Virtualization Aware File Systems: Getting Beyond the Limitations of
Virtual Disks

Ben Pfaff, Tal Garfinkel, Mendel Rosenblum
{blp,talg,mendel@cs.stanford.edu
Stanford University Department of Computer Science

Abstract is cumbersome [32].

i . . L , On the other hand, existing distributed file systems of-
Virtual disks are the primary storage abstraction |ntosla¥er support for fine-grained controlled sharing, but lack

\{|rtual machln_e env!ronments. They offer many a.ttraghpport for versioning, isolation, mobility, etc. that neak
tive features, including whole system versioning, 'SOIQ/TrtuaI disks so useful
tion, and mobility, that are absent _from current file sys- To bridge the gap bétween these two worlds, we present
e o e e e eranatualzaton avare e SSEVAFS)achiec
whole system rollback, and opaque, offering no practi(:t:laljlre Whlc.h extend Canent|0na! d|§tr|buted file systems to
means of sharing. These problems impose serious |i|n_glude rich semantlgs for versioning, access cointrol, and
itations on virtual disks’ usability, security, and ease (r:Fscopnecteq operappn. Veqtana supports thgdlvelrse uses
management. ?hat virtual disks facilitate, with greater usability, seity

and ease of managment.

To overcome these limitations, we offer Ventanaijra In Vent irtual hi h | with st
tualization aware file systemrchitecture. Ventana com- n ventana, virtual machines are epnemera, with stor-
e allocated on demand as a view of the file system.

bines the file-based storage and sharing benefits of ac?ﬁ_ I tual hines to b il ted and di
ventional distributed file system with the versioning, mo- IS alloWs virital machines to be rapicly created anc dis-

bility, and access control features that make virtual disﬁgrded’ and-mlnlmlzes the storgge and management over-
so compelling. ead of setting up a new machine.

This paper describes the principles behind virtualiza-
tion aware file systems and Ventana. We also present

1 Introduction our prototype implementation of Ventana and explore the
practical benefits that a VAFS offers to VM users and ad-

Today, virtual disks are the primary storage abstractionHnistrators.

virtual machine environments. Virtual disks have many We will begin by examining the properties of virtual

attractive properties, including a simple, powerful modéisks. Section 2 explores their limitations, to motivate ou

for versioning, rollback, mobility, and isolation. Newdesire for file system based virtual machine storage, then

VMs can be created with relative ease. Freeing usersection 3 details virtual disks’ compelling features. Sec-

configure large numbers of VMs to run diverse operdton 4 shows how to integrate these features into a con-

ing systems and applications of their choice, and enablivgtional distributed file system by presenting Ventana,

new usage models in which VMs are specialized for pa-virtualization aware file system. Section 5 focuses on

ticular tasks. our prototype implementation of Ventana and Section 6
Unfortunately, virtual disks also have serious shortcofiemonstrates a usage scenario. Sections 8 and 7 discuss

ings. The low level isolation they offer provides no modéglated and future work and Section 9 concludes.

for shared access to storage, making it difficult to dele-

gate management, leaving users on their own to adminis-)]

ter their growing collections of machines. Rollback, ve2 Motivation

sioning, etc. in virtual disks must take place at the gran-

ularity of a whole disk, making them more prone to misirtual machines are changing the way that users perceive

management and difficult to secure. Finally, virtual disks“machine.” Traditionally, machines were static entities

are unstructured, that is, there is no easy way to viewJaers had one or a few, and each machine was treated

virtual disk’s contents without mounting it. Thus, eveas general-purpose. The design of virtual machines, and

though virtual disks ease creating rich version historiessen their name, has largely been driven by this percep-

finding, retrieving, or deleting files within these histarietion.

But usage of virtual machines is rapidly changing, as 1 1
users discover that a virtual machine can be as temporary
as afile. VMs can be created and destroyed at will, check- i /\
pointed and versioned, passed among users, and special-
ized for particular tasks. This leads to their rapid prolif-) 5 3
eration and raises serious issues for security and manage- (a) (b)
ment [9, 29].

Virtual disks, that is, files used to simulate disks, aldiGURE 1: Snapshots of a VM: (a) first two snapshots;
these more dynamic uses. Virtual disks offer compellifg) after resuming again from snapshot 1, then taking
properties, such as fully encapsulated storage, isolati#ihird snapshot.
and mobility. These and other advantages are discussed
fully in Sgcnon 3. For the m_oment, we highlight thelElesign issues raised in this integration are then covered in
shortcomings as a way to motivate our work. Section 4.

Virtual disks have significant downsides. First, they
provide no simple way to share data in a cooperative fash-
ion, where two or more parties may both read and wri® \/irtual Disk Features
the disk. Delegating management easily requires such a
shared storage abstraction. With the tendency of VMs\Wrtual disks are, above all, backward compatible, be-
proliferate, there is great need for such delegation. cause they provide the same block-level interface as phys-

Second, multiple hierarchical versions of virtual diskgal disks. This section examines other important fea-
are easy to create, but the result is less useful than ames that virtual disks offer, such as versioning, isolati
might hope. Searching through multiple versions of a viind encapsulation, and the usage models that they enable.
tual disk, e.g. to recover lost data or to delete sensitiVais discussion shapes the design for Ventana presented
data, is a cumbersome, manual process. What could tiivihe next section.
ially be accomplished witgr ep andf i nd in normal file
systems requires much manual effort. .

Finally, a virtual disk has no externally visible struc?"l Versioning
ture, so disk versioning is coarse grained. Only a whab2cause any saved version of a virtual machine can be re-
disk, not piecemeal files or directories, can be rolled bagkmed any number of times, VM histories take the form
to an earlier version. This is hardly ever what peoplsf a tree. Consider a user who “checkpoints” or “snap-
actually want, whether they realize it or not. Rollinghots” a VM, permanently saving the current version as
back entire file systems can lead to undesirable side @érsion 1. He uses the VM for a while longer, then check-
fects [9]. Some files should never be rolled back for sequeints it again as version 2. So far, the version history is
rity reasons, including password files and firewall ruldigear, as shown in Figure 1(a). Later, he again resumes
(and other files that control access), binaries that hayem version 1, uses it for a while, then snapshots it an-
received security patches, and files that store encryptisther time as version 3. The tree of VMs now looks like
keys. Other files, like network configuration files, shoulBigure 1(b). The user can resume any version any number
not be rolled back because doing so may impair functiogttimes and create new snapshots based on these existing
ality. Beyond rollback, the version retention policy bestersions, expanding the tree.
applied to a file varies from file to file, as shown by the Virtual disks efficiently support this tree-shaped ver-
Elephant file system [23]. Virtual disks provide no wagjon model. A virtual disk starts with an initial or “base”
to make these distinctions on any finer granularity tharversion that contains all blocks (all-zero blocks may be
whole disk. (Running a versioning file system inside themitted), corresponding to snapshot 1. The base version
VM partially addresses this problem, but does not addresay have any number of “child” versions, and so may
any of the other drawbacks of virtual disks.) those versions recursively. Thus, like virtual machines,

These limitations of virtual disks led us to question whthe versions of virtual disks form a tree. Each child ver-
they are the standard form of storage in virtual envirogion contains only a pointer to its parent and those blocks
ments. We concluded that their most compelling featutteat differ from its parent. This copy-on-write sharing al-
is compatibility. All of their other features can be reatizelows each child version to be stored in space proportional
in a network file system. By adopting a widely used netis the differences between it and its parent. Some imple-
work file system protocol, we can even achieve reasonafientations also support content-based sharing that shares
compatibility. identical blocks regardless of parent/child relationship

The following section details the virtual disk features Virtual disk versioning is useful for short-term recovery
that we wish to integrate into a network file system. THeom mistakes, such as inadvertently deleting or corrupt-

ing files, or for long-term capture of milestones in configd.3 Encapsulation

uration or development of a system. Linear history also

effectively supports these usage models. But hierarchitayirtua! disk fully encapsulates storage state. Entire vir
versions offer additional benefits, described below, U@l disks, and accompanying virtual machine state, can
easily be copied across a network or onto portable media,

o _ _ notebook computers, etc.
Specialization Virtual disks enable versions to be used

for specialization, analogous to the use of inheritance in]) o)
object-oriented languages. Starting from a base disk, turing Dependencies The versioning model of vir-
may fork multiple branches and install a different set §f@l disks is coarse-grained, at the level of an entire disk.
applications in each one for a specialized task, then brarddS has the benefit of capturing all possible dependen-
these for different projects, and so on. This is easily sU€S With no extra effort from the user. Thus, short-term
ported by virtual disks, but today’s file systems have ngndo” using a virtual disk can reliably back out opera-
close analogue. tions with complex dependencies, such as installation or
removal of a major application or device driver, or a com-

. Virtual disk .) plex, automated configuration change.
Non-Persistence Virtual disks support "non-persistent ¢ capture of dependencies also helps in capturing

sLorage. Tg_af(ls(,j they allqw USErS t]? m'.”‘ke Temp%r_e\%estones in the configuration of a system. The snap-
Ch angﬁs to disks l;]rlng arg]yven runota vt:rtua MAachiNg, ot will not broken by subsequent changes in other parts
then throw away those changes once the run is cofjyq system. Instead of old code failing due to changes

plete. This usage pattern is handy in many S'tuat'or?ﬁ"libraries, kernel, or other dependencies, it will work be

from software testing, to teaching environments, to E|e&éuse dependencies are included

tronic “kiosk” appllcat|o_ns. Traditional file systems have Finally, integrating dependencies simplifies and speeds

no concept of non-persistence. branching. To start work on a new version of a project or
try out a new configuration, all the required pieces come

3.2 Isolation along automatically. There is no need to again set up li-

L . . i . . braries or configure a machine.
Everything in a virtual machine, including virtual disks,

exists in a protection domain decoupled from external

constraints and enforcement mechanisms. This suppd@Pility ~ Complete copies of virtual machines retain no
important changes in what users can do. ties to their original locations, ensuring that VMs can be

used disconnected from the network (assuming the soft-
ware inside the VM does not itself require connectivity).
Handling of conflicts has long been an important prob-
th for file systems that support disconnected operation.

Orthogonal Privilege With the contents of the virtual
machine safely decoupled from the outside world, acceg

con_trolls are pUt_I_'EtO the tr;]ands of th% \t/M Ownlertfﬂe\'?irtual disks in different copies of a VM are completely
a Z'ngg user%_. ire ISt uls noUnee ? C?/UI\IZ € erniﬁ(aependent (even if they share a base disk), so that any
a broader notion ot principals. Users ot a are pr nerging or conflict resolution must be done manually.

vided with their own “orthogonal pr|V|Ieg.e domain.” Th'SThe successful use of virtual machines for mobility, de-

al!owg the user to use Whateyer operatmg systems Or 8Bite this, shows that merging is not importantin the com-

pl|cat|or_13 he wants, at his discretion, because he is _ % case. (When merging is important, users will use a

_constramed by the normal access conirol model reStr%’rsion control system.) Instead, disconnected operation

ing who can install what applications. is about mobility, the ability to pick up your machine and
go, which virtual disks provide effectively.

Name Space Isolation VMs can serve in the same role

thatchr oot, BSD| ai | s, application sandboxes, and

similar mechanisms fill. An operating system inside a VM Design

can even be easier to set up and to reason about than more

specialized, OS-specific jails that require special configlhis section describes Ventana, an architecture for a-virtu

ration. A key reason for this is that VMs afford a simplalization aware file system. Ventana resembles a conven-

mechanism for name space isolation, i.e. for preventingtiznal distributed file system in that it provides centratiz

application confined to a VM modifying outside systerstorage for a collection of file trees, allowing transpayenc

resources. The VM has no way to name anything outsidled collaborative sharing among users. Ventana’s distinc-

the VM system without additional privilege, e.g. accesin is its versioning, isolation, and encapsulation feagu

to a shared network. A secure VMM can isolate its VM® support virtualization, based on virtual disk support fo

perfectly. these same features,

The high-level architecture of Ventana can apply to vadisconnected Operation Ventana supports discon-
ious low-level architectures: centralized or decentealiz nected operation through a combination of aggressive
block-structured or object-structured, etc. We resthi t caching and versioning to deal with potential conflicts, al-
section to essential, high-level design elements. The flwwing for a very simple model of mobility. Section 4.4
lowing section discusses specific choices made in our ptalks about disconnected operation in Ventana.
totype.

We adopt the convention that an operating system in-
side a virtual machine isguest OSVentana’s clients run 4.1 Branches
in virtual machines. .) . '

. o . . Some conventional file systems support versioning of files

Ventana offers a rich model for versioning, isolation . : . : . .
and mobility through the following abstractions: and directories. I_Deta|ls about which versions are reta|r_1ed

when older versions are deleted, and how older versions
are named vary. However, in all of them, versioning is
Branches Ventana supports VM-style versioningiinear,” that is, at any point in time there is a single “lat-
through the concept of aranch A private branchis est” version of the file. Accessing linear versions is sim-
created for use primarily by a single VM, making thele because file references can be assumed to refer to the
branch effectively private, like a virtual disk. shared |atest version.
branchis intended for use by multiple VMs. In a shared \yhen versions form a tree that grows in more than one
branch, changes made from one VM are visible to thgrection, simply asking for the latest version of a file can
Othel‘S, so these branch can be used for Sharing ﬁleS, w@ambiguous_ ThUS, the file System must provide some
a conventional network file system. means of allowing users to further express where in the

Non-persistent brancheshose contents do not survivgree to look for a file version.
across reboots are also provided, asvatatile branches 1o appreciate these potential ambiguities, consider an
whose contents are never stored on a central server, g@gimple. Ziggy allows Yves, Xena, and Walt to each fork
are deleted upon migration. These features are especiglijersonalized version of her VM. The version tree for
useful for providing storage for caches and cryptographiGile personalized by each person would look something
material that for efficiency or security reasons, respfke Figure 2(a). If an access to a file by default refers to
tively, should not be stored or migrated. the latest version anywhere in the tree, then each person’s

Branches are detailed in Section 4.1. changes would appear in the others’ VMs. Thus, the tree

of versions would act like a chain of linear versions.
Views Ventana is organized as a collection of file trees. In a different situation, suppose Vince and Uma use a
To instantiate a VM, aiewis constructed by mapping oneshared area in the file system for collaboration. Most of
or more of these trees into a new file system name spdbe. time, they do want to see the latest version of a file.
For example, a base operating system, add-on appli€hus, the version history of such a file should be linear,
tions, and user home directories might each be mountgith each update following up on the previous one, re-
from a separate file tree. sembling Figure 2(b).

This provides a basic model for supporting name spacelhe essential difference between these two cases is in-
isolation and allows for rapid synthesis of new virtual maention. The version tree alone cannot distinguish be-
chines, without the space or managment overhead riwreen desires for shared or personalized versions of the
mally associated with setting up a new virtual disk. file system without knowledge of intention.

Section 4.2 describes views in more detail. Consider another file in Ziggy’s VM. If only Yves has

created a personalized version of the file, then the version

Access Control File permissions in Ventana must saf/€€ 100ks like Figure 2(c). The shape of this tree can-
isfy two kinds of needs: those of the guest OSes to paﬁpt be distinguished from an early version of Figure 2(b).

tion functionality according to the guests’ own principald NUS: Ventana must provide a way for users to specify
and those of users to control access to confidential infdf€ir intentions.

mation. Ventana provides orthogonal typedilef ACLsto
satisfy these needs.

Ventana also offerBranch ACLswhich support com-
mon VM usage patterns, such as one user granting othégatana introducebranchesto resolve the above diffi-
permission to clone a branch and modify the copy (batilty. A branch is a linear chain in the tree of versions.
not the original), andersion ACLswhich alleviate secu- Because a branch is linear, it is meaningful to refer to the
rity problems introduced by file versioning. latest version of a file in a branch, or the version at a par-

Section 4.3 describes access control in Ventana. ticular point in time.

4.1.1 Private and Shared Branches

_ change made by one client in suckhared branclwill be
Zigay Vince immediately visible to t_he others: Of course, propagf’;\tion
of changes between clients is still subject to the ordinary
issues of cache consistency in a network file system.
The distinction between shared and private branches
is simply the number of clients expected to write to the
Uma branch. If necessary, centralized management tools can
Yves Xena Walt modify files in a so-called “private” branch (e.g. to quar-
(a) antine malware) but this is intended to be uncommon. Ei-
ther type of branch might have any number of read-only
Y clients.

Vince A single file might have versions in shared and private
branches. For example, a shared branch used for collab-
oration between several users might be forked off into

i a private branch by another user for some experimental
changes. Later, the private branch could be discarded or
Ziggy consolidated into the shared branch.
Uma
4.1.2 Other Types of Branches
\ 4 i In addition to shared and private branches, there are sev-
eral other useful qualifiers to attach to file trees.
Yves Vince Files in anon-persistent brancare deleted when a VM
(c) (b) is rebooted. These are useful for directories of temporary
files such ag t np.
FIGURE 2: Trees of file versions when (a) Ziggy allows Files in avolatile branchare also deleted on reboot.
Yves, Xena, and Walt to fork personalized versions of They are never stored permanently on the central server,

his VM; (b) Vince and Uma collaboratively edit a file;
and (c) Ziggy’'s VM has been forked by Yves, as in (a),
but not yet by Xena or Walt.

and are deleted when a VM is migrated from one phys-
ical machine to another. They are useful for caches
(e.g./ var/ cache on GNU/Linux) that need not be mi-

grated and for storing security tokens (e.g. Kerberos tick-

A branch begins as an exact copy of the contents &) that should not reside on a central server.
some other branch at the current time, or at a chosen eaMaintaining any version history for some files is an in-
lier time. After creation, the new branch and the branétgrent security risk [9]. For example, the OpenSSL cryp-
that was copied are independent, so that modifying oi@@raphy library stores a “random seed” file in the file sys-
has no effect on the other. tem. If this is stored in a snapshot, every time a given

Branches are created by copying. Thus, multipi@apshotis resumed, the same random seed will be used.
branches may contain the same version of a file. Theldthe worst case, we will see the same sequence of ran-
fore, for a file access to be unambiguous, both a brarf@m numbers on every execution. Even in the best case,
and a file must be specified. Mounting a tree in a virtifs behavior may be easier to predict, and if old versions
alization aware file system requires specifying the brangf® kept, then it may be possible to guess past behavior
to mount. (e.g. keys generated in past runs).

If a single client wants a private copy of the file tree, Ventana offerainversioned filess a solution. Unver-
a private branchis created for its exclusive use. Like &ioned files are never versioned, whether linearly or in
file system on a virtual disk, a private branch will only b@ tree. Changes always evolve monotonically forward
modified by a single client in a single VM, but in other rewith time. Applications for unversioned files include stor-
spects it resembles a conventional network file system.ig cryptographic material, firewall rules, password files,
particular, access to files by entities other than the gus@ny other configuration state where rollback would be
that “owns” the branch is easily possible, enabling ceRtoblematic.
tralized management such as scanning for malware, file
backup, _and tr_acking VM version histories. 4.2 \iews

If multiple clients mount the same branch of a Ventana
file tree, then those clients see a shared view of the fiantana is organized as a set of file trees, each of which
it contains. As in a conventional network file system, @ontains related files. For example, some file trees might

contain root file systems for booting various operatirgyvnership of files based on their function (system bina-
systems (Linux, Windows XP, . ..) and their variants (Deies, print server, web server, mail server, ...), as many
bian, Red Hat, SP1, SP2, ...). Another might contain fisgstems do.

systems for running various local or specialized applica-Ventana solves the problem of access control through
tions. A third would have a hierarchy for each user’s filemultiple types of ACLs:file ACLs version ACLs and

Creating a new VM mainly requires synthesizingew branch ACLs For any access to be allowed, it must be
of the file system for the VM. This is accomplished bpermitted by all three applicable ACLs. Each kind of ACL
mapping one or more trees (or parts of trees) into a neerves a different primary purpose. The three types are de-
namespace. For example, the Debian root file systenribed individually below.
might be combined with a set of applications and user
home 9|r_ector|es. Thu”s_, OSes, apphcaﬂqns, and users 31 File ACLs
easily “mix and match” in a Ventana environment.

Whether each file tree in a view is mounted in a shar&dle ACLs provide protection on files and directories that
or a private branch depends on the user’s intentions. Tiers conventionally expect and OSes conventionally pro-
root file system and applications could be mounted vide. Ventana supports two types of file ACLs that pro-
private branches to allow the user to update and modifigle orthogonal privilegesGuest file ACLsre primarily
his own system configuration. Alternately, they could tfer guest OS use. Guest OSes have the same level of con-
mounted in shared branches (probably read-only) to @bl over guest file ACLs that they do over permissions in
low maintenance to be done by a third party. In the lattawirtual disk. In contrasgerver file ACLprovide protec-
case, some parts of the file system would still need to fien that guest OSes cannot bypass, similar to permissions
private, e.g/ var under GNU/Linux. Home directoriesenforced by a conventional network file server.
would likely be shared, to allow the user to see a con-Both types of file ACLs apply to individual files. They
sistent view of his and others’ files regardless of the Viire versioned in the same way as other file metadata.
viewing them. Thus, revising a file ACL creates a new version of the file
with the new file ACL. The old version of the file contin-
ues to have the old file ACL.

Guest file ACLs are managed and enforced by the guest
Access control is different in virtual disks and networfS using its own rules and principals. Ventana merely
file systems. The guest OS controls every byte on a virovides storage. These ACLs are expressed in the guest
tual disk. Itis responsible for tracking ownership and pe®S’s preferred form, e.g. Unix-like guest OSes use their
missions and making access control decisions in the filgtive 9-bitr wxr wxr wx access control lists. Guest file
system. The virtual disk itself has no access control ®8CLs allow the guest OS to divide up file privileges based
sponsibility. A VAFS cannot use this scheme, because @f roles.
lowing every guest OS to access any file, even those thaBerver file ACLs, the other type of file ACL, are man-
belong to other VMs, is obviously unacceptable. Theeged and enforced by Ventana and stored in Ventana’'s
must be enough control in the system to prevent abuseown format. Server file ACLs allow users to control ac-

Access control in a conventional network file systegess to files across all file system clients.
is the reverse of the situation for a virtual disk. The file
server is uItimater_ in charge of access control. As a ng{t:;)_z Version ACLs
work file system client, a guest OS can deny access to Iits
own processes, but it cannot override the server’s refudalersion ACL applies to a version of a file. They are
to grant access. Commonly, NFS servers deny accesstased as part of a version, not as file metadata, so that
the superuser (“squash root”) and CIFS and AFS servehanging a version ACL does not create a new file version.
grant access only via principals authenticated to the nEtrery version of a file has an independent version ACL.
work. Conversely, when multiple branches contain the same ver-

This style of access control is also, by itself, inapprsion of a file, that single version ACL applies in each case.
priate in a VAFS. Ventana should not deny a guest O&rsion ACLs are not versioned themselves. Like server
control over its own binaries, libraries, and applicationfile ACLs, version ACLs are enforced by Ventana itself.

If these were, for example, stored on an NFS server conVersion ACLs are Ventana’s solution to a class of secu-
figured to “squash root,” the guest OS would not be ahligéy problem common to all versioning file systems. Sup-
to create or access any files as the superuser. If they wawse Terry creates a file and writes confidential data to
stored on a CIFS or AFS server, the guest OS would otily Soon afterward, Terry realizes that the file’s permis-
be able to store files as users authenticated to the netwsitns incorrectly allow Sally to read it, so he corrects the
In practice this would prevent the guest from dividing upermissions. In a file system without versioning, the file

4.3 Access Control

would then be safe from Sally, as long as she had not isting the appropriate version ACL.
ready read it. If the permissions on older file versions areThe “c” (change) right is required to change a branch
fixed, however, Sally can still access the older version ACL. It is implicitly held by the owner of a branch.
the file.
A partial solution to Terry’s problem is to grant access)]
to older versions based on the current version's permds4 Disconnected Operation

sions, as Network Appliance filers do [30]. Now, suppose . o
Terry edits a file to remove confidential information, theMirtual disks can be used while disconnected from the net-

grants read permission to Sally. Under this rule, Sally c49"k. as long as the entire disk has been copied onto the
then view the older, confidential versions of the file, s§jSconnected machine. Thus, for a virtualization aware
this rule is also flawed. file system to be as widely useful as a virtual disk, it must
Another idea is to add a permission bit to each file@SC gracefully tolerate network disconnection.
metadata that determines whether a user may read a filg€séarch in network file systems has identified a num-
once it has been superseded by a newer version, agqﬁof features required for successful disconnected oper-
the S4 self-securing storage system [26]. Unfortunateffion [16, 15, 12]. Many of these features apply to Ven-
modifying permissions creates a new version (as dd@éga in the same way as conventional network file sys-
any change to file metadata) and only the new versiorf§Ns- Ventana, for example, can cache file system data
changed. Thus, this permission bit is effective only if tré1d metadata on disk, which allows it to store enough data
user sets it before writing confidential data, so it wou'd metadata to last the period of disconnection. Our pro-
not protect Terry. totype caches entire fllgs, not individual bI_ocks, to avpld
Only two version rights exist. The “r’ (read) versiorthe need to allow reading only part of a file during dis-

right is Ventana’s solution to Terry’s problem. At an onnection, which is surprising at best. Ventana can also
time, Terry can revoke the read right on old versions %pﬁerchanges to files and directories and write them back

files he has created, preventing access to those file WRON reconnection. Some details of these features of Ven-
sions. The “c” (change) right is required to change a vdpna are included in the description of our prototype (see
sion ACL. It is implicitly held by the creator of a ver-S€ction 5).

sion. (Any given file version is immutable, so there is no Handling conflicts, that is, different changes to the
“write” right.) same files, is a thorny issue in a design for disconnected

operation. Fortunately, earlier studies of disconnection
have shown conflicts to be rare in practice [16]. In Ven-
4.3.3 Branch ACLs tana conflicts may be even rarer, because they cannot oc-

A branch ACL applies to all of the files in a particulaF””” private branches. Therefore, Ventana does not try to

branch and controls access to current and older versi§iiglligently handle conflicts. Instead, changes by discon

of files. Like version ACLs. branch ACLs are accessdifcted clients are committed at the time of reconnection,

with special tools and enforced by Ventana. regardless of whether those files have been changed in the
The “n” (newest) branch right permits read access to t|;neeantime by other clients. If manual merging is needed in

latest version of files in a branch. It also controls forking2r€d branches, itis still possible based on old versions
the latest version of the branch of the files. To make it easy to identify file versions just

In addition to “n”, the *“w” (write) right is required to before reconnection, Ventana creates a new branch just

modify any files within a branch. A user who has “n” buiPefore it commits the disconnected changes.

not “w” may fork the branch. Then, as owner of the new

branch, he may change its ACL and modify the files in

the new branch. This does not introduce a security hée Prototype

because the user may only modify the files in the new

branch, not those in the old branch. The user’s accdssshow that our ideas can be realized in a practical and

to files in the new branch are, of course, still subject &fficient way, we developed a simple prototype of Ven-

Ventana file ACLs and version ACLs. tana. This section describes the prototype’s design and
The “0” (old) right is required to access old versions afse.

files within a branch. This right offers an alternate solu- The Ventana prototype is written in C. We developed it

tion to Terry’s problem of insecure access to old versionsmder Debian GNU/Linux “unstable” ax86 PCs running

If Terry controls the branch in which the old versions weleinux 2.6x, using VMware Workstation 5.0 as VMM.

created, then he can use its branch ACL to prevent otfidgre servers in the prototype run as Linux user processes

users from accessing old versions of any file in the braneimd communicate over TCP using the GNU C library im-

This is thus a simpler but less focused approach than atbmentation of ONC RPC [25].

Client Host number. The old object is not changed and it may still
be accessed under its original object number. However,
this does not mean that every intermediate change takes
VM 1 VMN up space in the object store, because client hosts (that
is, machines that run Ventana clients in VMs) consolidate
NFESV3 changes before they commit a new object.

As in an ordinary file system, each file is identified by

an inode number, which is again a 128-bit, randomly se-
Host Manager lected integer. Each file may have many versions across
many branches. When a client host needs to know what
ﬁ A K object stores the latest version of a file in a particular
branch, it consults theersion databasdy contacting
Cugtom . .
Protheols the r_netadata server The metadata server malntaln_s the
version database that tracks the versions of each file, the
branch databasthat tracks the file system'’s branch struc-
ture, the database that associates branch names and num-
\ 4 bers, and the database that stores VM configurations.
Metadata Object Object .)
Server Server 1 Server N 5.2 Client Architecture

The host manageis the client-side part of the Ventana
Central Servers prototype. One copy of the host manager runs on each
platform and services any number of local client VMs.
FIGURE 3: Structure of Ventana. Each machine whose Our prototype does not encapsulate the host manager it-
VMs use Ventana runs a host manager. The host man- self in a VM.
ager talks to the VMs over NFSv3 and to Ventana's For compatibility with existing clients, the host man-
centralized metadata and object servers over a cus- ager includes a NFSv3 [2] server for clients to use for file
tom protocol. access. NFSv3 is both easy to implement and widely sup-
ported, even on Windows (with Microsoft's free Services
for Unix).

The host manager maintains in-memory and on-disk
caches of file system data and metadata. Objects may be
cached indefinitely because they are immutable. Objects
5.1 Server Architecture are cached in their entirety to simplify implementing the

prototype and to enable disconnected operation (see Sec-
A conventional file system operates on what Unix callstian 5.2.3). Records in the version and branch databases
block device, that is, an array of numbered blocks. Odfe also immutable, except for the ACLs they include,
prototype is instead layered on top of albject storg10, which change rarely. In a shared branch, records added
7]. An object store contairgbjects sparse arrays of byteso the version database to announce a new file version are
numbered from zero to infinity, similar to files. In they cache consistency issue, so the host manager checks the
Ventana prototype, objects are immutable. version database for new versions on each access (except

The object store consists of one or molgect servers when disconnected). In a private branch, normally only
each of which stores some of the file system’s objects amake client modifies the branch at a time, so that client’s
provides a network interface for storing new objects amdst manager can cache data in the branch for a long time
retrieving the contents of old ones. Objects are identifiést until the client VM is migrated to another host), al-
by randomly selected 128-bit integers caltggject num- though other hosts should check for updates more often.
bers Object numbers are generated randomly to allowThe host manager also buffers file writes. When a client
them to be chosen without coordination between hosigites a file, the host manager writes the modified file to
They are as wide as 128 bits because of the “birthday pai#e local disk. Further changes to the file are also writ-
dox,” which states that a series2f/2 randomly selected ten to the same file. If the client requests that writes be
n-bit numbers will probably contain a duplicate [24]. committed to stable storage, e.g. to allow the guest to

Each version of a file’s data or metadata is stored fagsh its buffer cache or to honor &sync call, then the
an object. When a file’s data or metadata is changed, tteesst manager commits the modified files to the local disk.
new version is stored as a new object under a new obj€ammitment does not perform a round trip on a physical

Figure 3 outlines Ventana’s structure, which is d
scribed in more detail below.

network. - pxe-kernel debian:/boot/vm inuz
-ram 64

5.2.1 Branch Snapshots Ventana provides a utility to start a VM based on such

After some amount of time, the host manager takes a sn@psPecification. - Given the above VM specification, it

shot of outstanding changes within a branch. Users c4Ruld Sft Upba net?]Norkk bocTt_ﬁrtl)wror}m(;:T:lt_(usmg thﬁ PXE
also explicitly create (and optionally name) branch sna! r_otgco) to boot the kernel ihboot viiinuz In the
bi an branch. Because Ventana is implemented as a

shots. A snapshot of a branch is created simply by forki\Pg :)
of the branch, which has the desired effect because foft&PPEr aro_und VMWQre _\Norkstatlon_ 50 it would also
ing a branch copies its content. In fact, copying occuydite a configuration _flle in Workstation’s own fqrmat,
on a copy-on-write basis, so that the first write to any H']a.en launch Workstation. Th.e user would then interact
the files in the snapshot creates and modifies a new c8p§f the VM through Workstation.
of the file. Creating a branch also inserts a record in the
branch database. VM Snapshots Ventana supports snapshots of VMs just
After it takes a snapshot, the host manager uploads #sdt does snapshots of brancRessnapshot of a VM is a
objects it contains into the object store. Then, it sen@isapshot of each branch in the VM’s view combined with
records for the new file versions to a metadata servaisnapshot of the VM’s runtime state (RAM, device state,
which commits them to the version database in a single). To create a snapshot, the user suspends the VM using
atomic transaction. The changes are now visible to othédviware Workstation’s user interface, exits Workstation,
clients. and invokes Ventana'’s snapshot utility. Ventana snapshots
The host manager assumes that private branch datth&branches included in the VM, copies the runtime state
relatively uninteresting to clients on other hosts, sdkieta file written by Workstation into Ventana as an unnamed
snapshots in private branches relatively rarely (everyfig, and saves a description of the view and a pointer to
minutes). On the other hand, other users may be activillg suspend file.
using files in shared branches, so the host manager takdsater, another Ventana utility may be used to resume
snapshots often (every 3 seconds). from the snapshot. When a VM snapshot is resumed, pri-
Because branch snapshots are actually branches théate branches have the contents that they did when the
selves, older versions of files can be viewed using regut@apshot was taken, and shared branches are up-to-date.
file commands by first adding the snapshot branch to tdentana also allows resuming with a “frozen” copy of
view in use. Branches created as snapshots are by deffu@ed branches as of the time of the snapshot. Snapshots
read-only, to reduce the chance of later confusion if a file&n be resumed any number of times, so resuming forks
“older version” actually turns out to have been modifiedeach private branch in the VM for repeatability.

5.2.2 Views and VMs 5.2.3 Disconnected Operation

Multiple branches can be composed into a view. VentahB€ host manager supports disconnected operation, that
describes a view with a simple text format that resembli8s file access is allowed even without connectivity to the

a Unixf st ab, e.g.: metadata and object server. Of course, access is degraded
during disconnection: only cached files may be read, and
debi an: / / shared ro changes in shared branches by clients on the other hosts
home-dirs:/ / hone shared rw are not visible. Write access is unimpeded. Discon-
bob-version:/ / pr oj private rw nected operation is implemented in the host manager, not

in clients, so all clients support disconnected operation.

Each line describes a mapping between a branch, or a sulwe designed the prototype with disconnected opera-
set of a branch, and a directory within the view. We sajon in mind. Caching eliminates the need to consult the
that each branch iattachedto its directory in the view. metadata and object servers for most operations, and on-
Here is an example: disk caching allows for a large enough cache to be useful

A VM comprises a view, plus configuration parametefer extended disconnection. Whole-object caching avoids
for networking, system boot, and so on. A VM could bsurprising semantics that would allow only part of a file to
described by the view above followed by these additiortsé read. Write buffering allows writing back changes to
options: be delayed until reconnection.

1we use “attach” instead of “mount” because an OS kernel imple 2VMware Workstation has its own snapshot capability. Veatamn-
ments mounts, whereas a Ventana OS client is unaware ofeitgsvi plements its own snapshot mechanism to demonstrate how igh¢ lne
composition. integrated into a VAFS.

We have not implemented user-configurable “hoargystem operation. Thleusr tree is an example of a hier-
ing” policies in the prototype. Implementing them as derchy that normally need not be modifiable.
scribed by Kistler et al. [16] would be a logical extension. The / home and/t np trees are the most prominent
examples of hierarchies that must be writable, so Bob’s
. VM attaches a writable shared branch and a non-persistent
6 Usage Scenario branch, respectively, at these points. Keywomhe in

,) . place of a branch nameint np’s entry causes an initially
This section presents a scenario for use of Ventana %r?rqpty branch to be attached.

shows how,_ in this.setting, Ventana qﬁers a better solutionThe filename/var hierarchy must be writable and persis-
than both virtual disks and network file systems. tent, and it cannot be shared between machines. Thus, Al-
ice’s utility handled var by creating a fork of the Ubuntu
6.1 Scenario branch, then attaching the forked brandhisar privately
i) in the VM. The utility does not give the forked branch a

We set our scene at Widgamatic, a manufacturer and gigie o the VM specification gives the 128-bit branch
tributor of widgets. identifier as 32 hexadecimal digits.

Bob needs to use the company’s CAD software to de-
6.1.1 Alice the Administrator sign widgets, so the CAD software distribution is attached

Alice is Widgamatic’s system administrator in charge Jpto his VM. , i o)
virtual machines. Software used at Widgamatic has di-MOSt of the VM's configuration files irl et ¢ receive
verse requirements, and Widgamatic’s employees h(,mg[r contents from the Ubuntu branch attached at the
widely varying preferences. Alice wants to accommd/M's foot. Some, such aset c/resol v. conf and
date everyone as much as she can, so she supports'Bf-¢/ Passwd shown here, are attached from Alice’s
ious operating systems: Debian, Ubuntu, Red Hat, ajgmmon files” branch. This allows Alice to update a
SUSE distributions of GNU/Linux, plus Windows XP andiein Just_that branch and have the changes automatically
Windows Server 2003. For each of these, Alice createfflected in every VM. A few, such fiSEt ¢/ host nane
shared branch and installs the base OS and some cSApWN here, are attached from private branches to allow

monly used applications. She sets the branch ACLstﬂ?ir contents to be customized for the particular VM. Fi-
allow any user to read, but not write, these branches nally, data that should not be versioned at all, such as the
Alice creates a second shared branch callBHvate hostkey used to identify an SSH server, is attached

conmon, to hold configuration files that should b rom an unversioned branch. The latter two branches are,

uniform company-wide, such asetc/hosts and ke tht-,:‘/var branch, unnamed.. o
/etclresol v. conf . Again, she sets branch ACLs to B0P'S VM, and VMs created in similar ways, would
grant other users read-only access. automatically receive the benefits of changes and updates

Alice also creates a shared branch for user home dir8t@de by Alice as soon as she made them. They would also
tories, callechorre- di r s, and adds a directory for eact?€€ changes made by other users to their home directories
Widgamatic user in the root of this branch. Alice sets tift$ SOON as they occur.
branch ACL to allow any user to read or write the branch,
and server file ACLs so that, by default, each user can.3 Carl’'s Custom VM

read or write only his (or her) home directory. Users can

of course modify server file ACLs in their home directo@rl wants more control over his VM. He prefers Debian,
ries as needed. which is available as a branch maintained by Alice, so he

can base his VM upon Alice’s. Carl forks a private branch
from Alice’s Debian branch and names the new branch
carl - debi an.
Bob is a Widgamatic user with basic needs. Bob uses & arl integrates his branch into a VM of his own, us-
utility written by Alice to create a Linux-based VM pri-ing a specification that in part looks like Figure 5. Carl
marily from shared branches. Figure 4 shows part of theuld write this specification by hand, or he might choose
specification written by this utility. to start from one, like Bob’s, generated by Alice’s util-
The root of Bob’s VM is attached to the Ubuntu sharety. Using a private branch as root directory means that
branch created by Alice. This branch’s ACL prevents BdBarl need not attach private branches on top wér or
modifying files in the branch (it is attached read-only bé-et ¢/ host name, making Carl’s specification shorter
sides). The Linux file system is well suited for this situghan Bob's.
tion, because its top-level hierarchies segregate filebas Even though Carl’s base operating system is private,
on whether they can be attached read-only during norn@arl’s VM still attaches many of the same shared branches

6.1.2 Bob’s Basic VM

ubunt u: / / shared, ro

honme-dirs:/ / hone shar ed
none /tnp non- per si st ent
12f f 2f d27656¢c7c7e07c5eale2da367f: / var [var private
cad-soft:/ / opt/ cad-soft shared, ro
common: /etc/resol v.conf /etc/resolv.conf shared,ro
common: / et ¢/ passwd / et c/ passwd shared, ro
8368e293a23163f 6d2b2c27aad2b6640: / et ¢/ host nane / et c/ host nane private

b6236341bd1014777c1a54a8d2d03f 7c: / et ¢/ ssh/ host _key /et c/ ssh/ host _key unver si oned

FIGURE 4: Partial specification of the view for Bob’s basic VM.

carl -debi an:/ / private
home-dirs:/ / home shar ed
none /tnp non- per si st ent
conmon: /etc/resolv.conf /etc/resolv.conf shared,ro
common: / et ¢/ passwd / et c/ passwd shared, ro

b6236341bd1014777c1a54a8d2d03f 7c: / et ¢/ ssh/ host _key /et c/ ssh/ host _key unver si oned
FIGURE 5: Partial specification of the view for Carl’s custom VM.

that Bob’s VM does. Shared home directories and comeading it even as the older version of a file, use a branch
mon configuration files ease Carl’'s administrative burd&€L to deny any access to the branch that contains it (per-
just as they do Bob’s. He could choose to keep privataps appropriate for long-unused branches), and so on.
copies of these files, but to little obvious benefit. Alice can take these steps for any file stored in Ventana,
Carl bears more of the burden of his own system agthether contained in a VM that is powered on or off or
ministration, because Alice’s changes to shared branchespended, or even if it is not in any VM or view at all.
do not automatically propagate to his private branch. CarlThird, once the immediate problem is solved, Alice can
could use Ventana to observe how pamebi an branch work to prevent its future recurrence. She can configure
changed since the fork. More likely in practice, Alice malware scanner to examine each new version of a file
could monitor forked branches to ensure that importaadded to Ventana as to whether it is the vulnerable pro-
patches are applied in a timely fashion. gram and, if so, alert Alice or its owner (or take some
other action). Thus, Alice has reasonable assurance that if
this particular problem recurs, it can be quickly detected
and fixed.

One morning Alice reads a bulletin announcing a critical

security vulnerability in Mozilla Firefox. Alice _mug do6_2 Benefits for Widgamatic

her best to make sure that the vulnerable version is prop-

erly patched in every VM. In a VM environment base@/e now consider how Alice, Bob, Carl, and everyone else

on virtual disks, this would be a daunting task. Ventanat, Widgamatic benefit from using Ventana instead of vir-

however, reduces the magnitude of the problem consideral disks. We use virtual disks as our main basis of com-

ably. parison because Ventana's advantages over conventional
First, Alice patches the branches that she maintaidsstributed file systems are more straightforward: they are

This immediately fixes VMs that use Alice’s sharethe versioning, isolation, and encapsulation features tha

branches, such as Bob’s VM. we intentionally added to it and have already described in
Second, Alice can take steps to fix others’ VMs as wetletail.

Ventana puts a spectrum of options at her disposal. Alice

could dq nothing and assume that Bob a_nd Carl wiI_I ab 1 central Storage

responsibly. She could scan VMs for the insecure binary

and email their owners (she can even check up on théiseasy for Bob or Carl to create virtual machines. When

later). She could patch the insecure binaries herself. Hirtual disks are used, it's also easy for Bob or Carl to copy

nally, she has many options for denying access to copibem to a physical machine or a removable medium, then

of the insecure binary: use a server file ACL to deny reddse or forget about the machine or the medium. If the

ing or executing it, use a Ventana version ACL to prevewirtual machine is rediscovered later, it may be missing

6.1.4 Alice in Action

fixes for important security problems that have arisen §2.4 Security

the meantime. . . o : .
If Widgamatic's VMs were stored in virtual disks, Alice

Ventana’s central storage makes it more difficult to Io%beould have a hard time scanning them for malware. She

or entirely forget about VMs, heading off the problem be-

. . ould request that users run a malware scanner inside each
fqre It oceurs. cher dedicated VM storage systems alc%f)their VMs, but it would be difficult for her to enforce
yield this benefit [28, 29].

this rule or ensure that the scanner were kept up-to-date.
Even if Bob and Carl carefully followed her instructions,
VMs powered on after being off for a long time would be
susceptible to vulnerabilities discovered in the meantime
Some of Alice’s system administration tasks benefit froumntil they were updated.
“looking inside” storage. Consider backup. Alice only Ventana allows Alice to deploy a scanner that can ex-
has one easy way to back up virtual disks: as a collectiamine each new version of a file in selected branches, or
of disk blocks. However, file backups are more convenigntall branches. Conversely, when new vulnerabilities are
for Bob or Carl, who want to restore files, not file systefiound, it can scan old versions of files as well as current
blocks. It is difficult even to determine which version ofersions (as time is available). If malware is detected
a virtual disk contains the file that Bob or Carl wants titn Bob’s branch, the scanner could alert Bob (or Alice),
restore. Doing partial backups of virtual disks, e.g. ®elete the file, change the file’s permission, or remove the
exclude blocks from deleted temporary files or pagirirus from the file. (Even in a private branch, files may be
files, is also difficult. These features can be implementegternally modified, although it takes longer for changes
for virtual disks, but only with an intimate knowledge ofo propagate in each direction.)
file system on-disk data structures, which are subject toVentana provides another important benefit for scan-
change from one version or variant of a guest operatingrs: the scanner operates in a protection domain separate
system to another. from any guest operating system. When virtual disks store
Whereas a virtual disk is simply an array of bytes, VelYMs, scanners normally run as part of the guest operating
tana is organized into files and directories. The highg&ystem because, as we've seen, even read-only access to
level of structure makes it simple to look inside a Ventar@gtive virtual disks has pitfalls. But this allows a “root
file system. Thus, file backups require no special effdff’ to subvert the guest operating system and the mal-
to implement in Ventana (and distributed file systems yare scanner in a single step. If Alice runs her scanner in
general). Features like restoring particular files or partg different VM, it must be compromised separately. Alice

6.2.2 Looking Inside Storage

backups are correspondingly easy to implement. could even configure the scanner to run in non-persistent
mode, so rebooting it would fix any compromise, at least
temporarily.

6.2.3 Sharing A host-based intrusion detection system could use a “lie

detector” test that compares the file system seen by pro-

Sharing is an important feature of storage systems. BQbyng running inside the VM against the file system in

and Carl might wish to collaborate on a project, or Calntana to detect root kits, as in LiveWire [8].
might ask Alice to install some software in his VM for

him. Virtual disks make sharing difficult. Consider hOVé
Alice could access Carl's files if they were stored on a
virtual disk. If Carl's VM were powered on or suspende&uppose Bob wants to look at the history of a document
modifying his file system would risk the guest OS’s inhe’s been working on for some time. He wants to retrieve
tegrity, because the interaction with the guest's data amed compare all its earlier versions. One option for Bob
metadata caches would be unpredictable. Even reggto read the old versions directly from older versions of
ing Carl’s file system would be unreliable while it washe virtual disk, but this requires accurate interpretatio
changing, e.g. consider the race condition if a block frogt the file system, which is difficult to maintain over time.

a deleted directory was reused to store an ordinary flemore likely alternative for Bob is to resume or power
block. on each older version of the VM, then use the guest OS
On the other hand, Ventana gives Alice full read antd copy the file in that old VM somewhere convenient.

write access to virtual machines, even those that are dmfortunately, this can take a lot of time, especially if the
line or suspended. Alice can examine or modify Carl¢M has to boot, and every older version takes extra effort.
files, whether the VM or VMs that use them are running, With Ventana, Bob can attach all the older versions
suspended, or powered off, and Bob and Carl can warkhis branch directly to his view. After that, the differ-
together on their project without introducing any speciaht versions can be accessed with normal file commands:
new risks. di ff to view differences between versiongr ep to

2.5 Access to Multiple Versions

search the history, and so on. Bob can also recover oldeMany versioning file systems exist, in research systems
versions simply by copying them into the his workinguch as Cedar, Elephant, and S4, and in production sys-
branch. tems such as VMS [11, 23, 26, 18]. Online file archives,

such as Venti, and the backup features of Network Appli-

ance filers might be considered an extension of this cat-
7 Future Work egory [22, 14]. These systems support only linear pro-

gressions of versions, whereas Ventana supports the tree-
Ventana demonstrates the principles behind a VAFS, Istrtuctured versions necessary to properly handle the nat-
many important issues remain to be explored. We hgral evolution of virtual machines, as discussed in Sec-
lieve that VAFS scalability and performance raise issutisn 4.1. The version retention policies introduced in Ele-
not found in conventional distributed file systems. Dedgghant might be usefully applied to Ventana.

chains of branches, for example, seem to introduce th&entana’s tree-structured version model is related to the
need for compromise between storage efficiency and figde| used in revision control systems, such as CVS [3].
file lookup performance. A version created by merging versions from different
Storage reuse is another area for further work. The Vagianches has more than one parent, so versions in revision
tana prototype does not have any mechanism for deletighirol systems are actually structured as directed acycli
data. We have not yet found a way to efficiently suppaitaphs. Revision control systems would generally not be
both creation of branches and the determination that §dod “back end” storage for Ventana or another VAFS be-
object is no longer in use in any branch. cause they typically store only a single “latest” version of
a file for efficient retrieval. Retrieving other versions; in
cluding the latest version of files in branches other than
8 Related Work the “main branch,” requires application of patches [27].

_ _ Files marked “binary,” however, often include each revi-
Parallax [29] demonstrates that virtual disks can be storg@hn in full, without using patches, so use of “binary” files

centrally with very high scalability. Parallax allows virmight be an acceptable choice.

tual disks to be efficiently used and modified in a copy- Vesta [13] is a software configuration management sys-

on-write fashion by many users. Unlike Ventana, it do?s . : ? . ;
" . .- fem whose primary file access interface is over NFS, like
not allow cooperative sharing among users, nor does it €h-

. . Ventana. Dependency tracking in Vesta allows for precise,
hance the transparency or improve the granularity of vtz . - .
tual disks igh-performance, repeatable builds. Similar tracking by
VMware ESX Server includes the VMES file systema VAFS mlght enable better.understandlng of which files

L ; . . : apd versions should be retained over the long term.
which is designed for storing large files such as virtua . o . .
disks [28]. It does not provide any of the features of a We proposed extending a distributed file system, which
virtualization aware file system. already supports fine-grained sharing, by adding version-

Live migration of virtual machines [4] requires thénd that supports virtual machines. An alternative is to
VM's storage to be available on the network. Ventana, 840w virtual disks, which already support VM-style ver-

a distributed file system particularly suited to VM storag&!oning, to support sharmg_ by adding a |QCk'n9 layer, as
provides a reasonable approach. can be done for physical disks [19, 1]. This approach re-
Whitaker et al. [31, 32] used whole-system versionir‘FﬁJireS committing to a part_icular 0n—di_s|_< format, whi_ch
to mechanically discover the origin of a problem by doin@'akes changes and extensions more difficult. It also either
binary search through the history of a system. They ndgsuires each client to understand the disk format, which

the “semantic gap” in trying to relate changes to a virtui§l @ compatibility issue, or use of a network proxy that
disk with higher-level actions. We believe that a VAFSj,Oe?' understand the format. In the latter case the proxy is
in which changes to files and directories may be obsenfgHivalent to Ventana's host manager, and storage under-
directly, could help to reduce this semantic gap. lying it is really an implementation detail.

The Ventana prototype of course has much in commonA “union” or “overlay” file system [20, 17] can stack a
with other file systems. Object stores are an increasinglyitable file system above layers of read-only file systems.
common way to structure file systems [10, 7]. Objectkthe top layer is the current branch and lower layers are
in Ventana are immutable, which is unusual among otite branches that it was forked from, something like tree
ject stores, although in this respect Ventana resemblessioning can be obtained. The effect is imperfect be-
the Cedar file system and, more recently, EMC'’s Centarause changes to lower layers can “show through” to the
system [11, 6]. PVFS2, a network file system for highep. Symbolic link farms can also stack layers of directo-
bandwidth parallel file I/0O, is another file system that usegs, often for multi-architecture software builds [5],tbu
Berkeley DB databases to store file system metadata [ditlk farms are not transparent to the user or software.

9 Conclusion [14]
Ventana is avirtualization awaredistributed file system [15]
that provides the powerful versioning, security, and mo-
bility properties of virtual disks, while overcoming their
coarse-grained versioning and their opacity that frustrat'6!
cooperative sharing. This allows Ventana to support the
rich usage models facilitated by virtual machines, whil]
avoiding the security pitfalls, management difficulties,
and usability problems that virtual disks suffer from.

We believe that virtualization aware file systems hayg
an important role to play in the evolution of virtual ma-
chines from their physical machine inspired roots, towargb]
being a more lightweight, flexible, and general-purpose
mechanism for organizing systems.

[20]

References
[1] R. C. Burns. Data Management in a Distributed File System fo[21]
Storage Area Network$hD thesis, University of California Santa
Cruz, March 2000.

[22]
[2] B. Callaghan, B. Pawlowski, and P. Staubach. NFS ver3ipro-
tocol specification. RFC 1813, June 1995.
[3] P. Cederqvist et alVersion Management with Cy2005.
[23]

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Lichpa
I. Pratt, and A. Warfield. Live migration of virtual machinem
2nd Symposium on Network Systems Design and Implementation

USENIX, 2005.

P. Eggert. Multi-architecture builds using GNtthke. http:/
make.paulandlesley.org/multi-arch.html, August 2000.

[24]
[25]

[5]
[6] EMC Corporation. EMC Centera content addressed stosgge
tem. http://www.emc.com/products/systems/centera.jsp, Oc-
tober 2005.

M. Factor, K. Meth, D. Naor, O. Rodeh, and J. Satran. Objec
storage: The future building block for storage systems2nd In-
ternational IEEE Symposium on Mass Storage Systems and Tdéff]
nologies Sardinia, Italy, July 2005.

[26]

(7]

[8] T. Garfinkel and M. Rosenblum. A virtual machine introspen [28]
based architecture for intrusion detection. Aroc. Network and

Distributed Systems Security Symposi&ebruary 2003.

T. Garfinkel and M. Rosenblum. When virtual is harder theal:
Security challenges in virtual machine based computingremv
ments. InLOth Workshop on Hot Topics in Operating Systelvhey
2005.

G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, E. M. Fberg,
H. Gobioff, C. Lee, B. Ozceri, E. Riedel, D. Rochberg, andek. Z[31]
lenka. File server scaling with network-attached secusksdi In
International Conference on Measurement & Modeling of Com-
puter Systems (SIGMETRIC®ages 272284, New York, NY,
USA, 1997. ACM Press.

D. K. Gifford, R. M. Needham, and M. D. Schroeder. The @ed
file system.Commununications of the AGK1(3):288—-298, 1988.

J. S. Heidemann, T. W. Page, Jr., R. G. Guy, and G. J. Pdpek
marily disconnected operation: Experiences with Ficuswork-
shop on the Management of Replicated Da@ges 2-5, 1992.

A. Heydon, R. Levin, T. Mann, and Y. Yu. The Vesta appioaz
software configuration management. Research Report 168; Co
paq Systems Research Center, March 2001.

[29]
El

[30]

[10]

(32]
[11]

[12]

[13]

D. Hitz, J. Lau, and M. Malcolm. File system design for/dRS
file server appliance. Technical report, Network Appligrit@95.

L. Huston and P. Honeyman. Disconnected operation fBEA
In First Usenix Symposium on Mobile and Location-Independent
Computing pages 1-10, August 1994.

J. J. Kistler and M. Satyanarayanan. Disconnectedabiper in
the Coda file system ACM Transactions on Computer Systems
10(1):3-25, February 1992.

M. Klotzbuecher. minifo: The mini fanout overlay file system.
http://www.denx.de/twiki/bin/view/Know/MiniFOHome, Octo-
ber 2005.

K. McCoy. VMS file system internal®igital Press, Newton, MA,
USA, 1990.

T. McGregor and J. Cleary. A block-based network filetegs
In 21st Australasian Computer Science Conferenagdume 20
of Australian Computer Science Communicatiquesges 133—144,
Perth, February 1998. Springer.

R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plaino®n
Bell Labs. InSummer UKUUG Conferencpages 1-9, London,
July 1990.

PVFS2: Parallel virtual file system Bttp://www.pvfs.org/pvfs2,
October 2005.

S. Quinlan and S. Dorward. Venti: A new approach to ashi
storage. INFAST '02: Proceedings of the Conference on File and
Storage Technologiepages 89-101, Berkeley, CA, USA, 2002.
USENIX Association.

D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. VejtBh W.
Carton, and J. Ofir. Deciding when to forget in the Elephaet fil
system. In17th ACM Symposium on Operating Systems Princi-
ples pages 110-123, New York, NY, USA, 1999. ACM Press.

B. SchneierApplied CryptographyWiley, 2nd edition, 1996.

R. Srinivasan. RPC: Remote procedure call protocoti§ipation
version 2. RFC 1831, Aug. 1995.

J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. Nufs,
and G. R. Ganger. Self-securing storage: Protecting datarm
promised systems. Mth USENIX Symposium on Operating Sys-
tem Design and Implementatiopages 165—-180, 2000.

W. F. Tichy. RCS—a system for version contr8bftware Practice
and Experiencel5(7):637—654, 1985.

VMware ESX Server. http://www.vmware.com/products/esx,
October 2005.

A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. HanaraP
lax: Managing storage for a million machines. 16th Hot Topics
in Operating System&SENIX, May 2005.

A. Watson, P. Benn, A. G. Yoder, and H. T. Sun. Multipraib
data access: NFS, CIFS, and HTTP. Technical report, Network
Appliance, 2005.

A. Whitaker, R. S. Cox, and S. D. Gribble. Configuraticebdg-
ging as search: Finding the needle in the haystacléthrSympo-
sium on Operating Systems Design and Implementafi@tem-
ber 2004.

A. Whitaker, R. S. Cox, and S. D. Gribble. Using time &hto
diagnose computer problems. Iith ACM SIGOPS European
Workshop Leuven, Belgium, September 2004.

