are ideal targets for instrumentation, and a tool built
around the framework already has easy access to model information like layers and parameters,
so ascribing runtime behavior to model features is straightforward. Additionally, TensorFlow
(like many other popular deep learning frameworks) comes with some degree of built-in tracing
support. We leverage all of these features to build a set of characterization tools that focus on
capturing performance information at the model level, and we use them for all of the analyses
described in this chapter.

Because we use operations as the primary abstraction for understanding the performance
of the Fathom models, it is worth spending time to explain them more thoroughly. (Although
we only describe TensorFlow here, the principles are also applicable to the other three popular
libraries mentioned in Section 4.2 and to most production-quality deep learning frameworks
in general.) An operation is a node in the coarse-grained dataflow graph that defines a Tensor-
Flow model. It is implemented as a Python function that instructs the framework to build that
node, as well as a C++ function that either performs the calculation or calls down to a low-level
library to do so (either the Eigen linear algebra package on a CPU or the cuBLAS or cuDNN
libraries on a GPU). Operations are the smallest schedulable unit in the TensorFlow runtime,
and they double as the mechanism behind its symbolic auto-differentiation support. Examples
include functions like 2Dmatrix-matrix multiplication (MatMul), elementwise tensor exponen-
tiation (Pow), sampling from a normal distribution (StandardRandomNormal), or computing
loss function (CrossEntropy).

Decomposing models into their component operations is convenient from a performance
measurement standpoint. First, operations tend to have stable, repeatable behavior across the life
of a program. Most deep learning models use some variant of gradient descent and backprop-
agation for optimization, so programs are naturally separable on update-step boundaries (also
called minibatches for many training problems) or between inferences. Sampling the execution
time of operations across many steps allows us to quantify stability, and Figure 3.2 shows that
this distribution is stationary and has low variance. Second, most deep learning models are dom-
inated by the time spent inside their operations. Our measurements reveal that inter-operation
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overhead is minimal in TensorFlow: typically less than 1% to 2% of the total runtime is spent
outside of operations in our workloads.
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Figure 3.2: Sampling operations across the life of a program shows that their execution time is
stationary and has low variance.

Finally, our experiments are carried out on a 4G Hz Skylake i7-6700 k with 32 GB RAM
or an NVidia GeForce GTX 960, running TensorFlow v0.8, CUDA 7.0, and cuDNN 6.5-v2.
While GPUs are more popular for the performance they provide, many frameworks (Tensor-
Flow included) have incomplete support for all operations, and the fallback behavior is to run
unsupported operations on the CPU, splitting execution across the PCI bus. This causes crip-
pling performance problems, so, to avoid analysis artifacts, we opt for running most experiments
on a CPU.

3.3.2 OPERATIONTYPE PROFILING
The most basic performance question to ask about a workload is simply where the time is
spent. Many architects working on deep learning hardware already have some sense of this, but
their viewpoints are often conflicting. Some claim convolution, matrix-matrix multiplication, or
matrix-vector multiplication are the predominant kernel for deep learning. To an extent, they
are all right, but the truth is somewhat more nuanced. It depends on the model, environment,
and use case being considered.

The general intuition about a handful of operation types dominating the overall computa-
tional time is true. While it is an exaggeration to say that a workload can be reduced to a single
operation, the distribution is quite skewed, as shown in Figure 3.3. Each point on each curve
represents the cumulative contribution to execution time from a single operation type. It is clear
that a handful of “heavy” operation types (usually 5 to 15) are collectively responsible for upward
of 90% of the programs’ duration. It is important to note, however, that these types are not the
same for every model (i.e., the leftmost point on each curve may represent a different operation),
nor are they present in the same ratios or even at all. Figure 3.4 shows a more detailed view of
the time each model spends in a given operation type. (For the sake of clarity, we only include
operations with more than 1% execution time, so a given row will sum to a value somewhere
between 90% and 100%.)

Unsurprisingly, convolutional neural networks are indeed dominated by convolution, and
fully connected networks depend heavily onmatrixmultiplication.On the other hand, the break-
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Figure 3.3: Total execution time is dominated by only a handful of unique operations.
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Figure 3.4: Breakdown of execution time by operation type for each Fathom workload.

down reveals a number of less–well-understood trends. For instance, while it is usually known
that convolutional networks have gotten deeper and more expensive in recent years, it is usually
not known that this has gone hand in hand with the gradual elimination of fully connected lay-
ers. Part of the justification for including alexnet, vgg, and residual is for exactly this kind of
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longitudinal comparison: as the winners of the ILSVRC for 2012, 2014, and 2015 respectively,
they share a dataset and machine learning task, and their structures are very similar. However,
alexnet’s two layers of locally connected neurons constitute 11% of its runtime, while vgg’s
three fully connected layers consume only 7%, and residual’s single fully connected classifica-
tion layer contributes less than 1%.

We can also see the effects of intentional design trade-offs. In Hannun et al.’s paper [62]
describing Deep Speech, the authors describe their decision to eschew more complicated com-
ponents in favor of a structurally simple, easy-to-optimize network: “The complete RNNmodel...is
considerably simpler than related models from the literature—we have limited ourselves to a single re-
current layer...and we do not use Long-Short-Term-Memory (LSTM) circuits.... By using a homoge-
neous model, we have made the computation of the recurrent activations as efficient as possible.” The
evidence bears out their aims: speech is comprised almost exclusively of matrix-matrix multipli-
cation operations, and the only other significant computations are part of the CTC loss function
they require.

3.3.3 PERFORMANCE SIMILARITY
Operation type profiling also offers a means of assessing similarity between workloads. The
mechanism is straightforward: each profile (a single row in Figure 3.4) is interpreted as a vector
in high-dimensional space. Pairwise similarity can be computed using cosine similarity, and we
use the inverse form (1 �

A�B
jAjjBj

) as a distance metric. We can then use agglomerative clustering
with centroidal linkage to understand their relationships—i.e., we greedily group the closest
two vectors, compute their centroid, and repeat until we have a single, global cluster. Figure 3.5
presents a visual representation of the hierarchical clustering generated by this process.The x-axis
location of a linkage between two workloads (or two clusters of workloads) should be interpreted
as a direct measure of the cosine distance between them, so the cosine distance between the
centroid of the cluster containing seq2seq and memnet and that of speech and autoenc is
about 0.4. High-dimensional distance is not an intuitive measure, so the value “0.4” is difficult
to conceptualize, but relative distances can be understood in the normal sense: speech and
autoenc share more similar performance profiles than do seq2seq and memnet.

To a deep learning expert, this dendrogram should be fairly unsurprising.The three Image-
Net challenge networks are grouped closely, and deepq, which relies heavily on convolutional
layers, is not far off. Somewhat less intuitive is the large distance between the two recurrent
networks, speech and seq2seq. This is not an artifact: it is a consequence of actual underlying
dissimilarity. While both networks are recurrent, Deep Speech uses CTC loss and a stack of
fully connected neurons, in contrast to the stateful LSTM neurons and standard cross-entropy
loss used by the sequence-to-sequence translation model. The elementwise multiplications in
seq2seq are a result of the LSTM neurons, and the data movement operations are part of the
attention-based encoder/decoder it uses [8].
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Figure 3.5: Hierarchical similarity in the Fathom workloads. The tightly clustered lower group
includes all the convolutional networks.

3.3.4 TRAININGAND INFERENCE
The vast majority of deep learning systems use some variant of gradient descent and backprop-
agation, which can be seen as two distinct phases: in the forward phase, the model’s functions
are used to compute an output value from a given input. The model’s parameters are fixed. In
the backward or update phase, the system evaluates its output on some criteria (a loss function).
Then, for every learnable parameter in the model, the system computes the partial derivative of
the loss function with respect to that parameter. This gradient is used to adjust the model pa-
rameters to minimize the value of the loss function. Training a model requires evaluating both
the forward and backward phases, while inference requires only the latter.

Architects working on deep learning systems generally understand that a rough symmetry
exists between these two phases: most functions evaluated in the forward phase have an analogue
in the backward phase with similar performance characteristics. There are exceptions to this,
however, such as the evaluation of the loss function, which is only computed during the backward
phase. It is still a symmetric function (e.g., the softmax function and cross-entropy loss are
duals), but both parts are evaluated only during training. While this is not a revelation, it is easy
to forget the performance implications of this fact. Simple classifiers tend to have fast, cheap
loss functions, but many deep learning models do not, and this can cause a skew in both the
overall performance of training with respect to inference and the relative importance of certain
operation types.

We show the normalized training and inference runtimes for all of the Fathom workloads
in Figure 3.6. Naturally, training time is more expensive than inference across the board, but
the salient feature here is that it is variably faster. Convolutional networks tend to pay a slightly
higher cost for training because the convolutional partial gradient involves two reduction opera-
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tions in the backward phase (one for updating the filter weights and one for aggregating partials
on the activity values) and only one in the forward phase.
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Figure 3.6: The performance of training and inference relative to the training time of each
Fathom on a CPU (i.e., the lowest performance configuration). Relative performance speedups
indicate the benefits each workload has whether running on a CPU or GPU.

We also evaluate both training and inference on a GPU for comparison.1 As expected,
GPU performance is substantially higher, especially on workloads with higher skew in their
operation profile. GPUs also experience variability in the train-to-inference ratio across work-
loads, and that variability tends to be strongly correlated with that of a CPU. That is, a large
gap between training and inference times on the CPU implies a similar gap on the GPU. The
differences in absolute performance benefits can be partially attributed to the parallel scalability
of the operations involved, which we examine in the next section.

3.3.5 PARALLELISMANDOPERATIONBALANCE
Many of the most dominant operations in deep learning workloads are amenable to paral-
lelization, and nearly all of the existing work on architectural support for learning models
involves parallel hardware to some extent. The heaviest operations—convolution and matrix
multiplication—are backed by an enormous body of prior work, and it is easy to overlook the
effects of other operations. The breakdown in Figure 3.4 revealed that while the distribution of
1Running these experiments in aggregate avoids some of the detrimental effects of TensorFlow’s CPU-only operations, as
mentioned in Section 3.3.1. They are still present, but the effect here is just an underestimate of the total speedup over a
CPU, not erroneous conclusions.
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operation types is skewed, the time spent in smaller operations is not zero. As parallel resources
are applied to the network, the operation types that scale strongly begin to diminish in relative
importance, in accordance with Amdahl’s law. As a result, new operation types begin to be more
important and the profile begins to flatten out. We highlight three examples of this in Figure 3.7.
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Figure 3.7: The effect of Amdahl’s law at the application level: the benefits of parallelizing matrix
multiplication and convolution are limited by smaller, data-dependent operations in other parts
of some models.

Each of these plots shows the absolute time spent in each operation type as we increase
the amount of parallelism available within an operation (using hooks in TensorFlow to specify
the available thread pool for the underlying Eigen library). We also annotate the operation
types with their functional purpose in the deep learning model. For instance, in Figure 3.7a, the
fourth cluster shows the time spent by deepq in matrix multiplication, which is the underlying
operation behind the fourth and fifth fully connected layers in that model. In the extreme case
of zero parallelism (single-threaded execution), the time spent in the convolutional and fully
connected parts of themodel dominate the execution time to the point where no other operations
even show up in the profile. As parallelism increases to 8 threads, however, the optimizer (which
has a large number of data-dependent operations) rises to around 7% of the execution time
(which is also seen in the heatmap of Figure 3.4). A similar effect is found in the seq2seq
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model: while the LSTM neurons and attention embedding portions of the model consume an
enormous amount of time at low levels of parallelism, the loss function begins to become visible
at higher thread counts.

The end-to-end memory model in Figure 3.7c is a more complicated story. Many of the
operations in the memory layers operate on small, skinny tensors. While these operations are
frequent, they do not parallelize well (as the trip count is too low for thread-level parallelism, so
the underlying library avoids it). The elementwise multiplication is an exception (it operates on
the final outputs of the memory layer, which is a wide tensor), as is the optimizer, which updates
learning rates for a large collection of parameters simulatenously.

The lesson here is that the performance behavior of deep learning models is inextricably
tied to their application-level structure. While convolution and matrix multiplication are attrac-
tive targets for hardware support, there are limits to the benefits that can be extracted from them.
This is especially true for deep learning models with nonconvolutional layers, sophisticated loss
functions or optimization algorithms, or sparse storage.
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C H A P T E R 4

Neural Network Accelerator
Optimization: A Case Study

There are many ways to go about building custom hardware to accelerate neural networks, and
many types of networks to accelerate. In this chapter, we focus on designing and optimizing
hardware accelerators for executing inferences on fully connected neural networks. This narrow
focus allows us to provide a detailed case study. None of the methods (or the methodology)
are specific to fully connected neurons so can be applied to all other commonly used types with
varying efficacy. Moreover, while this chapter specifically concerns building hardware to speed
up inferences, other methods are available to accelerate training. The computational regularity
of inferences makes it relatively easy to design an accelerator that performs well. What makes
neural network hardware design difficult is the codesign between the hardware and neural net-
works’ unique properties. This codesign stems from neural networks’ remarkable susceptibility to
approximations of their execution meaning that rather aggressive approximations can be made
without sacrificing the model’s predictive capabilities. To properly study this codesign, a design
flow must be constructed to accurately account for approximation both at the model prediction
and hardware level.

In this chapter, we present a methodology for studying the codesign and optimization
of neural network accelerators. Specifically, we focus on Minerva [114] and walk through its
construction and intended use as a case study. Minerva is a highly automated codesign flow that
combines insights and techniques across the algorithm, architecture, and circuit layers, enabling
low-power hardware acceleration for executing highly accurate neural networks. Minerva ad-
dresses the needs of the principled approach by operating across three layers: the algorithmic,
architectural, and circuit.TheMinerva flow, outlined in Figure 4.2, first establishes a fair baseline
design by extensively exploring the neural network training and accelerator microarchitectural
design spaces, identifying an ideal neural network topology, set of weights, and accelerator im-
plementation. The resulting design is competitive with how neural network ASIC accelerators
are designed today. Minerva then applies three cross-layer optimization steps to this baseline
design, including (i) fine-grain, heterogeneous data-type quantization, (ii) dynamic operation
pruning, and (iii) algorithm-aware fault mitigation for low-voltage SRAM operation.

The enumerated optimizations presented in the case study are used to explain the process
and are implemented in Minerva today. However, Minerva is not limited to these three and
is easily extensible to include other optimizations such as weight compression [61] or binary
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networks [34]. Minerva’s multilevel approach enables researchers to quantify the model accuracy
and power, performance, and area hardware trade-offs. Before presenting Minerva in detail,
we first discuss the accuracy trade-offs in neural network accelerators and the importance of
bounding approximations, and we propose a rigorous way to do so.

4.1 NEURALNETWORKSANDTHE SIMPLICITYWALL
Neural networks, for the most part, have all the properties of a workload extremely amenable to
hardware acceleration. Consider the two prototypical neuron types: fully connected and convo-
lutional. In both styles, the loop trip-counts are statically defined and govern all control flow and
memory access patterns. This means that very few resources are needed for control and little to
no speculation is required to achieve high performance. Moreover, knowing all memory accesses
statically enables laying out memory optimally such that maximal parallelism can be extracted.
These properties make neural networks ideal workloads for hardware acceleration. The potential
for acceleration in addition to the workload’s popularity has spurred researchers and engineers
to quantify the performance improvements and energy savings of building such devices.

While the advances have been fantastic, further progress is inhibited by the simplicity of
the workload. If we look at a breakdown of where the cycles of these models are being spent
(see Chapter 3), we find that almost all the time is spent executing matrix-multiplication and
convolutions—well-understood operations commonly considered for acceleration. There is still
more research required to understand how to best fine-tune architectures to manage data move-
ment and memory systems. This will be especially true as more exotic neuron styles mature.

We call this phenomenon the Simplicity Wall, and it is reached once all safe optimizations
have been applied. A safe optimization is one that can be applied without restraint to improve
hardware efficiency without compromising the model’s, or more generally the workload’s, accu-
racy. Examples of this would be optimizing the memory hierarchy or multiplier implementation
as neither affect the result of the computation.

One way to overcome the Simplicity Wall is to approximate computation. In general,
algorithmic approximations can result in substantial energy savings, e.g., [121]. Neural networks
in particular provide unprecedented potential for approximation, so much so that every year
dozens of publications cover the topic alone. We call all optimizations that alter the definition
of the neural network model unsafe and further argue that to get beyond the Simplicity Wall,
unsafe optimizations are necessary.

4.1.1 BEYONDTHEWALL: BOUNDINGUNSAFEOPTIMIZATIONS
It is important to note the difference between unsafe optimizations and approximate comput-
ing. All unsafe optimizations could be used as approximate computing techniques. However, a
distinction is made as to whether or not the optimization has a notable impact on the output.
In general, this is a very difficult metric to quantify as “notable” is open to interpretation. With
respect to neural networks, we propose a general, quantitative measure. Any approximation ex-
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Figure 4.1: By training the same network using many random initial conditions, we can measure
the intrinsic error variation in its converged state. All our optimizations are designed to have an
accuracy degradation below this threshold, so their effects are indistinguishable from noise. This
is the network used for the case study, which assumes an ITN of 1 error bound.

ceeding the metric is said to be approximate as the hardware improvements come at the expense
of model accuracy; conversely, as long as the optimization’s impact is below the threshold, it is
still considered unsafe, but not approximate.

We call this metric Iso-Training Noise (ITN), and it is a computable score that quantifies
how well an approximated model performs relative to the algorithmically correct one. It works
by measuring the training noise inherent in all neural networks. The measurement is taken by
training the exact same network (i.e., a network with fixed hyperparameters) multiple times
using a different initial set of weight values (derived by using different initial random seeds). An
example of this is shown in Figure 4.1. Once each uniquely seeded network has converged, a
distribution of test error can be calculated as well as the standard deviations away from the mean
across all trained models. The ITN measures implicit noise in a particular model by measuring
how noisy it is in its converged state. The noise is quantified by computing standard deviations
from the mean, and these are used as bounds for unsafe optimizations. ITN standard deviations
are appropriate as the metric can be interpreted in this way: as long as unsafe optimizations do
not exceed the bound, the unsafe optimization affects the model no more than using a different
initial state.

The reason these distinctions and metrics are so important is that model accuracy is the
entire reason that neural networks are relevant today. Were it not for their ability to solve dif-
ficult classification and regression problems, they would be irrelevant. This is the motivation
for developing the metric and harping on the distinction between unsafe optimizations and ap-
proximate computing—if computational efficiency is gained at the expense of model fidelity,
the optimization is too aggressive and the result of the computation is likely useless. However,
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because these are stochastic methods and there is noise, we believe working within an ITN of
1 is applicable (i.e., the optimizations impact model error no more than 1 standard deviation
from the mean). There may be situations where aggressive unsafe optimizations are tolerable;
in such cases, ITN is still applicable as researchers can report how far off an optimized model
is from the mean. Irrespective of the use case, all unsafe optimizations demand better methods
for evaluation. ITN provides a method for neural networks.

4.2 MINERVA: ATHREE-PRONGEDAPPROACH

Research on designing and optimizing neural network accelerators requires multiple tools. To
consider unsafe optimizations as discussed above, methods for working at the algorithmic to
circuit layers are needed. For example, consider studying the utility of using fixed-point rather
than floating-point data types, a commonly used unsafe optimization found in nearly all infer-
ence neural network accelerators today. First, we require a way to train models and manipulate
them to understand the impact various fixed-point types have on accuracy.1 Second, we need
a means of quickly studying the power, performance, and area trade-offs of the various design
options. Third, we need a way to characterize hardware components such that they can be used
in higher level models (e.g., multiplier and SRAM costs of different fixed-point precisions). By
properly combining these three tools, one for each need, researchers can rapidly explore design
decisions to optimize for both high performance and model accuracy together.

The proposed design methodology works across three layers of the compute stack. At the
highest level, a software model trains neural networks and emulates the impact of the optimiza-
tions on the model. Underneath the software level is an architectural simulation level. This level
is used to quickly estimate power, performance, and area numbers for the hardware designs be-
ing studied in the software level. Architectural simulators take considerably longer to run than
the software emulation frameworks but provide a relatively quick answer to how well the design
is performing. Finally, the circuit and CAD layer is used to characterize and build libraries of
hardware to be used at higher levels of abstraction. In addition, this layer can be used to validate
simulation results or prototype the design in actual hardware (FPGA or ASIC).

Minerva is an implementation of this approach. Minerva uses the Keras machine learn-
ing library to train and manipulate neural networks, the Aladdin accelerator simulator to rapidly
generate hardware estimates, and Design Compiler and PrimeTime to characterize model li-
braries and validate simulation results. Operating across three layers, Minerva is a five-stage
optimization pipeline. The first two stages establish a baseline accelerator and only consider safe
optimizations, and the last three consist of unsafe optimizations to reduce power and area.

1We note that while floating-point precision is in fact an approximation of true numbers, we are assuming it is algorithmically
correct as it is the baseline ubiquitously assumed in neural network research.
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Minerva and this chapter specifically focus on building inference accelerators. Paying at-
tention to and discussing training help us find a proper baseline model for which to build an
accelerator. While many off-the-shelf models exist, we believe that, looking forward, the
optimal solutions will come from codesigning neural network hyperparameters with the
microarchitectures on which they execute.

Software Level: Keras To understand how each Minerva stage affects prediction accuracy,
Minerva uses a software model built on top of the Keras [29] machine learning library. This
GPU-accelerated code enables us to explore the large hyperparameter space in Stage 1. To eval-
uate the optimizations, we augment Keras with a software model for each technique. Evaluating
fixed-point types in Stage 3 was done by building a fixed-point arithmetic emulation library and
wrapping native types with quantization calls. To prune insignificant activations (Stage 4), a
thresholding operation is added to the activation function of each neural network layer. This
function checks each activity value and zeros all activations below the threshold, removing them
from the prediction computation. To study faults in neural network weights (Stage 5), we built a
fault injection framework around Keras. Before making predictions, the framework uses a fault
distribution, derived from SPICE simulations for low-voltage SRAMs, to randomly mutate
model weights. If a user wishes to add an unsafe optimization, it needs to be implemented in
the software model.

Architecture Level: Aladdin Stage 2 of Minerva automates a large design space exploration
of microarchitectural parameters used to design an inference accelerator for the network found in
stage 1 (e.g., loop level parallelism, memory bandwidth, clock frequency, etc.) in order to settle
on a Pareto-optimal starting point for further optimizations. The accelerator design space that
Minerva can explore is vast, easily exceeding several thousand points. To exhaustively explore
this space, we rely on Aladdin, a cycle-accurate, power, performance, and area (PPA) accelerator
simulator [123].

To model the optimizations in Stages 3 to 5, Aladdin is extended in the following ways:
First, fixed-point data types are modeled by adding support for variable types wherein each
variable and array in the C-code is tagged to specify its precision. Second, Aladdin interprets
these annotations by mapping them to characterized PPA libraries to apply appropriate costs.
Overheads such as additional comparators associated with operation pruning and SRAM fault
detection were modeled by inserting code that is representative of the overhead into the input
C-code. The benefits of operation pruning are informed by the Keras software model that tracks
each elided neuronal MAC operation. This information is relayed to Aladdin and used during
an added activity trace postprocessing stage where each skipped operation is removed to model
dynamic power savings. To model power with respect to reduced SRAM voltages, Aladdin’s
nominal SRAM libraries are replaced with the corresponding low-voltage libraries.
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Circuit Level: EDA To achieve accurate results, Aladdin requires detailed PPA hardware
characterization to be fed into its models as represented by the arrows from the circuit to archi-
tecture levels in Figure 4.2. Aladdin PPA characterization libraries are built using PrimePower
for all datapath elements needed to simulate neural network accelerators with commercial stan-
dard cell libraries in 40 nm CMOS. For SRAM modeling, we use SPICE simulations with
foundry-supplied memory compilers. Included in the PPA characterization are the fixed-point
types (for Stage 3) and reduced voltage SRAMs (for Stage 5). Fault distributions corresponding
to each SRAM voltage reduction step are modeled using Monte Carlo SPICE simulation with
10,000 samples, similar to the methodology of [3].

Dataset

Training Space
Exploration

Accelerator
Design

Exploration
Data Type

Quantization
Operation
Pruning

Full
Mitigation

Chip
Layout

Accuracy
Analysis

HW PPA
Models

HW PPA
Models

Data
Types

Pruning
Statistics

Fixed-Point
Datapath & SRAM

Fault
Tolerance

Fault & Voltage
Models

HW PPA
Models

Accuracy
Analysis

Accuracy
Analysis

Optimized
uArch

Baseline
uArch

Machine
Learning
(Keras)

Architecture
(Aladdin)

Circuits
(EDA)

Baseline Design Design Optimizations

Validation

1 2 3 4 5

Figure 4.2: The five stages of Minerva. Analysis details for each stage and the tool-chain are
presented in Section 4.2.

We validate PPA estimates for Minerva’s optimized design (Stage 5 output) by compar-
ing this design to a fully place-and-routed implementation (using Cadence SoC Encounter)
of hand-written RTL informed by the parameters determined by Aladdin. The power dissipa-
tion of the accelerator is dominated by datapath and memory elements, which Aladdin models
accurately using the detailed PPA libraries. Validation results from [114] show that Aladdin
estimates are within 12% of a fully place-and-routed design.

Note that the simulation error in Aladdin is completely orthogonal to the neural network’s
prediction error. Network accuracy is computed entirely by the software layer; Aladdin is com-
pletely unaware of its existence. Aladdin models the PPA of the workload, and the error here at
the architectural level is between simulation results and real hardware.
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4.3 ESTABLISHINGABASELINE: SAFEOPTIMIZATIONS

In this section, we present the first two stages of Minerva.

4.3.1 TRAININGSPACEEXPLORATION
To begin, we must settle on a network and train a set of weights. There are two ways of doing
this: One option is to take a network from a previous work and either download the weights
directly or retrain them based on a given set of hyperparameters. The other option is to search
the training space. The advantage of training our own model is that we have the power to select
a network that fits our exact needs; as many network topologies are also capable of achieving
near state-of-the-art accuracy, this also ensures we are starting from a fair baseline—otherwise
the optimizations could be starting with an artificially large network, and the optimization gains
could be inflated as they are mostly whittling down artificial network bloat.

While a training space search becomes intractable for large problems (which require large
networks and take a long time to train), we believe that moving forward, bringing training
into the hardware design loop is necessary. To be able to train for certain network properties
intentionally—rather than simply working with fixed, unaware models—promises to offer more
optimization opportunities. Also, as the optimizations and tuning become more complex, it be-
comes increasingly difficult for humans to reason about parameter settings and inter-parameter
relationships. As an example, consider the challenge of tuning various regularization factors, the
number of neurons per layer, and datatypes to both maximize the model’s accuracy and minimize
its energy consumption. Other machine learning techniques are looking to solve this problem;
these methods are beyond the scope of this book. See recent examples in [67, 115].

Hyperparameter Space Exploration The first stage of Minerva explores the neural network
training space, identifying hyperparameters that provide optimal predictive capabilities. If the
user chooses not to explore the training space, this process can be skipped by simply specifying a
particular network and set of weights. To explore the hyperparameter space, Minerva considers
the number of hidden layers, number of nodes per layer, and L1/L2 weight regularization penal-
ties. The parameters considered are limited, not by Minerva but by what the software framework
supports and what the user is interested in sweeping. For example, it is trivial to add hyperpa-
rameters like Dropout rate [69] and vary the activation function; this would give a richer space
but require more training cycles.

Minerva then trains a neural network for each point and selects the one with the lowest
prediction error and number of parameters. The weights for the trained network are then fixed
and used for all subsequent experiments. Figure 4.3 plots the resulting prediction errors as a
function of the number of network weights for MNIST. Larger networks often have smaller
predictive error. However, beyond a certain point, the resources required to store the weights
dominate the marginal increase in prediction error.



50 4. NEURALNETWORKACCELERATOROPTIMIZATION: ACASE STUDY

6

5

4

3

2

1
0 200 K 400 K 600 K 800 K

Total Number of DNN Weights

P
re

d
ic

ti
on

 E
rr

or
 (

%
)

Figure 4.3: Each point is a uniquely trained MNIST neural network. The black line indicates the
Pareto frontier, minimizing neural network weights and prediction error. The red dot indicates
the chosen network. Parameters swept: 3 to 5 hidden layers, 32 to 512 nodes per layer, and
L1/L2 weight parameters from 0 to 10�6.

By conducting a sweep, the user has an opportunity to trade off, at a fine-grain, the initial
network size and error. For example, a neural network with three hidden layers and 256 nodes
per layer requires roughly 1.3 MB of storage, while a network with 512 nodes per layer requires
3.6 MB (assuming 4 byte weights). This 2.8� storage increase only improves absolute model
accuracy 0.05%. The red dot in Figure 4.3 corresponds to an optimal network that balances
memory requirements versus incremental accuracy improvements. The resulting network has a
prediction error of 1.4%. See selected neural network hyperparameter settings for MNIST and
other datasets in Table 4.1.

4.3.2 ACCELERATORDESIGN SPACE
The second stage of Minerva takes the selected and trained neural network from Stage 1 and
searches the accelerator microarchitectural design space for high-performing designs. Evaluat-
ing the accelerator design space entails generating and evaluating thousands of unique acceler-
ator implementations, all capable of executing the same neural network. To explore the space
efficiently, Minerva uses Aladdin and ultimately yields a power-performance Pareto frontier.
From the frontier, users are free to select whichever design meets their specifications. Note that
because Minerva reduces power by around an order of magnitude, a user may want to select a
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Table 4.1: Application datasets, hyperparameters, and prediction error

Dataset Hyperparameters Error (%)

Name Inputs Outputs Topology Params L1 L2 Literature Minerva σ

MNIST 784 10 256×256×256 334 K 10-5 10-5 0.21 [139] 1.4 0.14

Forest 54 8 128×512×128 139 K 0 10-2 29.42 [11] 28.87 2.7

Reuters 2837 52 128×64×512 430 K 10-5 10-3 13.00 [16] 5.30 1.0

WebKB 3418 4 128×32×128 446 K 10-6 10-2 14.18 [16] 9.89 0.71

20NG 21979 20 64×64×256 1.43 M 10-4 1 17.16 [16] 17.8 1.4

point above their power budget knowing that the optimizations will bring it down to maximize
performance. This design is taken as the baseline and is indicative of how neural network accel-
erators are built today. Note that all presented efficiency gains are with respect to this baseline,
not a CPU or GPU. We feel that, as a large body of related work already exists outlining the
benefits of specialized hardware for machine learning, using an accelerator as a baseline makes
more sense. This is especially true with respect to the constrained embedded and IoT devices,
which are largely the target of the Minerva optimizations.

The high-level neural network accelerator architecture is shown in Figure 4.4a, represent-
ing themachine specified by the description fed to Aladdin.The accelerator consists of memories
for input vectors, weights, and activations as well as multiple datapath lanes that perform neuron
computations. Figure 4.5 shows the layout of a single datapath lane, consisting of two operand
fetch stages (F1 and F2), a MAC stage (M), a linear rectifier activation function unit (A), and
an activation writeback (WB) stage. The parts in black are optimized by Aladdin to consider dif-
ferent combinations of intra-neuron parallelism (i.e., parallelism and pipelining of per-neuron
calculations), internal SRAM bandwidth for weights and activations (F1 and F2), and the num-
ber of parallel MAC operations (M). These features, in addition to inter-neuron parallelism (i.e.,
how many neurons are computed in parallel), collectively describe a single design point in the
design space shown in Figure 4.4b. The red wires and boxes in Figure 4.5 denote additional logic
needed to accommodate the Minerva optimizations.

The results of the design space exploration are shown in Figure 4.4b. Each point in the
figure is a unique accelerator design, and the red dots indicate the design points along the power-
performance Pareto frontier. The area and energy consumed by each of these Pareto design
points is further shown in Figure 4.4c. The neural network kernel is embarrassingly parallel
within a single layer, and the bottleneck to performance- and energy-scaling quickly becomes
memory bandwidth. To supply bandwidth, the SRAMs must be heavily partitioned into smaller
memories, but once the minimum SRAM design granularity is reached, additional partitioning
becomes wasteful as there is more total capacity than data to store. This scaling effect levies
a heavy area penalty against excessively parallel designs and provides little significant energy
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Figure 4.5: The microarchitecture of a single datapath lane. Modifications needed for optimiza-
tions are shown in red.

improvement, as seen in the most parallel designs, on the left side of Figure 4.4c. The baseline,
indicated as the “Optimal Design” in Figure 4.4c, is a balance between the steep area increase
from excessive SRAMpartitioning versus the energy reduction of parallel hardware. Under these
constraints, the chosen design maximizes performance and minimizes power.

This baseline design is taken to be representative of how neural network accelerators are
built today, considering only safe optimizations. There are additional safe optimization tricks
(e.g., input batching for increased locality) as well as different architectures (e.g., dataflow [23]).
These optimizations are also amenable to unsafe optimizations and could be considered by mod-
eling them in Minerva.
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4.4 LOW-POWERNEURALNETWORKACCELERATORS:
UNSAFEOPTIMIZATIONS

We now apply unsafe optimizations to our baseline accelerator. First, we need to bound the
model error by computing the ITN.

BoundingPredictionError Minervamodifies the calculations performed by the original neu-
ral network in order to optimize power and chip area for the resulting hardware accelerator. This
comes with the possibility of a small increase in prediction error. To maintain neural network ac-
curacy, we constrain the cumulative error increase from all Minerva optimizations to be smaller
than the intrinsic variation of the training process. This interval is not deterministic, but sen-
sitive to randomness from both the initialization of the pretraining weights and the stochastic
gradient descent (SGD) algorithm. This is an example of how we compute the ITN metric.

Figure 4.1 shows the average prediction error and a corresponding confidence interval,
denoted by ˙1 standard deviations, obtained across 50 unique training runs of networks with
the same hyperparameters. We use these confidence intervals to determine the acceptable upper
bound on prediction error increase due to Minerva optimizations. For MNIST, the interval is
˙0:14%. Table 4.1 enumerates the intervals for the other datasets. As mentioned before, we are
not interested in sacrificing accuracy. If the application domain is tolerant to some less accurate
model, ITN is still a useful metric to report as it provides context as to how much the model is
being approximated in a rigorous way.

4.4.1 DATATYPEQUANTIZATION
Stage 3 of Minerva aggressively optimizes neural network bitwidths. The use of optimized data
types is a key advantage that allows accelerators to achieve better computational efficiency than
general-purpose programmable machines. Prior work demonstrates that neural networks are
amenable to fixed-point data types (see the survey for a thorough treatment of related work).
Minerva offers researchers a method to understand the extent to which neural network variables
can be quantized and automatically quantifies the bits-per-type vs. model accuracy trade-off.
Additionally, we note that while many choose to use a single, global data type for design sim-
plicity, this is an unnecessary and conservative assumption, resulting in data type bloat and inef-
ficiencies. The use of fine-grained, per-type, per-layer optimizations significantly reduce power
and resource demands.

Fixed-Point Datapath Design Figure 4.5 identifies three distinct signals that Minerva
quantizes independently: xj .k � 1/, neuron activity (SRAM); wj;i .k/, the network’s weights
(SRAM); and the product wj;i .k/ � xj .k � 1/, an intermediate value that determines the multi-
plier width. The notation Qm:n describes a fixed-point type of m integer bits (including the sign
bit) and n fractional bits (i.e., bits to the right of the binary point). For each independent signal,
we consider a separate fixed-point representation, named accordingly: QX

m:n, QW
m:n, and QP

m:n.
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Optimized Fixed-Point Bitwidths The conventional approach to using fixed-point types in
neural networks is to select a single, convenient bitwidth (typically 16 bits [18, 88]) and verify
that the prediction error is within some margin of the original floating-point implementation.
To improve upon this approach, Minerva considers all possible combinations and granulates of
m and n for each signal within each network layer, independently.

Figure 4.6 presents the resulting number of bits (m C n) from fine-grained bitwidth tun-
ing for each signal on a per-layer basis for MNIST. The required number of bits is computed
by iteratively reducing the width, starting from a baseline type of Q6:10 for all signals (shown
in Figure 4.6 as Baseline), and running the Keras SW models to measure prediction error. The
minimum number of bits required is set to be the point at which reducing the precision by 1 bit
(in either the integer or fraction) exceeds MNIST’s error confidence interval of ˙0:14%.
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Figure 4.6: Minimum precision requirements for each datapath signal while preserving model
accuracy within our established error bound.

The datapath lanes process the neural network graph sequentially, in a time-multiplexed
fashion. Hence, even though per-layer optimization provides the potential for further width
reductions, all datapath types are set to the largest per-type requirement (e.g., all weights are
8 bits). While this may seem wasteful, it is in fact the optimal design decision. With respect
to weight SRAM word sizes, the savings from removing one to two additional bits saves 11%
power and 15% area but requires a larger number of unique SRAMs. Instantiating two different
word-sized SRAMs tailored to each layer, as opposed to having a single 8 bit word SRAM,
results in a 19% increase in area. In a similar vein, it is difficult to modify the MAC stage logic
to allow such fine-grained reconfiguration without incurring additional overheads.

Using per-type values of QW
2:6, QX

2:4, and QP
2:7 provides a power saving of 1.6� forMNIST

and an average of 1.5� across all datasets compared to a traditional, global, fixed-point type of
Q6:10 as used in [18].
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4.4.2 SELECTIVEOPERATIONPRUNING
Stage 4 of Minerva reduces the number of edges that must be processed in the dataflow graph.
Using empirical analysis of neuron activity, we show that by eliminating operations involving
small activity values, the number of weight read and MAC operations can be drastically reduced
without impacting prediction accuracy.

Analysis of Neural Network Activations Figure 4.7 shows a histogram of neuron activations
over all of the test vectors for the MNIST dataset. Immediately visible is the overwhelming
number of zero- and near-zero values. Mathematically, zero-valued activations are ineffective:
guaranteed to have no impact on prediction error. Skipping operations involving these values can
save power both from avoided multiplications and SRAM accesses. Intuitively, it also stands to
reason that many near-zero values have no measurable impact on prediction error. Thus, if we
loosen the definition of “insignificant” to encompass this large population of small values, we
stand to gain additional power savings with no accuracy penalty.
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Figure 4.7: Analysis of neuron activations and sensitivity of prediction error to pruning.

Stage 4 quantifies the relationship between activity value and overall error. Our software
model elides operations involving any neuron activity below a given threshold and evaluates the
network as if those activations were zero. The resulting curves in Figure 4.7 show that even if
we remove all activations with a magnitude of less than 1.05, the overall prediction error is un-
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affected. The green pruned-operation curve tracks the cumulative number of activations smaller
than a given value. A threshold value of 1.05 is larger than approximately 75% of activations,
meaning we can safely prune three out of every four MAC and SRAM read operations.

While this may sound surprising, there is some intuition behind this phenomenon. Rec-
tifier activation functions eliminate negative products, so we should expect approximately half
of the internal activity values to be zero from this effect alone. This is largely responsible for
the high number of operations pruned even with a threshold close to zero (the y-intercept of
the pruned-operations curve in Figure 4.7). Additionally, neural networks based on rectifier ac-
tivation functions are known to grow increasingly sparse with deeper topologies as a result of
successive decimation [53]. The combination of these effects results in a remarkable number of
insignificant operations. In addition to quantization, selective pruning further reduces power
1.9� for MNIST and an average of 2.0� over all datasets.

Predicating on InsignificantOperations The sparsity patterns in the activations is a dynamic
function of the input data vector. As such, it is not possible to determine a priori which oper-
ations can be pruned. Therefore, it is necessary to inspect the neuron activations as they are
read from SRAM and dynamically predicate MAC operations for small values. To achieve this,
the datapath lane (Figure 4.5) splits the fetch operations over two stages. F1 reads the current
neuron activation (xj .k � 1/) from SRAM and compares it to the per-layer threshold (�.k/) to
generate a flag bit, zj .k/, which indicates if the operation can be skipped. Subsequently, F2 uses
the zj .k/ flag to predicate the SRAM weight read (Wij .k/) and stall the following MAC (M),
using clock-gating to reduce the dynamic power of the datapath lane. The hardware overhead
for splitting the fetch operations, an additional pipeline stage, and a comparator, are negligible.

4.4.3 SRAMFAULTMITIGATION
The final stage of Minerva optimizes SRAM power by reducing the supply voltage. While the
power savings are significant, lowering SRAM voltages causes an exponential increase in the
bitcell fault rate. We only consider reducing SRAM voltages, and not the datapath, as they ac-
count for the vast majority of the remaining accelerator power. To enable robust SRAM scaling,
we present novel codesigned fault-mitigation techniques.

SRAM Supply Voltage Scaling Scaling SRAM voltages is challenging due to the low noise
margin circuits used in SRAMs, including ratioed logic in the bitcell, domino logic in the bitline
operation, and various self-timed circuits. Figure 4.8 shows SPICE simulation results for SRAM
power consumption and corresponding bitcell fault rates when scaling the supply voltage of a
16 KB SRAM array in 40 nm CMOS. The fault rate curve indicates the probability of a single
bit error in the SRAM array. This data was generated using Monte Carlo simulation with 10,000
samples at each voltage step to model process variation effects, similar to the analysis in [3] but
with a modern technology.
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Figure 4.8: SRAM supply voltage scaling trends for fault rate and power dissipation.

SRAM power decreases quadratically as voltage scales down while the probability of any
bitcell failing increases exponentially. If we target an operating voltage of 0.7 V, we could ap-
proximately halve the power consumption of the SRAM and, according to Figure 4.8, operate
with seemingly negligible fault probability. However, many practical effects make this fault rate
far higher than the ideal case, including process variation, voltage noise, temperature, and aging
effects. As a result, it is important to be able to tolerate fault rates beyond this point.

SRAM Fault Detection A number of techniques have been described to detect faults aris-
ing from voltage scaling, including parity bits [77], Razor double-sampling [38, 86], Razor
transition-detection [14], and various canary circuits [113]. A single parity bit enables fault de-
tection simply by inspecting the read SRAM data. In contrast, Razor and canary circuits provide
fault detection by monitoring delays in the circuits. None of these solutions correct suspected-
faulty SRAM data but instead indicate when a fault may have occurred. The overheads of these
fault detection methods vary relative to the protection provided. Parity can only detect an odd
number of errors and provides no information as to which bit(s) in the word the fault(s) may
have affected. In the case of neural network accelerators, the word sizes are relatively small
(Section 4.4.1); the overhead of a single parity bit is approximately 11% area and 9% power
(compared to the nominal voltage). Thus, anything more than a single bit is prohibitive.

In this work, we instead employ the Razor double-sampling method for fault detection.
Unlike parity, Razor monitors each column of the array individually, which provides two key
advantages: (1) there is no limit on the number of faults that can be detected, and (2) infor-
mation is available on which bit(s) are affected. The relative overheads for Razor SRAM fault
detection are modeled in our single-port weight arrays as 12.8% and 0.3% for power and area
respectively [86]. This overhead is modeled in the SRAM characterization used by Aladdin.
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MitigatingFaults inNeuralNetworks Razor SRAMs provide fault detection, not correction.
Correction mechanisms require additional consideration and are built on top of detection tech-
niques. In fault-tolerant CPU applications, a typical correctionmechanism is to recompute using
checkpoint and replay [13, 14, 39], a capability specific to the sophisticated control-plane logic
of a CPU employing pipeline speculation. In an accelerator, implementing replay mechanisms
incurs significant, and in this case unnecessary, overheads. To avoid this, we use a lightweight
approach that does not reproduce the original data but instead attempts to mitigate the impact of
intermittent bit-flips to the neural network’s model accuracy. This is reminiscent of an approach
studied for fault-tolerant DSP accelerators [143].

We extend the Keras neural network model to study the impact of SRAM faults incurred
from low-voltage operation on prediction accuracy. Faults are modeled as random bit-flips in
the weight matrix (w). Figure 4.9 shows how these faults result in degraded prediction accuracy
as an exponential function of fault probability. Figure 4.9a shows weight fault tolerance without
any protection mechanism; here, even at relatively small fault probabilities (< 10�4), the predic-
tion error exceeds our established error bound of ITN 1. Once the fault rate goes above 10�3,
the model is completely random with 90% prediction error. This result intuitively follows from
the observations regarding the sparsity of the network activity in the previous section—if the
majority of neuron outputs are zero, a fault that flips a high-order bit can have a catastrophic
affect on the classification.
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Figure 4.9: The sensitivity of weight matrices to proposed fault-mitigation techniques. The fig-
ures show the impact faults have on accuracy when mitigating faults with (a) no mask, (b) word
masking, and (c) bit masking. The vertical dashed lines correspond to the maximum tolerable
fault rate that satisfies our 0.14% absolute increase to prediction error bound.

To prevent prediction accuracy degradation, we combine Razor fault detection withmech-
anisms to mask data toward zero when faults are detected at the circuit level. Masking can be
performed at two different granularities: word masking (when a fault is detected, all the bits of
the word are set to zero) and bit masking (any bits that experience faults are replaced with the
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sign bit). This achieves a similar effect to rounding the bit position toward zero. Figure 4.10
gives a simple illustration of word-masking and bit-masking fault mitigation.

Figure 4.10 illustrates the benefits of masking. Masking the whole word to zero on a fault
is equivalent to removing an edge from the neural network graph, preventing fault propagation.
However, there is an associated second-order effect of neuron activity being inhibited by word
masking when a fault coincides with a large activity in the preceding layer. Compared to no
protection, word masking is able to tolerate an order of magnitude more bitcell faults.

Sign Bit LSB

Original Data

Fault Pattern

Corrupt Data

Word Masking Bit Masking

Figure 4.10: Illustration of word-masking (faulty weights set to zero) and bit-masking (faulty
bits set to sign bit) fault-mitigation techniques.

By masking only the affected bit(s) rather than the whole word, bit masking (Figure 4.9c)
is the strongest solution. Bit masking limits error propagation through the fully connected net-
work of a neural network, and its bias toward zero complements the natural sparsity of ReLU-
activated networks. The combination of Razor fault detection and bit-masking fault mitigation
allows the weight SRAMs to tolerate 44� more faults than word masking. With bit masking,
4.4% of SRAM bitcells can fault without loss of prediction error. This level of fault tolerance
allows us to confidently drop our SRAM supply voltage by more than 200 mV, reducing overall
power consumption of the accelerator by an additional 2.7� on average and 2.5� for MNIST.

HW Modifications for Mitigation Bit masking requires modifications to the weight fetch
stage (F2) of the datapath lane, as illustrated in Figure 4.5. The Razor SRAM provides flags to
indicate a potential fault for each column of the array, which are used to mask bits in the data,
replacing them with the sign bit using a row of two-input multiplexers. The flag bits are prone
to metastability because (by definition) timing will not be met in the case of a fault. However,
metastability is not a significant concern as the error flags only fan out into datapath logic, as
opposed to control logic, which can be problematic. The flags are also somewhat late to arrive,
which is accommodated by placing the multiplexers at the end of the F2 stage (Figure 4.5).
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4.5 DISCUSSION
Up to this point, we have focused only on MNIST for clarity in the presentation of the Minerva
design flow and optimizations. In this section, we demonstrate the generality of Minerva by
considering four additional datasets; each is run through the Minerva design flow described in
Sections 4.3.1 to 4.4.3.

Datasets Evaluated To demonstrate the generality of Minerva and the unsafe optimizations
considered, we consider four additional classification datasets:2 (1) MNIST : images of hand-
written digits from 0 to 9 [90]; (2) Forest: cartographic observations for classifying the forest
cover type [11]; (3) Reuters-21578 (Distribution 1.0): news articles for text categorization [16,
92]; (4) WebKB: web pages from different universities [36]; (5) 20NG: newsgroup posts for text
classification and text clustering [79].

Figure 4.11 presents the resulting accelerator designs, indicating the power reduction of
each with respect to each optimization stage. On average, Minerva-generated neural network
accelerators dissipate 8.1� less power, operating at the 10 s rather than 100 s of mWs. While the
overall power reduction for each dataset is similar, the relative benefits from each optimization
differ. For example, MNIST benefits more from quantization (1.6�) than WebKB (1.5�), while
WebKB is far more amenable to operation pruning—2.3� vs. MNIST’s 1.9�. This is caused by
differences in the application domain and input vectors.
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Figure 4.11: Results from applying the Minerva design flow to five application datasets to in-
vestigate generality. Each successive optimization ensures that the compounding error does not
exceed the established threshold. The bars labeled ROM show the benefit of full customiza-
tion, wherein weights are stored in ROMs rather than SRAMs. Those that are labeled “Pro-
grammable” show the overhead each dataset incurs when an accelerator is designed to handle
all five datasets.

Balancing Specialization and Flexibility With Minerva, we are able to consider the trade-
offs of building a fully optimized accelerator capable of performing only one function against
2When choosing these datasets, Fathom was not available. We chose datasets we believed best represented a broad class of
problems of interest to the IoT and embedded space.
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building a programmable accelerator able to run any of the datasets using our assumed network
topologies. In Figure 4.11, the bars labeled ROM indicate the power saved when the weights
are stored using ROM instead of SRAM. This additional optimization further reduces power
on average by 1.9�.

We also consider building a configurable accelerator. To accommodate all datasets, the
configurable accelerator’s parameters are set to the maximum of each individually optimized
design (i.e., it supports 20NG’s 21979 input size and up to 256 � 512 � 512 nodes per layer).
This design consumes an average of 24mW across all datasets and uses 1.4� and 2.6� more
power than dataset-specific SRAM and ROM implementations respectively. The largest over-
head introduced by the configurable design relative to building individual accelerators for each
dataset is due to memory leakage. With selective pruning, the dynamic power remains minimal.
The inefficiencies of generality, compared to an accelerator tuned to each individual dataset, are
reflected in the bars labeled “Programmable” in Figure 4.11.

4.6 LOOKINGFORWARD
In this chapter, we presented a methodology for designing and optimizing neural network ac-
celerators. The Minerva flow is a particular realization of the more general approach necessary
to building machine learning accelerators looking forward. As the compute cost of these models
continues to grow, and their usage also increases, more aggressive optimizations will be needed.

As more unsafe optimizations are proposed, it becomes important to understand how
optimizations interact with each other. For example, the fixed-point precision used has a strong
effect on SRAM fault tolerance. If too many bits are used for the integer representation, then
the model can tolerate far fewer faults in weights as the fault impact (the delta of the faulty and
correct weight) is large. This is because having more integer bits increases the probability that
a fault results in an error in a large magnitude bit. As more optimizations are developed, this
understanding will be vital for proper designs.

While Minerva provides a solution for many immediate problems with neural network
accelerator design, it also creates some that demand attention. The first is how one goes about
optimizing all the free parameters, which are often correlated (as mentioned above). More opti-
mizations means more design space dimensions, and as it stands, even the first two safe Minerva
stages are challenging to explore thoroughly. To minimize run times, Minerva optimizations are
applied sequentially; this is suboptimal, however, as ideally all parameters would be explored and
tuned together. Accomplishing this goal requires more intelligent means of exploring design
space. While Minerva currently conducts a grid-search, this explorations could be optimized
with tools such as those presented in [67, 91, 115, 127].

Another open question is this: which unsafe optimizations can be built into the training
process? By informing loss functions about model properties that enable efficient execution, it
should be possible to explicitly train efficient networks rather than always extracting implicit
redundancy.
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C H A P T E R 5

ALiterature Survey and
Review

5.1 INTRODUCTION

In recent years, there has been a phenomenal surge in publications on hardware for neural net-
works in both the computer architecture and circuits venues. This chapter is intended to pro-
vide a survey and review of research on computer architecture for machine learning, as the field
presently stands. Aswe saw inChapter 1, historical improvements in hardware performance have
led to a virtuous cycle generating significant innovations in neural network research. Therefore,
as computer architects begin to make inroads to increasing performance for neural networks,
we expect the rate of progress in the field to continue to grow. The most relevant material is
currently spread between the overlapping topics, and associated publication venues, of machine
learning theory (i.e., algorithms), computer architecture, and circuits. Here we attempt to draw
parallel threads across these sometimes disparate fields.

The machine learning community also tends to champion modern research dissemination
methods, such as extensively publishing preprints using arxiv.org, public, open online review
of conference submissions, accessible and insightful blog posting, and extensive open sourcing
of reference software implementations. The sheer rate of progress seen may be in part attributed
to this, as it removes barriers and encourages experimentation, spurring on innovations and very
rapid publication cycles. A significant challenge with this rate of progress is that inevitably, much
of this research will date rapidly. Unfortunately, the same is probably true of this survey chapter,
so we hope this forms a useful basis to start research, even as the topic evolves in the near future.

5.2 TAXONOMY

The material in this chapter is organized using a simple taxonomy outlined in Table 5.1. The
main axis for the taxonomy is the familiar computer architecture stack consisting of three levels
of abstraction: algorithms, architecture, and circuits. The orthogonal secondary axis consists of
a number of fundamental research threads that cut across the stack: data types, model sparsity,
model support, data movement, and fault tolerance. The remainder of this chapter is structured
to loosely follow this axis. The three abstraction levels form major subsections of this chapter,
with the research threads at each level of the stack discussed within each subsection. Because of

arxiv.org


64 5. A LITERATURE SURVEYANDREVIEW

Table 5.1: Taxonomy of surveyed literature, arranged by the orthogonal axes of computer ar-
chitecture abstraction stack and research theme. See the text for a description of each research
theme.

Algorithms Architecture Circuits

Data Types

Gupta et al. [58]

Anwar et al. [6]

Lin et al. [94]

Lin et al. [96]

BinaryConnect [35]

BinaryNet [34]

Model Sparsity

SqueezeNet [75]

HashedNets [21]

FreshNets [20]

Sindhwani et al. [126]

Ciresan et al. [31]

Denil et al. [43]

Deep Compression [59]

Dark Knowledge [70]

Eyeriss [22]

Moons et al. [109]

Cnvlutin [4]

Minerva [114]

DNN Engine [144]

EIE [61]

Model Support

PuDianNao [97]

Cambricon [98]

TPU [80]

Catapult [17]

DNN Weaver [124]

Tabla [101]

Data Movement

TPU [80]

Neufl ow [111]

Eyeriss [22]

Fused CNN [5]

vDNN [116]

Redeye [93]

ISAAC [122]

PRIME [27]

Bojnordi et al. [12]

Neurocube [82]

Fault Tolerance

Temam et al. [137]

Du et al. [44]

Kung et al. [87]

DNN Engine [144]
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this, some papers appear more than once, focusing on different aspects of the work. Also, some
subsections do not include every secondary taxon.

The research threads we focus on were chosen to represent the most prevalent in the con-
temporary literature. They range from very practical considerations, such as the choice of data
types, to more academic topics such as various fault tolerance themes that have been published.

• Data types offer significant scope for optimization of specialized hardware. Neural net-
works generally involve a huge number of numeric operations, and therefore the size of
the data types determine power and performance limits. However, overly optimizing data
types can limit model support.

• Model sparsity is an inherent property in many neural networks and is widely believed to
be a necessary condition for the process of learning. Typically, sparsity exists in (1) input
data, (2) model parameters, and (3) intermediate activation data. Exploiting data sparsity
leads to compelling improvements in power and performance but introduces complexity.

• Model support refers to the challenge of supporting a range of neural network models
efficiently in hardware. The trade-off between efficiency and specialization is an interest-
ing topic for computer architects and deserves attention in the area of machine learning.
Beyond inference, hardware support for training is also starting to gain attention.

• Datamovement is also a significant challenge. In particular, the common fully connected
classifier layer requires parameterization that is quadratic with respect to the size of the
layer. In contrast, convolutional layers often involve working with many parallel feature
maps, which can add up to a huge number of data items. In both cases, moving neural
network data is an expensive and challenging task.

• Fault tolerance is a property of many machine learning systems during both inference and
training and is intuitively known from the biological metaphor. Fault tolerance is a very
desirable property for computer architectures, and hence this has received attention from
architects.

5.3 ALGORITHMS
It is often said that the biggest gains come from optimizations at the top of the stack. To em-
phasize this, we start by surveying some key developments in neural network algorithms and
techniques. Significant progress is being made in many challenging areas in machine learning.
Here we highlight some papers from the machine learning community that are pertinent to
hardware design. The main goal in machine learning is to demonstrate techniques that lower
test error on a given dataset. One of the key techniques used to achieve progress in this regard
is to train larger models. This, in itself, is a goal that presents a number of challenges with re-
spect to training. It also incurs ever-increasing compute and memory overheads. This fact is not
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lost on machine learning researchers, who are in fact heavily motivated to make their models
more efficient as this in turn allows larger models to be trained in a practical time frame, using
commodity hardware. Therefore, the machine learning papers presented in this section focus on
optimizing data types and exploiting sparsity. These techniques may be familiar to experienced
architects working in other domains.

5.3.1 DATATYPES
The optimization of numerical data types is closely related to model compression. In both cases,
the goal is to reduce the size of the data required to compute the neural network. The benefit
of this is that the time and energy associated with moving data around is diminished. Depend-
ing on the reduction achieved, it may also result in the data residing at a higher level of the
memory hierarchy, which again saves energy and reduces access latencies. A particularly impor-
tant threshold in regard to the memory system is whether the data can fit in on-chip memory.
This is an important tipping point, because off-chip DRAM access is orders of magnitude more
expensive.

Reducing numerical dynamic range and/or precision leads to a reduced storage require-
ment as less bits are needed to represent each value. It also reduces the power and latency of
the arithmetic operations themselves. However, this eventually impacts the test accuracy of a
neural network model. A process known as quantization is typically used to transform a model
trained using floating-point numbers into narrow fixed-point types. Although small fixed-point
data types have been popular, there are many other options typically based around variants and
hybrids of otherwise well-known fixed-point and floating-point number systems. Optimizing
data types is probably one of the most popular techniques, and many GPUs now natively support
small fixed-point types and floating-point for this purpose.

A number of papers have previously considered optimizing data types for inference with
larger convolutional models [6, 94]. Both present approaches to quantize data types heavily,
often with the goal of running these models on mobile devices that have more constrained
storage. Exemplary results on CIFAR-10 show a reduction of over 20% in model size with no
loss in accuracy [94]. Google’s TPU [80] also emphasizes the use of small 8-bit fixed-point
types by default. The TensorFlow framework is used to quantize neural networks to 8-bit values,
which are then used on theTPUhardware to achieve improved throughput and energy efficiency.
Eight-bit fixed-point multiplication can have 6� less energy and 6� less area than the equivalent
IEEE 754 16-bit floating-point operation, and for addition, 8-bit fixed-point is 13� lower in
energy and 38� less in area [80].

Recently, it has even been shown that weights can be represented with a single bit per
parameter without degrading classification performance on popular datasets such as MNIST,
CIFAR-10, and SVHN [34, 35, 96]. The advantage of being particularly aggressive in this way
is the strength reduction of multiplication to a simple manipulation of the sign bit. In fact, it
was also observed that accuracy can improve due to a stochastic regularization effect that can
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be related to dropout schemes [69]. Improvements in training techniques, specifically batch
normalization [76], was probably needed to enable these so-called BinaryConnect networks,
as normalization circumvents potential problems with scale in weights. Ternary weights have
also been demonstrated [134] and were again found to have negligible accuracy loss, under the
condition that the network is “large,” i.e., limited by training data and not the number of free
parameters.

Concerning recurrent networks specifically, binarization, ternarization, and a power-of-2
representation have all been examined experimentally in [110]. Given the more involved train-
ing methods necessary with recurrent networks, it is perhaps surprising that many of these ap-
proaches still work well. An exception was found with GRUs, where the authors were unable to
binarize the weights of the network and still maintain functionality.

Considering training, it has been shown that neural networks can be trained with low-
precision fixed-point arithmetic, provided care is taken with the rounding technique, which
should be stochastic [58]. Results on MNIST and CIFAR-10 datasets show that deep networks
can be trained using 16-bit fixed-point data types, with negligible degradation in classification
accuracy. This paper also highlights that attention must be paid to important details, such as the
use of stochastic rounding of values when accumulating large dot products. Nonetheless, except
for some results on smaller-scale datasets, it seems that in general the use of more aggressive
quantization in the training process is still an open research topic, and typically 16-bit floating-
point values are much more common.

5.3.2 MODEL SPARSITY
An identifying feature of neural network models is the scale of the model parameterization.
Clearly, minimizing the size of the storage required for the network weights can only increase
performance and reduce power. This is an advantage in both hardware and software implemen-
tations for training and inference. Note that the practical desire to minimize the model size is in
stark contrast to the driving goal of deep learning, which is fundamentally to improve accuracy
by developing techniques to train larger models. However, some recent work from the machine
learning community suggests the tension between model size, performance, and accuracy does
not have to be a rigid dichotomy.

Fully connected classifier layers are one of the biggest culprits for inflating model size.
The number of parameters in a fully connected layer is a quadratic function of the number of
nodes in the layer. Recursive layers suffer with a similar problem since they also require dense
matrix-vector operations. However, recursive layers also require parameters for the state from
previous time steps. For example, this can introduce a factor of 2� for a unidirectional vanilla
RNN layer or 3� for a bidirectional layer. More sophisticated recursive units such as LSTMs
demand even larger parameterization. The filter kernels used for convolutional layers are smaller
than the input layer and typically are as small as 3 � 3 or 5 � 5 elements. Nonetheless, even these
can be problematic in big models due to the sheer number of kernels.
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At the algorithm level, efficient hyperparameter optimization should be used to minimize

the fundamental model size. The network architecture is the most fundamental consideration in
this regard. Network choices are mainly driven by intuition and experimentation. Traditionally,
fully connected classifiers are employed at the end of many network architectures. Some recently
published networks in fact avoid large classifiers at the end of the network [75, 95]. In the case
of [95], this is demonstrated while achieving state-of-the-art accuracy. It remains to be seen if
this will be an enduring trend. Subsequent detailed tuning of hyperparameters is traditionally
considered something of a black art. However, recent work on the systematic application of
Bayesian optimization to the problem demonstrates an automated approach [127].

Many in the machine learning community have picked up on the practical advantages of
compact models. After all, small models are faster to train and experiment with, which is an
advantage to machine learning researchers, who are perhaps otherwise ambivalent about imple-
mentation performance. Some alternative models have been proposed with the goal of compact
parameterization. The HashedNets model uses the concept of a virtual weights matrix in combi-
nation with an indexing hash function to replace the conventional weights matrix (Figure 5.1).
The virtual weights matrix is much smaller than the matrix it replaces and therefore reduces
the model size significantly. In [21], the concept is proposed and demonstrated on fully con-
nected DNNs. Results show that HashedNets can achieve significant reductions in model size
on datasets such as MNIST with negligible impact on test error. The paper also presents the dual
of this problem, by fixing the number of parameters (i.e., real weights) and inflating the virtual
weight matrix size. This insightful experiment resulted in a 50% reduction in test error for an 8�

expansion in the virtual weights, without increasing the required storage for real weights. The
concept was further extended to convolutional networks, by performing the weight sharing in
the frequency domain [20]. In both cases, training is essentially unchanged (beyond adding the
hash function to map virtual weights to real weights), and uses conventional back- propagation.

The weights of neural network models are well-known to be sparse. Regularization tech-
niques essentially enforce a degree of sparsity to prevent overfitting. Fundamentally, it may be
that sparsity is in fact a prerequisite for learning, as most models begin overparameterized and
unnecessary parameters fall out during the training process. Nonetheless, there appears to be
little known about how sparsity relates to other aspects of neural networks. It has been demon-
strated that it is possible to learn weight matrices with structured sparsity, such as a Toeplitz ma-
trix [126] structure. The structured matrices can be exploited to implement faster linear algebra
operations, such as matrix-vector multiplication, inversion, and factorization. On a keyword-
spotting application, compression of 3:5� was achieved at state-of-the-art accuracy.

SqueezeNet [75] is a CNN architecture that focuses on minimizing model size. This is
achieved primarily by focusing on small 1 � 1 filters for convolutions (Figure 5.2) as these are
most size efficient. Other concessions to size include decreasing the number of input channels
to wide filters and downsampling late in the network. Fully connected layers are also avoided for
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Figure 5.1: HashedNets [21] implements DNNs using random weight sharing. This example
uses a real weight matrix with a compression factor of 1
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Figure 5.2: SqueezeNet [75] uses layers containing small 1 � 1 convolution kernels, which results
in a network achieving similar accuracy to Alexnet but with around 50� fewer parameters.
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compactness. Results demonstrate AlexNet [85] accuracy on the ImageNet dataset, with 50�

fewer parameters.
The memory footprint of a conventional model can also be reduced using a postprocessing

technique. Random Edge Removal (RER) [31] is one example, where a fraction of the weights
are randomly set to zero (and can therefore be ignored). Low-Rank Decomposition [43] is
another that has been proposed. Dark Knowledge [70] is an approach that allows more compact
models to be trained from the soft-max outputs of a larger (uncompressed) model. At the time
of writing, [126] provides the broadest comparison of these approaches.

A practical example of the gains that can be achieved using compression on real problems
is given in [60], where a compressed model is generated in three steps. First, a competitive
network is trained. Second, unimportant (small) weights are pruned to reduce the network size.
Third, the pruned network is retrained to tune the remaining weights and recover any accuracy
loss. Following this method, the number of parameters required for Alexnet can be reduced by
9� without incurring accuracy loss. Follow-up work,Deep Compression [59], adds clustering and
Huffman encoding and demonstrates a 49� reduction in the size of VGG-16.

5.4 ARCHITECTURE
Neural networks represent a really interesting problem space for architecture specialization. In
essence, the majority of deep learning methods rely heavily on large linear algebra kernels, which
historically have tended to lend themselves to a number of effective algorithm optimizations,
as evidenced by the evolution of BLAS. Compared to many other modern workloads, these
kernels also have some very favorable properties, such as huge data-level parallelism, flexibility
in operation ordering and scheduling, and essentially no data-dependent sequencing. However,
the emphasis on these large linear algebra kernels, with their favorable properties for computer
hardware may change rapidly in the near future as neural networks evolve. Therefore, it may take
a long time for the field to mature to the point where we can understand which computer archi-
tecture specialization techniques are most effective. Hence, much of the research work surveyed
here is probably a long way from use in commercial products. Nonetheless, we are starting to
see some evidence of commercial hardware tailored to machine learning, such as Google’s Tensor
Processing Unit (TPU) [80]. The TPU is a bespoke coprocessor-style ASIC to accelerate neural
network inference in commercial datacenter applications. The specific economies of scale asso-
ciated with datacenter computing are clearly a good fit for a dedicated ASIC solution. It will be
exciting to see similar developments appearing in other computing application domains in the
near future.

For hardware developers looking to optimize for machine learning workloads, there is an
inevitable tension between efficiency and flexibility, which can be hard to navigate. The most
flexible approach to implementing machine learning applications will always be software based.
The huge data-level parallelism inherent to linear algebra is actually often well served by opti-
mized software routines running on contemporary SIMD CPU or GPGPU hardware. In many



5.4. ARCHITECTURE 71
ways, a software-focused approach targeting commodity platforms avoids the hugeNRE costs of
dedicated ASICs, which are also at huge risk of premature obsolescence owing to breakthroughs
in machine learning algorithms.

On the other end of the flexibility scale, specialized hardware always provides a perfor-
mance and efficiency benefit. Specialized hardware could refer to anything from a new instruc-
tion in an established architecture to a dedicated hardware accelerator and anything in between.
Currently, there is unprecedented interest in dedicated hardware accelerators for neural network
inference. This approach does typically provide a significant efficiency advantage for a number
of reasons:

• The overhead of fetching and decoding instructions can be often be significantly reduced.
Typically, the ISA can be very small and heavily optimized to reduce the size and number
of instructions required. In many accelerator designs, instructions are eschewed entirely
and instead all sequencing is driven by a (possibly parameterized) FSM controller.

• A custom hardware accelerator microarchitecture can typically be freely designed indepen-
dent of constraints relating to a heavily constrained ISA. This follows from the previous
point about the diminished importance of ISA. Hence, limitations in the design of gen-
eral purpose programmable hardware are often vastly relaxed: decoding of instructions,
ILP windows, complex pipeline hazards, etc.

• Data types employed in the machine can be optimized heavily.

• Tightly coupled memory structures such as scratchpads, caches, FIFOs, and queues can
be heavily optimized and freely employed.

Dedicated hardware accelerators do not have to mean ASIC design. For a long time,
FPGAs have represented an interesting compromise between the flexibility of software and the
performance of ASICs. FPGAs have historically been a somewhat niche solution, but they may
be very well suited to machine learning applications, since they have good support for integer
arithmetic that is sufficient for neural network inference. They also provide the aforementioned
reprogrammability to allow for changes in machine learning algorithms. They are generally not
low-power platforms and hence have had little success in mobile platforms to date. But there
has been significant interest lately in FPGAs for datacenter applications, as evidenced by the
Microsoft Catapult [17] effort. It’s very likely that neural networks are a good fit for FPGAs in
the datacenter, and we expect to see more results in this area in the short term.

In the remainder of this section, we review various architecture proposals that mainly tar-
get ASIC implementation.These designs range in programmability from efficient fixed-function
designs to programmable machines with optimized ISAs. Architecture research on training
seems to lag attention on inference. In many ways, this is not surprising since for commercial
deployment, it is the inference performance that we care about. However, improvements in the
speed in which we can train models is still important, even if training could be considered more
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of a one-time cost. Therefore, most of the research discussed here is inference, unless training is
specifically mentioned.

5.4.1 MODEL SPARSITY
From the computer architecture perspective, the various forms of data sparsity in neural networks
present an interesting opportunity. In Section 5.3, we looked at research on model compression,
which is currently a very rapidly moving topic. However, the model parameterization is merely
one facet of sparsity that can be exploited. The intermediate activation data flowing through the
network, and even the input data vector, can also be sparse. In many cases, it is hard to fully
exploit sparsity in software implementations due to the overheads of indirect memory access.
However, with hardware accelerators, there exists much more flexibility that can lead to massive
savings in compute and memory bandwidth. The potential of such optimizations has not been
lost on architects, and a number of papers have explored mechanisms to exploit sparsity.

Sparsity in the input data is perhaps the most intuitive. The vast majority of datasets
used in machine learning exhibit significant sparsity. For example, natural images typically have
regions that are of a very similar color, e.g., pictures with large areas of blue sky. This can be
leveraged in many applications by compressing the data to reduce both the memory footprint
and the time and energy required to load the input data. In this way, two recently proposed
image recognition CNN accelerators [22, 109] use compression techniques to reduce memory
bandwidth, and thus power. In [22], a run-length compression scheme is used, achieving a
2� reduction in average image bandwidth. In contrast, the accelerator in [109] uses a simple
Huffman-based compressionmethod and achieves up to 5:8� bandwidth reduction for AlexNet.

Beyond compression of the input data, significant sparsity also exists in the intermediate
data (i.e., the activations). The Minerva [114] architecture study shows that the activation data
that flows through fully connected layers during inference is overwhelmingly dominated by val-
ues of small magnitude. This includes both zero and small nonzero values. The position of these
values is dynamic, changing for each input vector. Intuitively, an explanation for this is that
not all the features learned by the network during training are activated for every input vector,
and, therefore, we expect many neurons to be “quiet” during any single prediction. The widely
adopted ReLU activation function in modern neural networks results in any negative neuron
accumulation generating an exactly zero output.

Since multiplication and addition with one or more zero operands is redundant, we can
skip operations involving these values. Skipping redundant operations can reduce energy and
increase throughput since less-effective work is performed and there are fewer memory accesses.
In addition to this, some of the small nonzero values can also be considered “insignificant” and
skipped during inference. A fully connected model trained on the MNIST dataset can tolerate
skipping as much as 75% of activation data with negligible increase in test error. This result is
then exploited in the microarchitecture by adding a comparator at the front end of the pipeline
that thresholds incoming activations and predicates both weight loads and MAC operations.
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Skipping as many as three out of four SRAM/MAC operations on fully connected networks
was shown to result in a power reduction of 1:9� (MNIST dataset) to 2:3� (WebKB dataset).
Further results on this work were given in Chapter 4.

DNNEngine [144] extends this idea with a more efficient architecture for exploiting data
sparsity in fully connected layers. The idea is that instead of performing thresholding on the
operands before predicating theMACoperation, it can instead be done at the end of the pipeline
after the neuron value is completed and before it is stored for use in the next layer (Figure 5.3).
Hence, the comparison is performed only once for each neuron after applying the activation
function, rather than every time the activation is used in the following layer. When the neuron
output is written back, only significant activations that are larger than the threshold need to be
stored, which reduces the number of memory writes for activation data. And, correspondingly,
when reading in activations from the previous layer, only significant activations are read, there-
fore the number of cycles is vastly reduced and there are no energy-degrading pipeline bubbles
from stalls. Hence, in this approach, the number of operations is reduced as before, but now
the number of cycles is also reduced by a similar factor. Therefore, energy savings of 4� and
simultaneous throughput improvement of 4� is possible for fully connected MNIST models.
Since the stored activations from a complete layer are no longer contiguous, it is necessary to
maintain a list of stored activation indexes. This list is then used to generate the corresponding
weight indexes. The list of activation indexes is negligible as the maximum number of entries is
given by the number of nodes in the layer.

Sparsity has also been studied in much larger models. The Cnvlutin [4] architecture study
examined data sparsity for large CNN models and found that the activation data in CNN layers
is also sparse. The number of exactly zero values ranging from 37% to 50% and averaging 44%
across a number of common image classification CNNs, including AlexNet, GoogLeNet and
VGG. Two CNN accelerators implemented in silicon [22, 109] make use of a comparator to
check the activation data against a threshold and then predicate subsequent operations on the
resulting flag, which reduces power, in a similar fashion toMinerva in the case of fully connected
layers. Even better, Cnvlutin makes use of a new sparse data structure that allows activations to
be encoded as a value/offset pair. This data structure is incorporated into the front end of the
DaDianNao [25] accelerator. Reported simulation results show 1:37� average performance im-
provement compared to DaDianNao, for a set of image classification CNNs, including AlexNet,
GoogLeNet, and VGG. In contrast to fully connected networks, it appears that it is possible to
exploit sparsity in CNNs, but it may be more challenging to get similar benefits. In particular,
it is not clear how to apply this technique to very efficient CNN architectures, such as systolic
arrays, since these are based around a regular dense matrix multiplication.

Finally, computer architects have also begun to consider sparsity in the model param-
eterization. This is especially relevant to fully connected layers, which often represent the vast
majority of the total model size. Since there is no reuse in nonbatched fully connected layers, ex-
ploiting weight sparsity allows a significant reduction in the number of operations required. We
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Figure 5.3:DNNEngine [144] microarchitecture exploits activation sparsity to reduce the num-
ber of cycles required to process a fully connected layer. A comparator is introduced in the
activation stage that thresholds activation values. The resulting SKIP signal is used to predicate
writeback for the following layer. A small SRAM (NBUF) is also introduced to store the indexes
of the active neurons in order to generate weight addresses.

previously described some of the key approaches to model compression explored in the machine
learning domain. Of these, an architecture has been developed for the Deep Compression [59]
approach, called EIE [61]. The proposed architecture jointly considers both activation sparsity
and weight sparsity. In general, this is achieved by sparse encoding both the weights and the ac-
tivation data and using multiple decoupled processing elements to operate directly (in parallel)
on this representation. Each element performs a single MAC operation and contains storage
for the sparse indices. Since each decoupled element has a different number of operations to
perform for each neuron in the network, there is a potential load-balancing problem, which is
relaxed using FIFOs. One of the impressive results of this work is a near-linear speedup ob-
served when scaling the number of processing elements. These results suggest that compression
of fully connected layers may soon become an important technique for neural network hardware
accelerators.

5.4.2 MODEL SUPPORT
Specialized hardware for neural network inference can quite readily achieve gains in performance
and energy efficiency compared to off-the-shelf SIMD CPU or GPU solutions. However, ar-
chitects are also cognizant that this comes with a trade-off in flexibility. The current situation in
which neural networks are evolving very quickly presents a particular challenge, and architects
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should be prudent to carefully consider flexibility and future-proofing when designing special-
ized hardware. After all, custom hardware typically must be useful for many years to offset the
exorbitant design and manufacturing costs. A domain-specific programmable architecture is the
next step in terms of specialization without compromising programmability. However, research
in this direction often raises the question of what kind of elementary operations should be sup-
ported. An instruction set architecture (ISA) that can achieve performance or efficiency superior
to that of general purpose machines, while retaining some flexibility, would be a compelling re-
sult.

One of the first accelerator designs published that targets modern deep learning tech-
niques was DianNao [19]. The accelerator architecture (Figure 5.4) is reminiscent of VLIW
designs and consists of three scratchpad buffers, a datapath, and a control processor with a sim-
ple ISA. Buffering is provided for input activation data (NBin), output activation data (NBout),
and weights (SB). Each buffer includes DMA logic. The pipelined datapath, called the Neural
Functional Unit (NFU) implements multiple operations, such as multiply-accumulate, shifting,
max, sigmoid, etc. The simulation results for a 65 nm implementation, running around 1 GHz,
suggest that a simple programmable architecture based around this ISA can outperform com-
modity CPU (with SIMD) and GPU implementations to a great extent, with a huge average
speedup of 118�. This is done while supporting the key layer types, including convolutional,
pooling, and fully connected. Subsequent variations of this design [25, 45] address different ap-
plication performance points, and exploit embedded DRAM on-chip to avoid costly off-chip
memory accesses for large models.

While neural networks currently attract the most interest, other machine learning tech-
niques may gain more popularity in the future. PuDianNao [97] is a recent development of pre-
vious DianNao accelerators that really explores the architecture flexibility question by including
support for machine learning techniques such as k-means, k-nn, naive Bayes, Support Vector
Machines, and linear regression. To achieve this, the datapath in particular becomes significantly
more complex to support more operation types and requires 6 pipeline stages. Reported sim-
ulation results in 65 nm technology show that for seven diverse machine learning techniques,
average speedup over a SIMD CPU is 21� and over a GPU is 1:2�. These results are signif-
icantly smaller than the original DianNao performance benefit, which may indicate the cost
associated with increased model support.

Cambricon [98] is an ISA and implementation specifically targeting neural networks. The
study proposes a load-store architecture with 64-bit instructions. A bank of 64 general purpose
registers (32-bit) are used for scalars for control and addressing, with the remainder of the ISA
focused on supporting intensive vector/matrix operations that form the basis of most neural net-
work techniques. One significant difference here compared to a general purpose ISA is the use
of a software managed scratchpad memory instead of a vector register file. The vector and matrix
operands are stored in this scratchpad under full software control. In total, four instruction types
are described (Figure 5.5): control, data transfer, computational, and logical. With this, it is pos-
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Figure 5.4: DianNao neural network accelerator architecture [19], consisting of three scratch-
pad buffers (NBin, NBout, SB), a pipelined datapath (NFU), DMA per buffer, and a control
processor (CP).

sible to efficiently support as many as ten benchmarks consisting of different machine learning
techniques. Simulation results of a prototype accelerator implementing the Cambricon ISA in
65 nm technology show average speedup of about 92� compared to CPU and 3� compared
to GPU implementations. This level of performance is broadly comparable to the DaDianNao
accelerator, while offering much deeper model support. Therefore, this is a data point that sug-
gests it is, in fact, possible to design an architecture that provides sufficient programmability for
extensive model support while retaining enough specialism to achieve worthwhile performance
gains.

TheGoogle Tensor ProcessingUnit (TPU) [80], is anASIC architecture that is essentially
a matrix multiplication coprocessor for accelerating neural network inference in the datacenter.
The proposed ASIC is used in production by the company in their datacenters. The paper it-
self provides a fascinating insight into the breakdown of the workloads that Google runs in their
datacenters, which perhaps surprisingly, seem to strongly emphasize fully connected and LSTM
layers, as opposed to CNNs. Figure 5.6 gives a block diagram for the TPU architecture, which
is surprisingly simple. The heart of the architecture is a huge systolic matrix multiplication unit
with sixty-four thousand 8-bit MACs. A large on-chip SRAM buffer is then used to feed the
matrix unit, along with DDR3 DRAM ports that supply the weights. A PCIe interface is used
to communicate with the host CPU that sends commands directly to the TPU. These commands
consist of TPU instructions, which, in contrast to the previous architectures, are CISC-style and
take an average of 10–20 clock cycles per instruction to complete. The key instructions are simple
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Instruction Type Examples Operands

Control Jump, conditional branch Register (scalar value), immediate

Data Transfer

Matrix
Matrix load/store/move Register (matrix address/size, 

scalar value), immediate

Vector
Vector load/store/move Register (vector address/size, 

scalar value), immediate

Scalar Scalar load/store/move Register (scalar value), immediate

Computational

Matrix

Matrix multiply vector, vector 

multiply matrix, matrix multiply 

scalar, outer product, matrix add 

matrix, matrix subtract matrix

Register (matrix/vector address/

size, scalar value)

Vector

Vector elementary arithmetics 

(add, subtract, multiply, divide), 

vector transcendental functions 

(exponential, logarithmic), dot 

product, random vector generator, 

maximum/minimum of a vector

Register (vector address/size, 

scalar value)

Scalar
Scalar elementary arithmetics, 

scalar transcendental functions

Register (scalar value), immediate

Logical

Vector

Vector compare (greater than, 

equal), vector logical operations 

(and/ or inverter), vector greater 

than merge

Register (vector address/size, 

scalar)

Scalar
Scalar compare, scalar logical 

operations

Register (scalar), immediate

Figure 5.5: Cambricon [98] ISA consisting of four instruction types.

and fairly self-explanatory: Read_Host_Memory (into unified buffer), Write_Host_Memory
(from unified buffer), Read_Weights (into weight FIFO), Matrix_Multiply, Convolve, and Ac-
tivate (perform nonlinear activation function). Using these simple instructions, this architecture
supports the key neural network layer types of fully connected, CNN and LSTM.

The TPU paper is a great case study for the potential benefits of a bespoke ASIC for dat-
acenter inference applications. Average speedup for the TPU is 15� to 30� compared to con-
temporary CPU or GPU and achieves 30� to 50� higher TOPS/W. Characterization of CPU
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and GPU performance on the same fully connected, CNN, and LSTM workloads is shown in
Figure 5.7, which presents this comparison in the form of an insightful roofline plot. This plot
reminds us about some of the important characteristics of neural network layer types, i.e., fully
connected and LSTM layers are clustered against the slanted part of the roofline, which indi-
cates they are memory bound, whereas CNN layers are compute bound. For CPU and GPU,
the neural network workloads are generally further below their rooflines, which is due to the
strict response time that is demanded by datacenter applications. Comparing the CPU/GPU
and TPU, the latter favors minimalism of a domain-specific processor rather than wasting en-
ergy and silicon area on unnecessary features such as caches, branch predictors, speculation,
multi-threading, and so on, which generally accounts for the impressive performance and en-
ergy improvements. In terms of model support, TPU allows for acceleration of the two key
operations of matrix multiplication and convolution.
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Google TPU (stars), for various MLP (fully connected), CNN and LSTM inference workloads.

We alluded earlier that FPGAs could be a very compelling platform on the perfor-
mance/programmability continuum for accelerating machine learning workloads. Neural net-
work inference accelerators implemented using the Catapult framework [17] make use of com-
mercial off-the-shelf FPGAs in datacenter applications. The CNN inference accelerator archi-
tecture employs a systolic MAC array, which is a popular choice due to the efficiency of the
local register-to-register data movement. Compared to CPU or GPU implementations, there
are some advantages of predictable latency with FPGA, which is an important consideration in
the datacenter. However, the performance results demonstrated to date seem fairly moderate,
running CNNs at around 2:3� the throughput of a contemporary dual-socket server. This is
significantly less than we saw with the TPU. It’s also worth noting that potential future im-
provements with FPGA-based neural network accelerators is of course linked to the technology
scaling of the underlying FPGA products themselves, which may start to falter as Moore’s law
begins to fade.
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Although the performance and energy efficiency advantage of FPGA may be less than a

dedicated ASIC, the development costs are also much lower. Having said that, FPGA develop-
ment is not as easy as traditional software development. And, in fact, the learning curve involved
in implementing a given workload on an FPGA platform is a potential roadblock in the wider
adoption of FPGAs. This process is akin to ASIC design and typically involves low-level RTL
design, which is slow and requires expertise in hardware design. DNN Weaver [124] addresses
the design bottleneck of FPGAs with a parameterized inference accelerator that can be easily
mapped to a given neural network architecture and FPGA platform. A dataflow graph derived
from a neural network modeled in Caffe is used as the abstracted programming interface, which
DNN Weaver converts to an accelerator using a parameterized Verilog design template and an
FPGA specification. This automated approach minimizes the design effort, as long as the neu-
ral network is supported by the parameterized accelerator. Supported layer types are CNN and
fully connected, but there is no mention of RNN support. The FPGA accelerators offer 1:3–
7:1� average performance increase compared to a CPU baseline, but actually does worse than
a GPU baseline by 0:15–0:85�. Power efficiency of the FPGA, however, is much better than
CPU (8:7–15�) and GPU (2–3:6�). FPGAs are probably most likely to gain traction in data-
centers, perhaps initially for inference applications in the cloud. However, performance results
need to be much more competitive with commodity GPUs for this to take off.

The architecture work discussed thus far has been focused on accelerating inference. In
contrast, very little work has been published to date on accelerating training with specialized
architecture.Tabla [101] is one of the first architecture studies, around training, in this case using
FPGAs. This paper follows a similar approach to DNN Weaver in providing a parameterized
design that can be quickly targeted to a given neural network and FPGA platform. Stochastic
gradient descent (SGD) is widely used for training of a variety of machine learning models,
including linear regression, SVMs, and neural networks. Therefore, FPGA accelerators can be
generated for a range of parameterizations of SGD using templating techniques. Results show
average performance improvements of 19� and 3� compared to ARMA15CPU and Intel Xeon
CPU implementations respectively. In terms of energy efficiency, FPGA SGD accelerators offer
improvements of 63� and 38� improvement in average performance-per-Watt for ARM A15
and Intel Xeon CPUs respectively. In contrast to inference, training is often a very hands-on
process and it is not currently clear how things like debugging training issues would work when
running SGD on an FPGA accelerator. And, as with DNN Weaver, the template approach is
only as good as the templated design itself and its model support limitations.

In surveying architecture papers, one particular class of neural networks stands out as re-
ceiving by far the least attention: recurrent neural nets. RNNs have recently gained a lot of
attention for results in natural language processing (NLP) applications, such as speech recogni-
tion, translation, sentiment analysis, and a host of other interesting uses. Nonetheless, we have
seen very few papers that mention RNNs whatsoever. RNNs in their various flavors represent a
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much more complex dataflow graph than fully connected and CNN layers and perhaps have a
less obvious mapping to hardware.

5.4.3 DATAMOVEMENT
The computation of neural networks involves working with a number of large vectors and matri-
ces. As is often the case in computer architecture, the cost of manipulating and moving data can
be more of a challenge than the actual computation itself. Since most neural networks have am-
ple parallelism, memory bandwidth can rapidly become the limiting factor. Model compression
and sparse encoding optimizations described previously can reduce the data movement and may
allow some models to avoid costly DRAM access. However, the deep learning movement has
always favored bigger models, hence they may inevitably need to spill over into main memory.
Therefore, optimizing algorithms and architectures to minimize data movement is likely to be a
significant area for future research.

A systolic array is an efficient approach to regular kernels such as matrix multiplication
and convolution. The efficiency derives from the local movement of data to and from adjacent
computational elements. This is typically register-to-register movement in a spatial pattern. A
great example of this approach is the TPU [80], which uses a very large systolic array. However,
such a regular structure is somewhat inflexible, and basically limited to a couple of operations.

Since neural networks exhibit extreme parallelism, it has been suggested that traditional
SIMD/SIMT architectures may not scale well due to a bottleneck effect around structures such
as register files and memory interfaces. Since much of the data movement in dataflow archi-
tectures is local, they may scale much more efficiently. Dataflow architectures employ many
computation elements arranged in an interconnecting communication network. Operands flow
through the network in a pattern derived from the underlying computation graph.

Neuflow [111] is a dataflow architecture for accelerating general purpose vision algorithms
on FPGA. A compiler was also designed to help transform a high-level flow-graph representa-
tion of a neural network into machine code for the proposed architecture. Figure 5.8 shows the
the dataflow architecture, which is a 2D grid of processing tiles (PTs), which process streams of
data in parallel. A smart DMA unit interfaces the grid to off-chip memory. The operation of the
system is determined using a runtime configuration controller and bus. The system targets real-
time detection, categorization, and localization of objects in complex scenes, with measurement
results demonstrating throughput of 12 frames per second on a 20-category problem.

Eyeriss [22] is also a spatial dataflow architecture, this time targeting CNN layers (Fig-
ure 5.9). An interesting aspect of dataflow machines is that there are often many ways to map a
given computation graph to the spatial array. The CNNs computation typically has as many as
seven degrees of freedom in scheduling the dataflow, and therefore there are many ways to map
to a given dataflow architecture. In this work, a number of different dataflows are considered
and classified based on how certain types of data move in a convolutional layer. From this anal-
ysis, a new dataflow is identified that minimizes energy consumption by maximizing input data
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reuse (i.e., weights and feature maps) and simultaneously minimizing partial sum accumulation
cost. Compared to more obvious dataflows previously considered, this achieves improvements
in energy of 1:4–2:5� for AlexNet.

In addition to optimizing the data sequencing within any given layer (intra-layer), the
order in which the layers themselves are processed is also important (inter-layer) in terms of
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minimizing data movement. While most accelerators process CNN layers to completion, this
often requires the use of off-chip memory to store intermediate data between layers. In [5], an
accelerator is proposed that explores the dataflow across convolutional layers. In this way, the
processing of multiple CNN layers can be fused by modifying the order in which the input data
are brought on chip, such that inter-layer intermediate data between adjacent CNN layers can be
cached. This work is especially exciting because it leverages the flexibility of hardware to freely
schedule the workload. It’s also one of the few studies to take a system-level view. Results show
an FPGA CNN accelerator designed in this way can reduce total off-chip data transfers by 95%
for the convolutional layers of VGG, reducing the data from 77 MB down to 3.6 MB per image.

Cutting-edge deep learning research is often still limited by computational resources. The
time it takes to train a large model is a very real limitation on practical experiments. DRAM
capacity on GPU hardware is also a fundamental limit. The many widely used machine learning
frameworks require users to carefully tune memory usage to fit the model into the DRAM
available on the GPU. Addressing this particular problem, vDNN [116] is a runtime memory
manager that virtualizes the memory usage of DNNs. This means that both GPU and CPU
memory can be simultaneously utilized to train larger models. For example, results show vDNN
can reduce the average memory usage of AlexNet by up to 89%, with only minor performance
loss.

5.5 CIRCUITS
An important historical circuits trend in computing neural networks is the interest in using
analog circuits to implement datapath operations. Biological neural networks operate using an
essentially analog and self-timed substrate, albeit a complex organic electrical-chemical system.
It may appear that analog circuits would be an ideal candidate for implementing artificial neu-
ral networks. However, analog and mixed-signal techniques are encumbered with their own
particular challenges, especially in regard to very practical issues relating to reliable mass man-
ufacturing and test. Much of the interest in this has been focused on spiking neural networks,
which are the class of models most closely related to biological networks. Spiking networks are
not covered here; however, interest in analog approaches for deep learning has begun to grow. In
this section, we survey some circuit techniques that may offer particular benefit to deep learning
applications.

5.5.1 DATAMOVEMENT
We previously described the use of small data types in neural networks. The use of analog tech-
niques are particularly well suited to situations that do not require very high precision, such as
this. By replacing low-precision digital MAC operations with their analog counterpart, it may
be possible to reduce the energy consumption of the calculation. Redeye [93] explores the use
of analog circuits specifically for the application domain of computer vision. In particular, the
observation that computer vision applications are often tolerant of low-SNR input images, and
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relatively low-SNR computation, motivates the use of analog circuits. The premise of this work
is specifically to move data from early convolutional layers into the analog domain directly after
the image sensor circuitry, before the ADC. Simulation results reported suggest that a reduction
in sensor energy of 85� may be possible. Analog circuits certainly present challenges in terms
of tolerance to variation effects and testability. To fully understand these challenges, real silicon
prototyping is required to demonstrate a practical application of analog computing concepts.

ISAAC [122] proposes an accelerator with an in situ approach to dot-product operations,
wherememristor crossbar arrays are employed.One of the challenges of using a crossbarmemory
as an analog dot-product engine is the high overheads of analog-to-digital conversion. There-
fore, special data-encoding techniques are developed that are more amenable to analog compu-
tations. Figure 5.10 illustrates the analog computation based around a resistive memory array.
A series of input voltages are applied to the word lines, with the resistances of the memory cells
preprogrammed. The voltage source in series with the resistance of the memory cell causes a
scaled current to flow into the bit line for each input voltage, forming an analog sum of products
operation. The basic memory array is then fleshed out with additional circuitry, such as DACs
on the word-line inputs, and sample-and-hold and ADC circuits on the bit-line outputs. Sim-
ulation results at 32 nm on a suite of CNN and DNN workloads yield average improvements in
throughput of 14:8� and reduction in energy of 5:5�, relative to the DianNao architecture.

V1

G1

I1 = V1.G1

I2 = V2.G2

I = I1 + I2 =

V1.G1 + V2.G2

G2

V2

DAC

DAC

DAC

DAC

 S&H

ADC

Shift & Add

 S&H  S&H  S&H

Figure 5.10: ISAAC [122] uses a memory-array bitline as a voltage input, in series with a resistive
memory cell, which performs the multiplication. The resulting current flows into the bitline
where it is accumulated with currents from the other cells in the column. Additional circuitry
such as D/A and A/D converters are required to complete the functional unit (right).

Similarly, PRIME [27] considers another NVM technology: resistive random access
memory (ReRAM). A ReRAM crossbar array is used to perform matrix-vector multiplication
used in neural networks. Microarchitecture and circuit designs are presented that enable re-
configurable functionality with insignificant overhead. One of the critical challenges in analog
crossbar computation is the precision requirement. There are essentially three aspects to this:
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precision of input data to the crossbar, precision of the cell weight (resistance), and precision
of the final output analog computation. All of these have an impact on the final predication
accuracy of the neural network. In the case of ReRAM devices, current results suggest crossbar
arrays may be able to support 7-bit output fidelity, which is certainly close to the range typically
required for neural networks. The PRIME design employs 3-bit input precision (i.e., 8 voltage
levels), 4-bit weight precision (16 resistance levels), and targets 6-bit output precision (64 lev-
els). Simulation results presented suggest that performance improvements of 2,360� and energy
reduction of 895� can be achieved across a set of machine learning benchmarks at the 65 nm
process node.

In [12], the authors describe a ReRAM crossbar machine for calculating Boltzmann ma-
chine models. As with the previous examples, the computation is performed in parallel within
the memory arrays and therefore eliminates the need to move data from the memory to the
execution units. Three applications are studied in this context: graph partitioning, boolean sat-
isfiability, and a deep belief network. Simulation results in a 22 nm technology show a perfor-
mance increase of 57� and 25� lower energy with negligible loss in quality for these workloads,
compared to a multicore CPU system.

In a similar vein to other analog approaches, resistive memory crossbar dot products are
subject to many challenges in terms of process, voltage, and temperature (PVT) variation, as well
as challenges with circuit noise and offset, testability, and the lack of robust analog memories.
The architecture studies just described suggest great promise with analog crossbars, but we need
to build real silicon implementations to understand how realistic simulation results are.

Neurocube [82] is based on a 3D stacked memory with a logic tier for processing neural
networks, and considers both inference and training. More specifically, the architecture consists
of clusters of processing engines connected by a 2D mesh network and integrated into a 3D stack
with multiple tiers of DRAM (Figure 5.11). The 3D DRAM stack allows for terrific memory
bandwidth, since it can be accessed in parallel, without the bottleneck of a conventional off-
chip memory interface. Simulation results are presented for a 28 nm, 5 GHz implementation.
A comparison of the 3D stacked solution with a more conventional DDR3 version highlights
the advantages of the former. Although the peak bandwidth of DDR3 is higher than the 3D
counterpart, DDR3 shows much lower system performance. This is because the DDR3 band-
width is delivered over only two channels, which creates a bottleneck in the NoC that then must
deliver data to the processing elements. The 3D DRAM interface, on the other hand, has much
more parallelism and can deliver bandwidth spatially across the die.

5.5.2 FAULTTOLERANCE
It may seem apparent from the biological analogy that artificial neural network techniques would
offer useful tolerance to faults in the underlying substrate. As one might expect in such a dense
computational graph, failure of a small number of nodes in a neural network model often has
little impact on classification accuracy. For computer architects, this particular quality is highly
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Figure 5.11: Neurocube [82] is based on a 3D stacked memory with DRAM tiers stacked on top
of a logic tier, and targets neural networks.

prized. Designing, manufacturing, and testing a silicon chip that contains many billions of in-
dividual transistors is very challenging, and hence any opportunity to relax this “burden of cor-
rectness” is of great interest.

Indeed, there is evidence that neural networks exhibit fault tolerance properties that are
useful in relaxing requirements for manufacturing faults in silicon chips. The study in [137] in-
vestigates the effect of injecting transistor-level faults in the logic gates of neural network hard-
ware accelerators for simple fully connected DNNs. The empirical experiments in this study
emphasize that maximizing parallelism increases the fault tolerance observed. The intuition be-
hind this observation is that when we employ time multiplexing to fit a larger network onto
a smaller set of hardware computation units, a single hardware fault can affect multiple nodes
in the network. Although the considered networks and datasets are very small by deep learn-
ing standards, the brief results in this work suggest that a significant number of faults can be
tolerated with negligible loss in classification accuracy.

It is also possible to trade error tolerance for efficiency or performance on fullyfunctional
chips. In [44], the authors propose the use of inexact arithmetic, which allows for minor errors
in the output computation in return for reduced logic complexity, potentially leading to lower
power and latency in the evaluation of fully connected DNNs. The errors arising due to the in-
exact computations can then be compensated for during training, as illustrated in Figure 5.12.
Simulation results in 65 nm technology show that this approach can achieve 1:78–2:67� re-
duction in energy, along with 1:23� delay reduction and 1:46� area saving, compared to the
baseline.

The work in [87] explores a similar approach of introducing hardware approximations
that reduce energy in fully connected DNNs. More specifically, an approach is presented to
determine a set of weights that have little impact on output error. This is done by examining a
sensitivity factor computed during backpropagation in the training process. The weights iden-
tified for approximation are then subject to reduced bit precision and approximate multiplier
techniques. Simulation results in 130 nm technology show a 38% system power reduction with
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Figure 5.12: The ability of neural networks to train around circuit imperfections can be ex-
ploited to allow inexact computations, which are more efficient the conventional exact compu-
tations [44].

a 0.4% loss in classification accuracy on the MNIST dataset. Clearly the benefits that can be
achieved at the circuit level are much more modest than we typically see higher up the stack.

An alternative approach is to use overclocking or undervolting of digital circuits to signifi-
cantly increase throughput or reduce power at the cost of a small number of transient errors. The
DNNEngine [144] is a fully connected DNN accelerator, demonstrated in silicon, that is robust
to timing violations that intermittently occur when the supply voltage is aggressively scaled. This
robustness is achieved through a combination of algorithmic and circuit-level timing-error toler-
ance techniques. The algorithmic error tolerance is demonstrated for both weights memory and
datapath operations, showing the weights are very tolerant to errors, while the datapath exhibits
relatively poor tolerance. Hence, the error tolerance of the datapath is additionally bolstered us-
ing circuit techniques originally developed for DSP accelerators in [143]. Measurement results
of the 28 nm test chip demonstrate power savings of 30% from aggressive voltage scaling or, al-
ternatively, a throughput improvement of 80% from aggressive clock frequency scaling. Both of
these results are without any loss of accuracy on the entire MNIST test set, with aggregate error
rates of greater than 10�1. These results are compelling, but more studies on bigger models and
datasets and other layer types are needed to better understand the limitations of fault tolerance
in neural networks.
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Conclusion
Beyond a shadow of a doubt, deep learning is a protean field. The last decade has given rise to
unprecedented progress in many fields through the use of practical deep learning techniques.
Furthermore, the current level of interest from well-funded industry organizations is likely to
ensure continued progress in the years to come.

Our experience of working on computer architecture for deep learning applications has
bourne out that there are some key central concepts that have repeatedly provided fertile ground
for optimizing the design of hardware support. A good example of one of these insights is the
trade-off between the sparsity of neural network parameterizations, which seems to be central
to the learning process, and the memory and compute requirements for inference. Like other
central concepts described in this synthesis lecture, this is worthy of the attention of computer
architects when applying our particular bag of tricks.

In particular, insights that arise from understanding and interacting directly with neural
networks have often led us to the most useful observations. Therefore, we encourage computer
architects to play with machine learning broadly rather than merely treating neural nets as a new
“workload” to blindly profile and optimize. Perhaps this is to say that our concept of a workload
needs to be inclusive of additions such as training and hyperparameter optimization, which
would perhaps be locked down in an analog from conventional computer architecture workloads.
We hope the workloads described in this synthesis lecture illustrate this. Indeed, there are often
many degrees of freedom of the arrangement of connectionist models, probably much more so
than in more traditional data processing algorithms. Therefore, there exists tremendous scope
to co-optimize algorithm and architecture, which should be explored by computer architects.

Enabling researchers to freely explore this compelling, but often intimidating, space is
perhaps the central focus of this work. There is no doubt that the emergence of excellent software
tools for machine learning has been a significant boon. In turn, we need additional tools to allow
us to explore the codesign space in terms of algorithms, architecture, and circuit techniques.
Evolution implies that all three facets—models, data, and hardware—are still moving forward
in lockstep. We look forward to the bright future of deep learning, and we believe that accurate,
practical, and fluid workloads, tools, and computer architecture research will continue to play an
important role in its progress.
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