
Virtualization Aware File Systems: Getting Beyond the Limitations of
Virtual Disks

Ben Pfaff, Tal Garfinkel, Mendel Rosenblum
{blp,talg,mendel}@cs.stanford.edu

Stanford University Department of Computer Science

Abstract

Virtual disks are the primary storage abstraction in today’s
virtual machine environments. They offer many attrac-
tive features, including whole system versioning, isola-
tion, and mobility, that are absent from current file sys-
tems. Unfortunately, the low level interface afforded by
virtual disks is very coarse-grained, forcing all-or-nothing
whole system rollback, and opaque, offering no practical
means of sharing. These problems impose serious lim-
itations on virtual disks’ usability, security, and ease of
management.

To overcome these limitations, we offer Ventana, avir-
tualization aware file systemarchitecture. Ventana com-
bines the file-based storage and sharing benefits of a con-
ventional distributed file system with the versioning, mo-
bility, and access control features that make virtual disks
so compelling.

1 Introduction

Today, virtual disks are the primary storage abstraction in
virtual machine environments. Virtual disks have many
attractive properties, including a simple, powerful model
for versioning, rollback, mobility, and isolation. New
VMs can be created with relative ease. Freeing users to
configure large numbers of VMs to run diverse operat-
ing systems and applications of their choice, and enabling
new usage models in which VMs are specialized for par-
ticular tasks.

Unfortunately, virtual disks also have serious shortcom-
ings. The low level isolation they offer provides no model
for shared access to storage, making it difficult to dele-
gate management, leaving users on their own to adminis-
ter their growing collections of machines. Rollback, ver-
sioning, etc. in virtual disks must take place at the gran-
ularity of a whole disk, making them more prone to mis-
management and difficult to secure. Finally, virtual disks
are unstructured, that is, there is no easy way to view a
virtual disk’s contents without mounting it. Thus, even
though virtual disks ease creating rich version histories,
finding, retrieving, or deleting files within these histories

is cumbersome [32].
On the other hand, existing distributed file systems of-

fer support for fine-grained controlled sharing, but lack
support for versioning, isolation, mobility, etc. that make
virtual disks so useful.

To bridge the gap between these two worlds, we present
Ventanavirtualization aware file system(VAFS) architec-
ture which extend conventional distributed file systems to
include rich semantics for versioning, access control, and
disconnected operation. Ventana supports the diverse uses
that virtual disks facilitate, with greater usability, security
and ease of managment.

In Ventana, virtual machines are ephemeral, with stor-
age allocated on demand as a view of the file system.
This allows virtual machines to be rapidly created and dis-
carded, and minimizes the storage and management over-
head of setting up a new machine.

This paper describes the principles behind virtualiza-
tion aware file systems and Ventana. We also present
our prototype implementation of Ventana and explore the
practical benefits that a VAFS offers to VM users and ad-
ministrators.

We will begin by examining the properties of virtual
disks. Section 2 explores their limitations, to motivate our
desire for file system based virtual machine storage, then
Section 3 details virtual disks’ compelling features. Sec-
tion 4 shows how to integrate these features into a con-
ventional distributed file system by presenting Ventana,
a virtualization aware file system. Section 5 focuses on
our prototype implementation of Ventana and Section 6
demonstrates a usage scenario. Sections 8 and 7 discuss
related and future work and Section 9 concludes.

2 Motivation

Virtual machines are changing the way that users perceive
a “machine.” Traditionally, machines were static entities.
Users had one or a few, and each machine was treated
as general-purpose. The design of virtual machines, and
even their name, has largely been driven by this percep-
tion.



But usage of virtual machines is rapidly changing, as
users discover that a virtual machine can be as temporary
as a file. VMs can be created and destroyed at will, check-
pointed and versioned, passed among users, and special-
ized for particular tasks. This leads to their rapid prolif-
eration and raises serious issues for security and manage-
ment [9, 29].

Virtual disks, that is, files used to simulate disks, aid
these more dynamic uses. Virtual disks offer compelling
properties, such as fully encapsulated storage, isolation,
and mobility. These and other advantages are discussed
fully in Section 3. For the moment, we highlight their
shortcomings as a way to motivate our work.

Virtual disks have significant downsides. First, they
provide no simple way to share data in a cooperative fash-
ion, where two or more parties may both read and write
the disk. Delegating management easily requires such a
shared storage abstraction. With the tendency of VMs to
proliferate, there is great need for such delegation.

Second, multiple hierarchical versions of virtual disks
are easy to create, but the result is less useful than one
might hope. Searching through multiple versions of a vir-
tual disk, e.g. to recover lost data or to delete sensitive
data, is a cumbersome, manual process. What could triv-
ially be accomplished withgrep andfind in normal file
systems requires much manual effort.

Finally, a virtual disk has no externally visible struc-
ture, so disk versioning is coarse grained. Only a whole
disk, not piecemeal files or directories, can be rolled back
to an earlier version. This is hardly ever what people
actually want, whether they realize it or not. Rolling
back entire file systems can lead to undesirable side ef-
fects [9]. Some files should never be rolled back for secu-
rity reasons, including password files and firewall rules
(and other files that control access), binaries that have
received security patches, and files that store encryption
keys. Other files, like network configuration files, should
not be rolled back because doing so may impair function-
ality. Beyond rollback, the version retention policy best
applied to a file varies from file to file, as shown by the
Elephant file system [23]. Virtual disks provide no way
to make these distinctions on any finer granularity than a
whole disk. (Running a versioning file system inside the
VM partially addresses this problem, but does not address
any of the other drawbacks of virtual disks.)

These limitations of virtual disks led us to question why
they are the standard form of storage in virtual environ-
ments. We concluded that their most compelling feature
is compatibility. All of their other features can be realized
in a network file system. By adopting a widely used net-
work file system protocol, we can even achieve reasonable
compatibility.

The following section details the virtual disk features
that we wish to integrate into a network file system. The

(a) (b)

FIGURE 1: Snapshots of a VM: (a) first two snapshots;
(b) after resuming again from snapshot 1, then taking
a third snapshot.

design issues raised in this integration are then covered in
Section 4.

3 Virtual Disk Features

Virtual disks are, above all, backward compatible, be-
cause they provide the same block-level interface as phys-
ical disks. This section examines other important fea-
tures that virtual disks offer, such as versioning, isolation,
and encapsulation, and the usage models that they enable.
This discussion shapes the design for Ventana presented
in the next section.

3.1 Versioning

Because any saved version of a virtual machine can be re-
sumed any number of times, VM histories take the form
of a tree. Consider a user who “checkpoints” or “snap-
shots” a VM, permanently saving the current version as
version 1. He uses the VM for a while longer, then check-
points it again as version 2. So far, the version history is
linear, as shown in Figure 1(a). Later, he again resumes
from version 1, uses it for a while, then snapshots it an-
other time as version 3. The tree of VMs now looks like
Figure 1(b). The user can resume any version any number
of times and create new snapshots based on these existing
versions, expanding the tree.

Virtual disks efficiently support this tree-shaped ver-
sion model. A virtual disk starts with an initial or “base”
version that contains all blocks (all-zero blocks may be
omitted), corresponding to snapshot 1. The base version
may have any number of “child” versions, and so may
those versions recursively. Thus, like virtual machines,
the versions of virtual disks form a tree. Each child ver-
sion contains only a pointer to its parent and those blocks
that differ from its parent. This copy-on-write sharing al-
lows each child version to be stored in space proportional
to the differences between it and its parent. Some imple-
mentations also support content-based sharing that shares
identical blocks regardless of parent/child relationships.

Virtual disk versioning is useful for short-term recovery
from mistakes, such as inadvertently deleting or corrupt-



ing files, or for long-term capture of milestones in config-
uration or development of a system. Linear history also
effectively supports these usage models. But hierarchical
versions offer additional benefits, described below.

Specialization Virtual disks enable versions to be used
for specialization, analogous to the use of inheritance in
object-oriented languages. Starting from a base disk, one
may fork multiple branches and install a different set of
applications in each one for a specialized task, then branch
these for different projects, and so on. This is easily sup-
ported by virtual disks, but today’s file systems have no
close analogue.

Non-Persistence Virtual disks support “non-persistent
storage.” That is, they allow users to make temporary
changes to disks during a given run of a virtual machine,
then throw away those changes once the run is com-
plete. This usage pattern is handy in many situations,
from software testing, to teaching environments, to elec-
tronic “kiosk” applications. Traditional file systems have
no concept of non-persistence.

3.2 Isolation

Everything in a virtual machine, including virtual disks,
exists in a protection domain decoupled from external
constraints and enforcement mechanisms. This supports
important changes in what users can do.

Orthogonal Privilege With the contents of the virtual
machine safely decoupled from the outside world, access
controls are put into the hands of the VM owner (often
a single user). There is thus no need to couple them to
a broader notion of principals. Users of a VM are pro-
vided with their own “orthogonal privilege domain.” This
allows the user to use whatever operating systems or ap-
plications he wants, at his discretion, because he is not
constrained by the normal access control model restrict-
ing who can install what applications.

Name Space Isolation VMs can serve in the same role
that chroot, BSD jails, application sandboxes, and
similar mechanisms fill. An operating system inside a VM
can even be easier to set up and to reason about than more
specialized, OS-specific jails that require special configu-
ration. A key reason for this is that VMs afford a simple
mechanism for name space isolation, i.e. for preventing an
application confined to a VM modifying outside system
resources. The VM has no way to name anything outside
the VM system without additional privilege, e.g. access
to a shared network. A secure VMM can isolate its VMs
perfectly.

3.3 Encapsulation

A virtual disk fully encapsulates storage state. Entire vir-
tual disks, and accompanying virtual machine state, can
easily be copied across a network or onto portable media,
notebook computers, etc.

Capturing Dependencies The versioning model of vir-
tual disks is coarse-grained, at the level of an entire disk.
This has the benefit of capturing all possible dependen-
cies with no extra effort from the user. Thus, short-term
“undo” using a virtual disk can reliably back out opera-
tions with complex dependencies, such as installation or
removal of a major application or device driver, or a com-
plex, automated configuration change.

Full capture of dependencies also helps in capturing
milestones in the configuration of a system. The snap-
shot will not broken by subsequent changes in other parts
of the system. Instead of old code failing due to changes
in libraries, kernel, or other dependencies, it will work be-
cause dependencies are included.

Finally, integrating dependencies simplifies and speeds
branching. To start work on a new version of a project or
try out a new configuration, all the required pieces come
along automatically. There is no need to again set up li-
braries or configure a machine.

Mobility Complete copies of virtual machines retain no
ties to their original locations, ensuring that VMs can be
used disconnected from the network (assuming the soft-
ware inside the VM does not itself require connectivity).

Handling of conflicts has long been an important prob-
lem for file systems that support disconnected operation.
Virtual disks in different copies of a VM are completely
independent (even if they share a base disk), so that any
merging or conflict resolution must be done manually.
The successful use of virtual machines for mobility, de-
spite this, shows that merging is not important in the com-
mon case. (When merging is important, users will use a
version control system.) Instead, disconnected operation
is about mobility, the ability to pick up your machine and
go, which virtual disks provide effectively.

4 Design

This section describes Ventana, an architecture for a virtu-
alization aware file system. Ventana resembles a conven-
tional distributed file system in that it provides centralized
storage for a collection of file trees, allowing transparency
and collaborative sharing among users. Ventana’s distinc-
tion is its versioning, isolation, and encapsulation features
to support virtualization, based on virtual disk support for
these same features,



The high-level architecture of Ventana can apply to var-
ious low-level architectures: centralized or decentralized,
block-structured or object-structured, etc. We restrict this
section to essential, high-level design elements. The fol-
lowing section discusses specific choices made in our pro-
totype.

We adopt the convention that an operating system in-
side a virtual machine is aguest OS. Ventana’s clients run
in virtual machines.

Ventana offers a rich model for versioning, isolation,
and mobility through the following abstractions:

Branches Ventana supports VM-style versioning
through the concept of abranch. A private branchis
created for use primarily by a single VM, making the
branch effectively private, like a virtual disk. Ashared
branchis intended for use by multiple VMs. In a shared
branch, changes made from one VM are visible to the
others, so these branch can be used for sharing files, like
a conventional network file system.

Non-persistent branches, whose contents do not survive
across reboots are also provided, as arevolatile branches,
whose contents are never stored on a central server, and
are deleted upon migration. These features are especially
useful for providing storage for caches and cryptographic
material that for efficiency or security reasons, respec-
tively, should not be stored or migrated.

Branches are detailed in Section 4.1.

Views Ventana is organized as a collection of file trees.
To instantiate a VM, aviewis constructed by mapping one
or more of these trees into a new file system name space.
For example, a base operating system, add-on applica-
tions, and user home directories might each be mounted
from a separate file tree.

This provides a basic model for supporting name space
isolation and allows for rapid synthesis of new virtual ma-
chines, without the space or managment overhead nor-
mally associated with setting up a new virtual disk.

Section 4.2 describes views in more detail.

Access Control File permissions in Ventana must sat-
isfy two kinds of needs: those of the guest OSes to parti-
tion functionality according to the guests’ own principals,
and those of users to control access to confidential infor-
mation. Ventana provides orthogonal types offile ACLsto
satisfy these needs.

Ventana also offersbranch ACLswhich support com-
mon VM usage patterns, such as one user granting others
permission to clone a branch and modify the copy (but
not the original), andversion ACLswhich alleviate secu-
rity problems introduced by file versioning.

Section 4.3 describes access control in Ventana.

Disconnected Operation Ventana supports discon-
nected operation through a combination of aggressive
caching and versioning to deal with potential conflicts, al-
lowing for a very simple model of mobility. Section 4.4
talks about disconnected operation in Ventana.

4.1 Branches

Some conventional file systems support versioning of files
and directories. Details about which versions are retained,
when older versions are deleted, and how older versions
are named vary. However, in all of them, versioning is
“linear,” that is, at any point in time there is a single “lat-
est” version of the file. Accessing linear versions is sim-
ple because file references can be assumed to refer to the
latest version.

When versions form a tree that grows in more than one
direction, simply asking for the latest version of a file can
be ambiguous. Thus, the file system must provide some
means of allowing users to further express where in the
tree to look for a file version.

To appreciate these potential ambiguities, consider an
example. Ziggy allows Yves, Xena, and Walt to each fork
a personalized version of her VM. The version tree for
a file personalized by each person would look something
like Figure 2(a). If an access to a file by default refers to
the latest version anywhere in the tree, then each person’s
changes would appear in the others’ VMs. Thus, the tree
of versions would act like a chain of linear versions.

In a different situation, suppose Vince and Uma use a
shared area in the file system for collaboration. Most of
the time, they do want to see the latest version of a file.
Thus, the version history of such a file should be linear,
with each update following up on the previous one, re-
sembling Figure 2(b).

The essential difference between these two cases is in-
tention. The version tree alone cannot distinguish be-
tween desires for shared or personalized versions of the
file system without knowledge of intention.

Consider another file in Ziggy’s VM. If only Yves has
created a personalized version of the file, then the version
tree looks like Figure 2(c). The shape of this tree can-
not be distinguished from an early version of Figure 2(b).
Thus, Ventana must provide a way for users to specify
their intentions.

4.1.1 Private and Shared Branches

Ventana introducesbranchesto resolve the above diffi-
culty. A branch is a linear chain in the tree of versions.
Because a branch is linear, it is meaningful to refer to the
latest version of a file in a branch, or the version at a par-
ticular point in time.



(a)

Ziggy

Yves Xena Walt

(c)

Ziggy

Yves

(b)

Vince

Uma

Uma

Vince

Vince

FIGURE 2: Trees of file versions when (a) Ziggy allows
Yves, Xena, and Walt to fork personalized versions of
his VM; (b) Vince and Uma collaboratively edit a file;
and (c) Ziggy’s VM has been forked by Yves, as in (a),
but not yet by Xena or Walt.

A branch begins as an exact copy of the contents of
some other branch at the current time, or at a chosen ear-
lier time. After creation, the new branch and the branch
that was copied are independent, so that modifying one
has no effect on the other.

Branches are created by copying. Thus, multiple
branches may contain the same version of a file. There-
fore, for a file access to be unambiguous, both a branch
and a file must be specified. Mounting a tree in a virtu-
alization aware file system requires specifying the branch
to mount.

If a single client wants a private copy of the file tree,
a private branchis created for its exclusive use. Like a
file system on a virtual disk, a private branch will only be
modified by a single client in a single VM, but in other re-
spects it resembles a conventional network file system. In
particular, access to files by entities other than the guest
that “owns” the branch is easily possible, enabling cen-
tralized management such as scanning for malware, file
backup, and tracking VM version histories.

If multiple clients mount the same branch of a Ventana
file tree, then those clients see a shared view of the files
it contains. As in a conventional network file system, a

change made by one client in such ashared branchwill be
immediately visible to the others. Of course, propagation
of changes between clients is still subject to the ordinary
issues of cache consistency in a network file system.

The distinction between shared and private branches
is simply the number of clients expected to write to the
branch. If necessary, centralized management tools can
modify files in a so-called “private” branch (e.g. to quar-
antine malware) but this is intended to be uncommon. Ei-
ther type of branch might have any number of read-only
clients.

A single file might have versions in shared and private
branches. For example, a shared branch used for collab-
oration between several users might be forked off into
a private branch by another user for some experimental
changes. Later, the private branch could be discarded or
consolidated into the shared branch.

4.1.2 Other Types of Branches

In addition to shared and private branches, there are sev-
eral other useful qualifiers to attach to file trees.

Files in anon-persistent branchare deleted when a VM
is rebooted. These are useful for directories of temporary
files such as/tmp.

Files in avolatile branchare also deleted on reboot.
They are never stored permanently on the central server,
and are deleted when a VM is migrated from one phys-
ical machine to another. They are useful for caches
(e.g./var/cache on GNU/Linux) that need not be mi-
grated and for storing security tokens (e.g. Kerberos tick-
ets) that should not reside on a central server.

Maintaining any version history for some files is an in-
herent security risk [9]. For example, the OpenSSL cryp-
tography library stores a “random seed” file in the file sys-
tem. If this is stored in a snapshot, every time a given
snapshot is resumed, the same random seed will be used.
In the worst case, we will see the same sequence of ran-
dom numbers on every execution. Even in the best case,
its behavior may be easier to predict, and if old versions
are kept, then it may be possible to guess past behavior
(e.g. keys generated in past runs).

Ventana offersunversioned filesas a solution. Unver-
sioned files are never versioned, whether linearly or in
a tree. Changes always evolve monotonically forward
with time. Applications for unversioned files include stor-
ing cryptographic material, firewall rules, password files,
or any other configuration state where rollback would be
problematic.

4.2 Views

Ventana is organized as a set of file trees, each of which
contains related files. For example, some file trees might



contain root file systems for booting various operating
systems (Linux, Windows XP, . . . ) and their variants (De-
bian, Red Hat, SP1, SP2, . . . ). Another might contain file
systems for running various local or specialized applica-
tions. A third would have a hierarchy for each user’s files.

Creating a new VM mainly requires synthesizing aview
of the file system for the VM. This is accomplished by
mapping one or more trees (or parts of trees) into a new
namespace. For example, the Debian root file system
might be combined with a set of applications and user
home directories. Thus, OSes, applications, and users can
easily “mix and match” in a Ventana environment.

Whether each file tree in a view is mounted in a shared
or a private branch depends on the user’s intentions. The
root file system and applications could be mounted in
private branches to allow the user to update and modify
his own system configuration. Alternately, they could be
mounted in shared branches (probably read-only) to al-
low maintenance to be done by a third party. In the latter
case, some parts of the file system would still need to be
private, e.g./var under GNU/Linux. Home directories
would likely be shared, to allow the user to see a con-
sistent view of his and others’ files regardless of the VM
viewing them.

4.3 Access Control

Access control is different in virtual disks and network
file systems. The guest OS controls every byte on a vir-
tual disk. It is responsible for tracking ownership and per-
missions and making access control decisions in the file
system. The virtual disk itself has no access control re-
sponsibility. A VAFS cannot use this scheme, because al-
lowing every guest OS to access any file, even those that
belong to other VMs, is obviously unacceptable. There
must be enough control in the system to prevent abuse.

Access control in a conventional network file system
is the reverse of the situation for a virtual disk. The file
server is ultimately in charge of access control. As a net-
work file system client, a guest OS can deny access to its
own processes, but it cannot override the server’s refusal
to grant access. Commonly, NFS servers deny access as
the superuser (“squash root”) and CIFS and AFS servers
grant access only via principals authenticated to the net-
work.

This style of access control is also, by itself, inappro-
priate in a VAFS. Ventana should not deny a guest OS
control over its own binaries, libraries, and applications.
If these were, for example, stored on an NFS server con-
figured to “squash root,” the guest OS would not be able
to create or access any files as the superuser. If they were
stored on a CIFS or AFS server, the guest OS would only
be able to store files as users authenticated to the network.
In practice this would prevent the guest from dividing up

ownership of files based on their function (system bina-
ries, print server, web server, mail server, . . . ), as many
systems do.

Ventana solves the problem of access control through
multiple types of ACLs: file ACLs, version ACLs, and
branch ACLs. For any access to be allowed, it must be
permitted by all three applicable ACLs. Each kind of ACL
serves a different primary purpose. The three types are de-
scribed individually below.

4.3.1 File ACLs

File ACLs provide protection on files and directories that
users conventionally expect and OSes conventionally pro-
vide. Ventana supports two types of file ACLs that pro-
vide orthogonal privileges.Guest file ACLsare primarily
for guest OS use. Guest OSes have the same level of con-
trol over guest file ACLs that they do over permissions in
a virtual disk. In contrast,server file ACLsprovide protec-
tion that guest OSes cannot bypass, similar to permissions
enforced by a conventional network file server.

Both types of file ACLs apply to individual files. They
are versioned in the same way as other file metadata.
Thus, revising a file ACL creates a new version of the file
with the new file ACL. The old version of the file contin-
ues to have the old file ACL.

Guest file ACLs are managed and enforced by the guest
OS using its own rules and principals. Ventana merely
provides storage. These ACLs are expressed in the guest
OS’s preferred form, e.g. Unix-like guest OSes use their
native 9-bitrwxrwxrwx access control lists. Guest file
ACLs allow the guest OS to divide up file privileges based
on roles.

Server file ACLs, the other type of file ACL, are man-
aged and enforced by Ventana and stored in Ventana’s
own format. Server file ACLs allow users to control ac-
cess to files across all file system clients.

4.3.2 Version ACLs

A version ACL applies to a version of a file. They are
stored as part of a version, not as file metadata, so that
changing a version ACL does not create a new file version.
Every version of a file has an independent version ACL.
Conversely, when multiple branches contain the same ver-
sion of a file, that single version ACL applies in each case.
Version ACLs are not versioned themselves. Like server
file ACLs, version ACLs are enforced by Ventana itself.

Version ACLs are Ventana’s solution to a class of secu-
rity problem common to all versioning file systems. Sup-
pose Terry creates a file and writes confidential data to
it. Soon afterward, Terry realizes that the file’s permis-
sions incorrectly allow Sally to read it, so he corrects the
permissions. In a file system without versioning, the file



would then be safe from Sally, as long as she had not al-
ready read it. If the permissions on older file versions are
fixed, however, Sally can still access the older version of
the file.

A partial solution to Terry’s problem is to grant access
to older versions based on the current version’s permis-
sions, as Network Appliance filers do [30]. Now, suppose
Terry edits a file to remove confidential information, then
grants read permission to Sally. Under this rule, Sally can
then view the older, confidential versions of the file, so
this rule is also flawed.

Another idea is to add a permission bit to each file’s
metadata that determines whether a user may read a file
once it has been superseded by a newer version, as in
the S4 self-securing storage system [26]. Unfortunately,
modifying permissions creates a new version (as does
any change to file metadata) and only the new version is
changed. Thus, this permission bit is effective only if the
user sets it before writing confidential data, so it would
not protect Terry.

Only two version rights exist. The “r” (read) version
right is Ventana’s solution to Terry’s problem. At any
time, Terry can revoke the read right on old versions of
files he has created, preventing access to those file ver-
sions. The “c” (change) right is required to change a ver-
sion ACL. It is implicitly held by the creator of a ver-
sion. (Any given file version is immutable, so there is no
“write” right.)

4.3.3 Branch ACLs

A branch ACL applies to all of the files in a particular
branch and controls access to current and older versions
of files. Like version ACLs, branch ACLs are accessed
with special tools and enforced by Ventana.

The “n” (newest) branch right permits read access to the
latest version of files in a branch. It also controls forking
the latest version of the branch.

In addition to “n”, the “w” (write) right is required to
modify any files within a branch. A user who has “n” but
not “w” may fork the branch. Then, as owner of the new
branch, he may change its ACL and modify the files in
the new branch. This does not introduce a security hole
because the user may only modify the files in the new
branch, not those in the old branch. The user’s access
to files in the new branch are, of course, still subject to
Ventana file ACLs and version ACLs.

The “o” (old) right is required to access old versions of
files within a branch. This right offers an alternate solu-
tion to Terry’s problem of insecure access to old versions.
If Terry controls the branch in which the old versions were
created, then he can use its branch ACL to prevent other
users from accessing old versions of any file in the branch.
This is thus a simpler but less focused approach than ad-

justing the appropriate version ACL.
The “c” (change) right is required to change a branch

ACL. It is implicitly held by the owner of a branch.

4.4 Disconnected Operation

Virtual disks can be used while disconnected from the net-
work, as long as the entire disk has been copied onto the
disconnected machine. Thus, for a virtualization aware
file system to be as widely useful as a virtual disk, it must
also gracefully tolerate network disconnection.

Research in network file systems has identified a num-
ber of features required for successful disconnected oper-
ation [16, 15, 12]. Many of these features apply to Ven-
tana in the same way as conventional network file sys-
tems. Ventana, for example, can cache file system data
and metadata on disk, which allows it to store enough data
and metadata to last the period of disconnection. Our pro-
totype caches entire files, not individual blocks, to avoid
the need to allow reading only part of a file during dis-
connection, which is surprising at best. Ventana can also
buffer changes to files and directories and write them back
upon reconnection. Some details of these features of Ven-
tana are included in the description of our prototype (see
Section 5).

Handling conflicts, that is, different changes to the
same files, is a thorny issue in a design for disconnected
operation. Fortunately, earlier studies of disconnection
have shown conflicts to be rare in practice [16]. In Ven-
tana conflicts may be even rarer, because they cannot oc-
cur in private branches. Therefore, Ventana does not try to
intelligently handle conflicts. Instead, changes by discon-
nected clients are committed at the time of reconnection,
regardless of whether those files have been changed in the
meantime by other clients. If manual merging is needed in
shared branches, it is still possible based on old versions
of the files. To make it easy to identify file versions just
before reconnection, Ventana creates a new branch just
before it commits the disconnected changes.

5 Prototype

To show that our ideas can be realized in a practical and
efficient way, we developed a simple prototype of Ven-
tana. This section describes the prototype’s design and
use.

The Ventana prototype is written in C. We developed it
under Debian GNU/Linux “unstable” onx86 PCs running
Linux 2.6.x, using VMware Workstation 5.0 as VMM.
The servers in the prototype run as Linux user processes
and communicate over TCP using the GNU C library im-
plementation of ONC RPC [25].



Metadata
Server

Object
Server 1

Object
Server N

...

VM 1 VM N...

Host Manager

Client Host

NFSv3

Custom
Protocols

Central Servers

FIGURE 3: Structure of Ventana. Each machine whose
VMs use Ventana runs a host manager. The host man-
ager talks to the VMs over NFSv3 and to Ventana’s
centralized metadata and object servers over a cus-
tom protocol.

Figure 3 outlines Ventana’s structure, which is de-
scribed in more detail below.

5.1 Server Architecture

A conventional file system operates on what Unix calls a
block device, that is, an array of numbered blocks. Our
prototype is instead layered on top of anobject store[10,
7]. An object store containsobjects, sparse arrays of bytes
numbered from zero to infinity, similar to files. In the
Ventana prototype, objects are immutable.

The object store consists of one or moreobject servers,
each of which stores some of the file system’s objects and
provides a network interface for storing new objects and
retrieving the contents of old ones. Objects are identified
by randomly selected 128-bit integers calledobject num-
bers. Object numbers are generated randomly to allow
them to be chosen without coordination between hosts.
They are as wide as 128 bits because of the “birthday para-
dox,” which states that a series of2

n/2 randomly selected
n-bit numbers will probably contain a duplicate [24].

Each version of a file’s data or metadata is stored as
an object. When a file’s data or metadata is changed, the
new version is stored as a new object under a new object

number. The old object is not changed and it may still
be accessed under its original object number. However,
this does not mean that every intermediate change takes
up space in the object store, because client hosts (that
is, machines that run Ventana clients in VMs) consolidate
changes before they commit a new object.

As in an ordinary file system, each file is identified by
an inode number, which is again a 128-bit, randomly se-
lected integer. Each file may have many versions across
many branches. When a client host needs to know what
object stores the latest version of a file in a particular
branch, it consults theversion databaseby contacting
the metadata server. The metadata server maintains the
version database that tracks the versions of each file, the
branch databasethat tracks the file system’s branch struc-
ture, the database that associates branch names and num-
bers, and the database that stores VM configurations.

5.2 Client Architecture

The host manageris the client-side part of the Ventana
prototype. One copy of the host manager runs on each
platform and services any number of local client VMs.
Our prototype does not encapsulate the host manager it-
self in a VM.

For compatibility with existing clients, the host man-
ager includes a NFSv3 [2] server for clients to use for file
access. NFSv3 is both easy to implement and widely sup-
ported, even on Windows (with Microsoft’s free Services
for Unix).

The host manager maintains in-memory and on-disk
caches of file system data and metadata. Objects may be
cached indefinitely because they are immutable. Objects
are cached in their entirety to simplify implementing the
prototype and to enable disconnected operation (see Sec-
tion 5.2.3). Records in the version and branch databases
are also immutable, except for the ACLs they include,
which change rarely. In a shared branch, records added
to the version database to announce a new file version are
a cache consistency issue, so the host manager checks the
version database for new versions on each access (except
when disconnected). In a private branch, normally only
one client modifies the branch at a time, so that client’s
host manager can cache data in the branch for a long time
(or until the client VM is migrated to another host), al-
though other hosts should check for updates more often.

The host manager also buffers file writes. When a client
writes a file, the host manager writes the modified file to
the local disk. Further changes to the file are also writ-
ten to the same file. If the client requests that writes be
committed to stable storage, e.g. to allow the guest to
flush its buffer cache or to honor anfsync call, then the
host manager commits the modified files to the local disk.
Commitment does not perform a round trip on a physical



network.

5.2.1 Branch Snapshots

After some amount of time, the host manager takes a snap-
shot of outstanding changes within a branch. Users can
also explicitly create (and optionally name) branch snap-
shots. A snapshot of a branch is created simply by forking
of the branch, which has the desired effect because fork-
ing a branch copies its content. In fact, copying occurs
on a copy-on-write basis, so that the first write to any of
the files in the snapshot creates and modifies a new copy
of the file. Creating a branch also inserts a record in the
branch database.

After it takes a snapshot, the host manager uploads the
objects it contains into the object store. Then, it sends
records for the new file versions to a metadata server,
which commits them to the version database in a single
atomic transaction. The changes are now visible to other
clients.

The host manager assumes that private branch data is
relatively uninteresting to clients on other hosts, so it takes
snapshots in private branches relatively rarely (every 5
minutes). On the other hand, other users may be actively
using files in shared branches, so the host manager takes
snapshots often (every 3 seconds).

Because branch snapshots are actually branches them-
selves, older versions of files can be viewed using regular
file commands by first adding the snapshot branch to the
view in use. Branches created as snapshots are by default
read-only, to reduce the chance of later confusion if a file’s
“older version” actually turns out to have been modified.

5.2.2 Views and VMs

Multiple branches can be composed into a view. Ventana
describes a view with a simple text format that resembles
a Unixfstab, e.g.:

debian:/ / shared ro
home-dirs:/ /home shared rw
bob-version:/ /proj private rw

Each line describes a mapping between a branch, or a sub-
set of a branch, and a directory within the view. We say
that each branch isattachedto its directory in the view.1

Here is an example:
A VM comprises a view, plus configuration parameters

for networking, system boot, and so on. A VM could be
described by the view above followed by these additional
options:

1We use “attach” instead of “mount” because an OS kernel imple-
ments mounts, whereas a Ventana OS client is unaware of its view’s
composition.

-pxe-kernel debian:/boot/vmlinuz
-ram 64

Ventana provides a utility to start a VM based on such
a specification. Given the above VM specification, it
would set up a network boot environment (using the PXE
protocol) to boot the kernel in/boot/vmlinuz in the
debian branch. Because Ventana is implemented as a
wrapper around VMware Workstation 5.0, it would also
write a configuration file in Workstation’s own format,
then launch Workstation. The user would then interact
with the VM through Workstation.

VM Snapshots Ventana supports snapshots of VMs just
as it does snapshots of branches.2 A snapshot of a VM is a
snapshot of each branch in the VM’s view combined with
a snapshot of the VM’s runtime state (RAM, device state,
. . . ). To create a snapshot, the user suspends the VM using
VMware Workstation’s user interface, exits Workstation,
and invokes Ventana’s snapshot utility. Ventana snapshots
the branches included in the VM, copies the runtime state
file written by Workstation into Ventana as an unnamed
file, and saves a description of the view and a pointer to
the suspend file.

Later, another Ventana utility may be used to resume
from the snapshot. When a VM snapshot is resumed, pri-
vate branches have the contents that they did when the
snapshot was taken, and shared branches are up-to-date.
Ventana also allows resuming with a “frozen” copy of
shared branches as of the time of the snapshot. Snapshots
can be resumed any number of times, so resuming forks
each private branch in the VM for repeatability.

5.2.3 Disconnected Operation

The host manager supports disconnected operation, that
is, file access is allowed even without connectivity to the
metadata and object server. Of course, access is degraded
during disconnection: only cached files may be read, and
changes in shared branches by clients on the other hosts
are not visible. Write access is unimpeded. Discon-
nected operation is implemented in the host manager, not
in clients, so all clients support disconnected operation.

We designed the prototype with disconnected opera-
tion in mind. Caching eliminates the need to consult the
metadata and object servers for most operations, and on-
disk caching allows for a large enough cache to be useful
for extended disconnection. Whole-object caching avoids
surprising semantics that would allow only part of a file to
be read. Write buffering allows writing back changes to
be delayed until reconnection.

2VMware Workstation has its own snapshot capability. Ventana im-
plements its own snapshot mechanism to demonstrate how one might be
integrated into a VAFS.



We have not implemented user-configurable “hoard-
ing” policies in the prototype. Implementing them as de-
scribed by Kistler et al. [16] would be a logical extension.

6 Usage Scenario

This section presents a scenario for use of Ventana and
shows how, in this setting, Ventana offers a better solution
than both virtual disks and network file systems.

6.1 Scenario

We set our scene at Widgamatic, a manufacturer and dis-
tributor of widgets.

6.1.1 Alice the Administrator

Alice is Widgamatic’s system administrator in charge of
virtual machines. Software used at Widgamatic has di-
verse requirements, and Widgamatic’s employees have
widely varying preferences. Alice wants to accommo-
date everyone as much as she can, so she supports var-
ious operating systems: Debian, Ubuntu, Red Hat, and
SUSE distributions of GNU/Linux, plus Windows XP and
Windows Server 2003. For each of these, Alice creates a
shared branch and installs the base OS and some com-
monly used applications. She sets the branch ACLs to
allow any user to read, but not write, these branches.

Alice creates a second shared branch, called
common, to hold configuration files that should be
uniform company-wide, such as/etc/hosts and
/etc/resolv.conf. Again, she sets branch ACLs to
grant other users read-only access.

Alice also creates a shared branch for user home direc-
tories, calledhome-dirs, and adds a directory for each
Widgamatic user in the root of this branch. Alice sets the
branch ACL to allow any user to read or write the branch,
and server file ACLs so that, by default, each user can
read or write only his (or her) home directory. Users can
of course modify server file ACLs in their home directo-
ries as needed.

6.1.2 Bob’s Basic VM

Bob is a Widgamatic user with basic needs. Bob uses a
utility written by Alice to create a Linux-based VM pri-
marily from shared branches. Figure 4 shows part of the
specification written by this utility.

The root of Bob’s VM is attached to the Ubuntu shared
branch created by Alice. This branch’s ACL prevents Bob
modifying files in the branch (it is attached read-only be-
sides). The Linux file system is well suited for this situa-
tion, because its top-level hierarchies segregate files based
on whether they can be attached read-only during normal

system operation. The/usr tree is an example of a hier-
archy that normally need not be modifiable.

The /home and/tmp trees are the most prominent
examples of hierarchies that must be writable, so Bob’s
VM attaches a writable shared branch and a non-persistent
branch, respectively, at these points. Keywordnone in
place of a branch name in/tmp’s entry causes an initially
empty branch to be attached.

The filename/var hierarchy must be writable and persis-
tent, and it cannot be shared between machines. Thus, Al-
ice’s utility handles/var by creating a fork of the Ubuntu
branch, then attaching the forked branch’s/var privately
in the VM. The utility does not give the forked branch a
name, so the VM specification gives the 128-bit branch
identifier as 32 hexadecimal digits.

Bob needs to use the company’s CAD software to de-
sign widgets, so the CAD software distribution is attached
into his VM.

Most of the VM’s configuration files in/etc receive
their contents from the Ubuntu branch attached at the
VM’s root. Some, such as/etc/resolv.conf and
/etc/passwd shown here, are attached from Alice’s
“common files” branch. This allows Alice to update a
file in just that branch and have the changes automatically
reflected in every VM. A few, such as/etc/hostname
shown here, are attached from private branches to allow
their contents to be customized for the particular VM. Fi-
nally, data that should not be versioned at all, such as the
private host key used to identify an SSH server, is attached
from an unversioned branch. The latter two branches are,
like the/var branch, unnamed.

Bob’s VM, and VMs created in similar ways, would
automatically receive the benefits of changes and updates
made by Alice as soon as she made them. They would also
see changes made by other users to their home directories
as soon as they occur.

6.1.3 Carl’s Custom VM

Carl wants more control over his VM. He prefers Debian,
which is available as a branch maintained by Alice, so he
can base his VM upon Alice’s. Carl forks a private branch
from Alice’s Debian branch and names the new branch
carl-debian.

Carl integrates his branch into a VM of his own, us-
ing a specification that in part looks like Figure 5. Carl
could write this specification by hand, or he might choose
to start from one, like Bob’s, generated by Alice’s util-
ity. Using a private branch as root directory means that
Carl need not attach private branches on top of/var or
/etc/hostname, making Carl’s specification shorter
than Bob’s.

Even though Carl’s base operating system is private,
Carl’s VM still attaches many of the same shared branches



ubuntu:/ / shared,ro
home-dirs:/ /home shared

none /tmp non-persistent
12ff2fd27656c7c7e07c5ea1e2da367f:/var /var private

cad-soft:/ /opt/cad-soft shared,ro
common:/etc/resolv.conf /etc/resolv.conf shared,ro
common:/etc/passwd /etc/passwd shared,ro

8368e293a23163f6d2b2c27aad2b6640:/etc/hostname /etc/hostname private
b6236341bd1014777c1a54a8d2d03f7c:/etc/ssh/host_key /etc/ssh/host_key unversioned

FIGURE 4: Partial specification of the view for Bob’s basic VM.

carl-debian:/ / private
home-dirs:/ /home shared

none /tmp non-persistent
common:/etc/resolv.conf /etc/resolv.conf shared,ro
common:/etc/passwd /etc/passwd shared,ro

b6236341bd1014777c1a54a8d2d03f7c:/etc/ssh/host_key /etc/ssh/host_key unversioned

FIGURE 5: Partial specification of the view for Carl’s custom VM.

that Bob’s VM does. Shared home directories and com-
mon configuration files ease Carl’s administrative burden
just as they do Bob’s. He could choose to keep private
copies of these files, but to little obvious benefit.

Carl bears more of the burden of his own system ad-
ministration, because Alice’s changes to shared branches
do not automatically propagate to his private branch. Carl
could use Ventana to observe how parentdebian branch
changed since the fork. More likely in practice, Alice
could monitor forked branches to ensure that important
patches are applied in a timely fashion.

6.1.4 Alice in Action

One morning Alice reads a bulletin announcing a critical
security vulnerability in Mozilla Firefox. Alice must do
her best to make sure that the vulnerable version is prop-
erly patched in every VM. In a VM environment based
on virtual disks, this would be a daunting task. Ventana,
however, reduces the magnitude of the problem consider-
ably.

First, Alice patches the branches that she maintains.
This immediately fixes VMs that use Alice’s shared
branches, such as Bob’s VM.

Second, Alice can take steps to fix others’ VMs as well.
Ventana puts a spectrum of options at her disposal. Alice
could do nothing and assume that Bob and Carl will act
responsibly. She could scan VMs for the insecure binary
and email their owners (she can even check up on them
later). She could patch the insecure binaries herself. Fi-
nally, she has many options for denying access to copies
of the insecure binary: use a server file ACL to deny read-
ing or executing it, use a Ventana version ACL to prevent

reading it even as the older version of a file, use a branch
ACL to deny any access to the branch that contains it (per-
haps appropriate for long-unused branches), and so on.
Alice can take these steps for any file stored in Ventana,
whether contained in a VM that is powered on or off or
suspended, or even if it is not in any VM or view at all.

Third, once the immediate problem is solved, Alice can
work to prevent its future recurrence. She can configure
a malware scanner to examine each new version of a file
added to Ventana as to whether it is the vulnerable pro-
gram and, if so, alert Alice or its owner (or take some
other action). Thus, Alice has reasonable assurance that if
this particular problem recurs, it can be quickly detected
and fixed.

6.2 Benefits for Widgamatic

We now consider how Alice, Bob, Carl, and everyone else
at Widgamatic benefit from using Ventana instead of vir-
tual disks. We use virtual disks as our main basis of com-
parison because Ventana’s advantages over conventional
distributed file systems are more straightforward: they are
the versioning, isolation, and encapsulation features that
we intentionally added to it and have already described in
detail.

6.2.1 Central Storage

It’s easy for Bob or Carl to create virtual machines. When
virtual disks are used, it’s also easy for Bob or Carl to copy
them to a physical machine or a removable medium, then
lose or forget about the machine or the medium. If the
virtual machine is rediscovered later, it may be missing



fixes for important security problems that have arisen in
the meantime.

Ventana’s central storage makes it more difficult to lose
or entirely forget about VMs, heading off the problem be-
fore it occurs. Other dedicated VM storage systems also
yield this benefit [28, 29].

6.2.2 Looking Inside Storage

Some of Alice’s system administration tasks benefit from
“looking inside” storage. Consider backup. Alice only
has one easy way to back up virtual disks: as a collection
of disk blocks. However, file backups are more convenient
for Bob or Carl, who want to restore files, not file system
blocks. It is difficult even to determine which version of
a virtual disk contains the file that Bob or Carl wants to
restore. Doing partial backups of virtual disks, e.g. to
exclude blocks from deleted temporary files or paging
files, is also difficult. These features can be implemented
for virtual disks, but only with an intimate knowledge of
file system on-disk data structures, which are subject to
change from one version or variant of a guest operating
system to another.

Whereas a virtual disk is simply an array of bytes, Ven-
tana is organized into files and directories. The higher
level of structure makes it simple to look inside a Ventana
file system. Thus, file backups require no special effort
to implement in Ventana (and distributed file systems in
general). Features like restoring particular files or partial
backups are correspondingly easy to implement.

6.2.3 Sharing

Sharing is an important feature of storage systems. Bob
and Carl might wish to collaborate on a project, or Carl
might ask Alice to install some software in his VM for
him. Virtual disks make sharing difficult. Consider how
Alice could access Carl’s files if they were stored on a
virtual disk. If Carl’s VM were powered on or suspended,
modifying his file system would risk the guest OS’s in-
tegrity, because the interaction with the guest’s data and
metadata caches would be unpredictable. Even read-
ing Carl’s file system would be unreliable while it was
changing, e.g. consider the race condition if a block from
a deleted directory was reused to store an ordinary file
block.

On the other hand, Ventana gives Alice full read and
write access to virtual machines, even those that are on-
line or suspended. Alice can examine or modify Carl’s
files, whether the VM or VMs that use them are running,
suspended, or powered off, and Bob and Carl can work
together on their project without introducing any special
new risks.

6.2.4 Security

If Widgamatic’s VMs were stored in virtual disks, Alice
would have a hard time scanning them for malware. She
could request that users run a malware scanner inside each
of their VMs, but it would be difficult for her to enforce
this rule or ensure that the scanner were kept up-to-date.
Even if Bob and Carl carefully followed her instructions,
VMs powered on after being off for a long time would be
susceptible to vulnerabilities discovered in the meantime
until they were updated.

Ventana allows Alice to deploy a scanner that can ex-
amine each new version of a file in selected branches, or
in all branches. Conversely, when new vulnerabilities are
found, it can scan old versions of files as well as current
versions (as time is available). If malware is detected
in Bob’s branch, the scanner could alert Bob (or Alice),
delete the file, change the file’s permission, or remove the
virus from the file. (Even in a private branch, files may be
externally modified, although it takes longer for changes
to propagate in each direction.)

Ventana provides another important benefit for scan-
ners: the scanner operates in a protection domain separate
from any guest operating system. When virtual disks store
VMs, scanners normally run as part of the guest operating
system because, as we’ve seen, even read-only access to
active virtual disks has pitfalls. But this allows a “root
kit” to subvert the guest operating system and the mal-
ware scanner in a single step. If Alice runs her scanner in
a different VM, it must be compromised separately. Alice
could even configure the scanner to run in non-persistent
mode, so rebooting it would fix any compromise, at least
temporarily.

A host-based intrusion detection system could use a “lie
detector” test that compares the file system seen by pro-
grams running inside the VM against the file system in
Ventana to detect root kits, as in LiveWire [8].

6.2.5 Access to Multiple Versions

Suppose Bob wants to look at the history of a document
he’s been working on for some time. He wants to retrieve
and compare all its earlier versions. One option for Bob
is to read the old versions directly from older versions of
the virtual disk, but this requires accurate interpretation
of the file system, which is difficult to maintain over time.
A more likely alternative for Bob is to resume or power
on each older version of the VM, then use the guest OS
to copy the file in that old VM somewhere convenient.
Unfortunately, this can take a lot of time, especially if the
VM has to boot, and every older version takes extra effort.

With Ventana, Bob can attach all the older versions
of his branch directly to his view. After that, the differ-
ent versions can be accessed with normal file commands:
diff to view differences between versions,grep to



search the history, and so on. Bob can also recover older
versions simply by copying them into the his working
branch.

7 Future Work

Ventana demonstrates the principles behind a VAFS, but
many important issues remain to be explored. We be-
lieve that VAFS scalability and performance raise issues
not found in conventional distributed file systems. Deep
chains of branches, for example, seem to introduce the
need for compromise between storage efficiency and the
file lookup performance.

Storage reuse is another area for further work. The Ven-
tana prototype does not have any mechanism for deleting
data. We have not yet found a way to efficiently support
both creation of branches and the determination that an
object is no longer in use in any branch.

8 Related Work

Parallax [29] demonstrates that virtual disks can be stored
centrally with very high scalability. Parallax allows vir-
tual disks to be efficiently used and modified in a copy-
on-write fashion by many users. Unlike Ventana, it does
not allow cooperative sharing among users, nor does it en-
hance the transparency or improve the granularity of vir-
tual disks.

VMware ESX Server includes the VMFS file system,
which is designed for storing large files such as virtual
disks [28]. It does not provide any of the features of a
virtualization aware file system.

Live migration of virtual machines [4] requires the
VM’s storage to be available on the network. Ventana, as
a distributed file system particularly suited to VM storage,
provides a reasonable approach.

Whitaker et al. [31, 32] used whole-system versioning
to mechanically discover the origin of a problem by doing
binary search through the history of a system. They note
the “semantic gap” in trying to relate changes to a virtual
disk with higher-level actions. We believe that a VAFS,
in which changes to files and directories may be observed
directly, could help to reduce this semantic gap.

The Ventana prototype of course has much in common
with other file systems. Object stores are an increasingly
common way to structure file systems [10, 7]. Objects
in Ventana are immutable, which is unusual among ob-
ject stores, although in this respect Ventana resembles
the Cedar file system and, more recently, EMC’s Centera
system [11, 6]. PVFS2, a network file system for high-
bandwidth parallel file I/O, is another file system that uses
Berkeley DB databases to store file system metadata [21].

Many versioning file systems exist, in research systems
such as Cedar, Elephant, and S4, and in production sys-
tems such as VMS [11, 23, 26, 18]. Online file archives,
such as Venti, and the backup features of Network Appli-
ance filers might be considered an extension of this cat-
egory [22, 14]. These systems support only linear pro-
gressions of versions, whereas Ventana supports the tree-
structured versions necessary to properly handle the nat-
ural evolution of virtual machines, as discussed in Sec-
tion 4.1. The version retention policies introduced in Ele-
phant might be usefully applied to Ventana.

Ventana’s tree-structured version model is related to the
model used in revision control systems, such as CVS [3].
A version created by merging versions from different
branches has more than one parent, so versions in revision
control systems are actually structured as directed acyclic
graphs. Revision control systems would generally not be
good “back end” storage for Ventana or another VAFS be-
cause they typically store only a single “latest” version of
a file for efficient retrieval. Retrieving other versions, in-
cluding the latest version of files in branches other than
the “main branch,” requires application of patches [27].
Files marked “binary,” however, often include each revi-
sion in full, without using patches, so use of “binary” files
might be an acceptable choice.

Vesta [13] is a software configuration management sys-
tem whose primary file access interface is over NFS, like
Ventana. Dependency tracking in Vesta allows for precise,
high-performance, repeatable builds. Similar tracking by
a VAFS might enable better understanding of which files
and versions should be retained over the long term.

We proposed extending a distributed file system, which
already supports fine-grained sharing, by adding version-
ing that supports virtual machines. An alternative is to
allow virtual disks, which already support VM-style ver-
sioning, to support sharing by adding a locking layer, as
can be done for physical disks [19, 1]. This approach re-
quires committing to a particular on-disk format, which
makes changes and extensions more difficult. It also either
requires each client to understand the disk format, which
is a compatibility issue, or use of a network proxy that
does understand the format. In the latter case the proxy is
equivalent to Ventana’s host manager, and storage under-
lying it is really an implementation detail.

A “union” or “overlay” file system [20, 17] can stack a
writable file system above layers of read-only file systems.
If the top layer is the current branch and lower layers are
the branches that it was forked from, something like tree
versioning can be obtained. The effect is imperfect be-
cause changes to lower layers can “show through” to the
top. Symbolic link farms can also stack layers of directo-
ries, often for multi-architecture software builds [5], but
link farms are not transparent to the user or software.



9 Conclusion

Ventana is avirtualization awaredistributed file system
that provides the powerful versioning, security, and mo-
bility properties of virtual disks, while overcoming their
coarse-grained versioning and their opacity that frustrates
cooperative sharing. This allows Ventana to support the
rich usage models facilitated by virtual machines, while
avoiding the security pitfalls, management difficulties,
and usability problems that virtual disks suffer from.

We believe that virtualization aware file systems have
an important role to play in the evolution of virtual ma-
chines from their physical machine inspired roots, toward
being a more lightweight, flexible, and general-purpose
mechanism for organizing systems.

References
[1] R. C. Burns. Data Management in a Distributed File System for

Storage Area Networks. PhD thesis, University of California Santa
Cruz, March 2000.

[2] B. Callaghan, B. Pawlowski, and P. Staubach. NFS version3 pro-
tocol specification. RFC 1813, June 1995.

[3] P. Cederqvist et al.Version Management with CVS, 2005.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines. In
2nd Symposium on Network Systems Design and Implementation.
USENIX, 2005.

[5] P. Eggert. Multi-architecture builds using GNUmake. http://
make.paulandlesley.org/multi-arch.html, August 2000.

[6] EMC Corporation. EMC Centera content addressed storagesys-
tem. http://www.emc.com/products/systems/centera.jsp, Oc-
tober 2005.

[7] M. Factor, K. Meth, D. Naor, O. Rodeh, and J. Satran. Object
storage: The future building block for storage systems. In2nd In-
ternational IEEE Symposium on Mass Storage Systems and Tech-
nologies, Sardinia, Italy, July 2005.

[8] T. Garfinkel and M. Rosenblum. A virtual machine introspection
based architecture for intrusion detection. InProc. Network and
Distributed Systems Security Symposium, February 2003.

[9] T. Garfinkel and M. Rosenblum. When virtual is harder thanreal:
Security challenges in virtual machine based computing environ-
ments. In10th Workshop on Hot Topics in Operating Systems, May
2005.

[10] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, E. M. Feinberg,
H. Gobioff, C. Lee, B. Ozceri, E. Riedel, D. Rochberg, and J. Ze-
lenka. File server scaling with network-attached secure disks. In
International Conference on Measurement & Modeling of Com-
puter Systems (SIGMETRICS), pages 272–284, New York, NY,
USA, 1997. ACM Press.

[11] D. K. Gifford, R. M. Needham, and M. D. Schroeder. The Cedar
file system.Commununications of the ACM, 31(3):288–298, 1988.

[12] J. S. Heidemann, T. W. Page, Jr., R. G. Guy, and G. J. Popek. Pri-
marily disconnected operation: Experiences with Ficus. InWork-
shop on the Management of Replicated Data, pages 2–5, 1992.

[13] A. Heydon, R. Levin, T. Mann, and Y. Yu. The Vesta approach to
software configuration management. Research Report 168, Com-
paq Systems Research Center, March 2001.

[14] D. Hitz, J. Lau, and M. Malcolm. File system design for anNFS
file server appliance. Technical report, Network Appliance, 1995.

[15] L. Huston and P. Honeyman. Disconnected operation for AFS.
In First Usenix Symposium on Mobile and Location-Independent
Computing, pages 1–10, August 1994.

[16] J. J. Kistler and M. Satyanarayanan. Disconnected operation in
the Coda file system.ACM Transactions on Computer Systems,
10(1):3–25, February 1992.

[17] M. Klotzbuecher. minifo: The mini fanout overlay file system.
http://www.denx.de/twiki/bin/view/Know/MiniFOHome, Octo-
ber 2005.

[18] K. McCoy. VMS file system internals. Digital Press, Newton, MA,
USA, 1990.

[19] T. McGregor and J. Cleary. A block-based network file system.
In 21st Australasian Computer Science Conference, volume 20
of Australian Computer Science Communications, pages 133–144,
Perth, February 1998. Springer.

[20] R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plan 9from
Bell Labs. InSummer UKUUG Conference, pages 1–9, London,
July 1990.

[21] PVFS2: Parallel virtual file system 2.http://www.pvfs.org/pvfs2,
October 2005.

[22] S. Quinlan and S. Dorward. Venti: A new approach to archival
storage. InFAST ’02: Proceedings of the Conference on File and
Storage Technologies, pages 89–101, Berkeley, CA, USA, 2002.
USENIX Association.

[23] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W.
Carton, and J. Ofir. Deciding when to forget in the Elephant file
system. In17th ACM Symposium on Operating Systems Princi-
ples, pages 110–123, New York, NY, USA, 1999. ACM Press.

[24] B. Schneier.Applied Cryptography. Wiley, 2nd edition, 1996.

[25] R. Srinivasan. RPC: Remote procedure call protocol specification
version 2. RFC 1831, Aug. 1995.

[26] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N. Soules,
and G. R. Ganger. Self-securing storage: Protecting data incom-
promised systems. In4th USENIX Symposium on Operating Sys-
tem Design and Implementation, pages 165–180, 2000.

[27] W. F. Tichy. RCS—a system for version control.Software Practice
and Experience, 15(7):637–654, 1985.

[28] VMware ESX Server. http://www.vmware.com/products/esx,
October 2005.

[29] A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand. Paral-
lax: Managing storage for a million machines. In10th Hot Topics
in Operating Systems. USENIX, May 2005.

[30] A. Watson, P. Benn, A. G. Yoder, and H. T. Sun. Multiprotocol
data access: NFS, CIFS, and HTTP. Technical report, Network
Appliance, 2005.

[31] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration debug-
ging as search: Finding the needle in the haystack. In6th Sympo-
sium on Operating Systems Design and Implementation, Decem-
ber 2004.

[32] A. Whitaker, R. S. Cox, and S. D. Gribble. Using time travel to
diagnose computer problems. In11th ACM SIGOPS European
Workshop, Leuven, Belgium, September 2004.


