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Abstract
On modern processors, hardware-assisted virtualiza-

tion outperforms binary translation for most workloads.
But hardware virtualization has a potential problem: vir-
tualization exits are expensive. While hardware vir-
tualization executes guest instructions at native speed,
guest/VMM transitions can sap performance. Hard-
ware designers attacked this problem both by reducing
guest/VMM transition costs and by adding architectural
extensions such as nested paging support to avoid exits.

This paper proposes complementary software tech-
niques for reducing the exit frequency. In the simplest
form, our VMM inspects guest code dynamically to de-
tect back-to-back pairs of instructions that both exit. By
handling a pair of instructions when the first one exits,
we save 50% of the transition costs. Then, we general-
ize from pairs toclustersof instructions that may include
loops and other control flow. We use a binary translator
to generate, and cache, custom translations for handling
exits. The analysis cost is paid once, when the translation
is generated, but amortized over all future executions.

Our techniques have been fully implemented and val-
idated in recent versions of VMware products. We show
that clusters consistently reduce the number of exits
for all examined workloads. When execution is domi-
nated by exit costs, this translates into measurable run-
time improvements. Most importantly, clusters enable
substantial gains for nested virtual machines, delivering
speedups as high as 1.52x. Intuitively, this result stems
from the fact that transitions between the inner guest and
VMM are extremely costly, as they are implemented in
software by the outer VMM.

1 Introduction

Early x86 processors were not classically virtualizable
because some sensitive instructions were not amenable
to trap-and-emulate style execution [14]. On such pro-
cessors, efficient virtualization required the use ofbinary

translationto handle all supervisory level code. The bi-
nary translator replaced the sensitive guest instructions
with the appropriate code to emulate their behavior in the
context of the virtual machine (VM). Most contemporary
x86 processors now offerhardware virtualization(HV)
extensions [3, 10]. These processor extensions introduce
a new operating mode,guest mode, specifically designed
to support VM execution using a trap-and-emulate ap-
proach. Binary translation is no longer necessary.

While the processor operates in guest mode, most in-
structions execute at or near native speed. When the pro-
cessor encounters an instruction or event of interest to
thevirtual machine monitor(VMM), it exitsfrom guest
mode back to the VMM. The VMM emulates the instruc-
tion or other event, at a fraction of native speed, and then
returns to guest mode. The transitions from guest mode
to the VMM and back again are high latency operations,
during which guest execution is completely stalled.

The first generation of processors with HV support ex-
hibited lackluster performance, largely due to high exit
latency and high exit rates [1]. However, from the Pen-
tium 4 (Prescott) to the second generation Intel Core
Family processor (Sandy Bridge), hardware advances
and microcode improvements have reduced exit laten-
cies by about 80%; see Table 1. Moreover, hardware
support for MMU virtualization has reduced the exit rate
for many workloads by as much as 90%.

Microarchitecture Launch Date Cycles
Prescott 3Q2005 3963
Merom 2Q2006 1579
Penryn 1Q2008 1266
Nehalem 3Q2009 1009
Westmere 1Q2010 761
Sandy Bridge 1Q2011 784

Table 1:Hardware round-trip latency.

While hardware implementors have gradually im-



proved exit latencies and rates over the past six years,
there is still room for further improvement. The main
contributions of this paper are a set of software tech-
niques that, primarily, aim to eliminate exits and, secon-
darily, allow for somewhat faster handling of exits. The
software techniques grew out of our previous work on
use of binary translation for virtualization and exploit the
observation that exits frequently exhibit temporal local-
ity to reduce exit rate. We identify consecutivepairs of
instructions that would normally cause back-to-back ex-
its and generate a combined translation to circumvent the
second exit. More generally, we identifyclustersof in-
structions that would normally cause multiple exits and
translate them together to avoid all of the exits save the
first. As these translations grow more sophisticated, we
expose more opportunities to reduce the exit rate.

The rest of this paper is organized as follows. First,
Section 2 describes software techniques for optimizing
single instruction exit handling. Our approach draws
upon previous experience with using binary translation
for efficient instruction simulation. The subsequent sec-
tions describe improvements by going beyond single in-
struction exit handling: Section 3 generalizes to two
back-to-back instructions, Section 4 further generalizes
to multiple statically recognizable instructions, Section 5
adds use of dynamic information, and Section 6 dis-
cusses opportunities involving control flow. Section 7
discusses translation reuse safety. Section 8 applies the
techniques to nested virtualization. Finally, Section 9
presents an overall performance evaluation, Section 10
presents related work, and Section 11 offers suggestions
for promising future work and our concluding remarks.

2 Exit Handling Speedup

Recent x86 processors from both Intel and AMD provide
hardware support to assist a VMM run a virtual machine.
Both implementations allow the VMM to directly exe-
cute the guest instruction stream on the CPU using guest
mode, which disallows operations that require VMM as-
sistance. If the guest attempts such an operation, an exit
occurs in which the CPU suspends guest execution, saves
the guest context in a format accessible to the VMM, re-
stores the context of the VMM, and starts executing the
VMM. The VMM is then responsible for driving guest
execution forward past the operation that caused the exit
and then resuming direct execution in guest mode. The
challenge for the VMM is to handle such exits quickly.

Handling an exit involves driving guest progress for-
ward past the event that caused the exit. Typically this re-
quires interpreting a single guest instruction. Naturally,
this involves knowing what the instruction is. In many
cases the only way of determining the instruction from
the guest context is to take the guest’s instruction pointer

(%rip), read guest memory (while honoring segmenta-
tion and page tables), and decode the instruction bytes.
This is a complex and time consuming process. In some
cases, which vary from CPU to CPU, hints in the guest
context suffice to permit the VMM to step the exiting in-
struction without directly decoding it. However, even on
new CPUs a high percentage of the dynamic exits do not
provide enough information.

To address such decoding overhead, the VMM can
cache decoded instructions keyed by guest%rip (pos-
sibly combined with other easy to access guest state).
When an exit occurs, we can hash%rip, find the pre-
decoded instruction, verify that the guest still contains
the same raw instruction bytes as the cache, and proceed
to step the instruction using the cached information.

Years of working on virtualization using a binary
translator inspired us to take this decoded instruction
caching a step further. Rather than just creating a cache
of decoded instructions, we generate executable code in
a translation cache for each instruction we want to cache.
Our hash function then provides us with an address that
we simply jump to. The code at that location verifies that
the pre-decoded instruction information matches before
running the translated code to handle the exit.

This arrangement allows us to reduce the cost of inter-
pretation by using a form ofspecialization.For instance,
most interpreters start out with a large switch statement
based on instruction opcode. But since the instruction
is fixed for any given translation, our translation can di-
rectly embed the correct handler. In a similar manner we
are able to further specialize the translation with informa-
tion about the addressing mode, which guest physical ad-
dress contains the instruction bytes, or even predictions
based on the past behavior of the instruction. This ap-
proach provides us with a fast exit handler specialized
for each frequently exiting guest instruction.

3 Handling Exit Pairs

When hardware-assisted page table virtualization is un-
available, exits associated with maintaining shadow page
table coherency can be among the most frequent [2].
Typically, 32 bit x86 operating systems use Physical Ad-
dress Extension (PAE) mode to enable addressing of
more than 4 GB of physical memory. In PAE mode,
page table entries (PTEs) are 64 bits in size. Most op-
erating systems, including Windows and Linux, update
these 64 bit PTEs using two back-to-back 32 bit writes to
memory such as the sequence, from a Linux VM, shown
below. This results in two costly exits:1

* MOV 4(%ecx),%esi ; write top half of PTE

* MOV (%ecx),%ebx ; write bottom half

1In the examples, exiting instructions are marked with an asterisk.



When we generate the translation for the first exiting
instruction we decode the next instruction. If the next in-
struction can be shown to always access adjacent bytes in
memory, we create apair translation which merges both
instructions to act as a single 64 bit write to memory.
The details of recognizing adjacent writes are straight-
forward: in the above case, we simply note that the two
instructions use the same base register,%ecx, with re-
spective displacements (0 and 4) that differ by the width
of the memory operand (4 bytes). Other cases, including
instructions that combine base and index registers, ab-
solute addresses, and%rip-relative addresses follow the
same approach.

Combining two instructions into a single block avoids
taking the second exit, thereby eliminating half of the
hardware overhead. But it also reduces software over-
heads. Each time a guest writes to a PTE, the VMM
must make the corresponding adjustment to the shadow
page tables. By treating the pair of guest instructions as
a single 64 bit write we can transition the shadow page
tables directly to the new state in one step. With a 32 bit
Linux guest using PAE, the combined reduction in over-
heads reduces the time it takes to compile a kernel by
12%.

4 Static Cluster Formation

When generating a translation for an exiting instruction,
it is straightforward to decode ahead in the guest instruc-
tion stream to look for later instructions that will cause
subsequent exits. Our translator scans forward a small
number of guest instructions, 16 in our implementation,
starting from the exiting instruction. It then analyzes the
decoded instructions and tries to form a cluster that cov-
ers the stretch of guest code from the first exiting instruc-
tion to the last one (and no further). If such a cluster
is found within the decoded instructions, a translation is
emitted for it.

For example, consider this sequence of 16 bit BIOS
instructions:

* OUT %eax,%dx

* OUT $0xed,%al

MOV %dx,$0xcfc

MOV %al,%cl

AND %al,$0x3

ADD %dl,%al

XCHG %ecx,%eax

XCHG %ah,%al

* IN %al,%dx

XCHG %al,%ah

XOR %cl,%cl

JMP %bx

We took an exit on the firstOUT instruction. Clearly,
it is beneficial to translate (and execute) the secondOUT

as well. Moreover, by executing through six ALU in-
structions (which never exit) we can reach anIN. We call
such non-exiting instructionsgap fillersbecause they fill
the gaps between exiting instructions. In this example,
the optimal translation covers the first nine instructions
but omits the last three for which no benefits are to be
had. At runtime, we take an exit on the firstOUT and re-
sume after theIN, avoiding two out of three exits to net
a 3x execution speedup.

Is this case a rare oddity? No, most guests contain
dozens if not hundreds of similar basic blocks. For ex-
ample, Linux kernels of a certain vintage worked around
a chipset timing bug by piggybacking an extraOUT on
everyIN andOUT. For a native execution, the cost of the
extraOUT, while measurable, is affordable. However, in
a VM, the work-around is much more expensive because
it doubles the number ofIN/OUT related exits. Here’s an
example:

* IN %al,%dx

* OUT $0x80,%al ; bug workaround

MOV %al,%cl

MOV %dl,$0xc0

* OUT %al,%dx

* OUT $0x80,%al ; bug workaround

* OUT %al,%dx

* OUT $0x80,%al ; bug workaround

With clustering, not only do we overcome the exit
count increase due to the bug work-around, but we also
avoid individual exits on the three requiredIN/OUT in-
structions.

Our final example comes from Windows XP running
PassMark where the guest’s context switching code re-
programs debug registers (for reasons unknown to us this
PassMark process runs under debugger control):

* MOVDR %dr2,%ebx

* MOVDR %dr3,%ecx

MOV %ebx,0x308(%edi)

MOV %ecx,0x30c(%edi)

* MOVDR %dr6,%ebx

* MOVDR %dr7,%ecx

In a PassMark 2D run, this cluster and other similar
ones, compress 46 million would-be exits down to just
12 million actual exits, improving the benchmark score
by 50–80% (depending on the CPU used).

The PassMark example has two memory-accessing
gap fillers. When we pull memory accesses out of direct
execution and into translated code in the VMM’s context,
we can no longer use x86 segmentation and paging hard-
ware. Instead, address translation must be done in soft-
ware, slowing down memory accesses. To prevent gap
filler overheads from overwhelming exit avoidance sav-
ings, we cap the number of memory accesses between
exiting instructions at four.



5 Dynamic Cluster Formation

Instructions of types that always exit arestrongly-exiting.
For our VMM, these instruction includeCPUID, OUT and
HLT. Capturing strongly-exiting instructions in a cluster
simply requires decoding forward from the exiting in-
struction. However, many exits are caused byweakly-
exiting instructions: loads, stores and read-modify-write
instructions that target either memory with traces (such
as page tables) or memory-mapped devices. In these
cases, inspection of the instruction itself cannot reliably
determine whether it will exit or should be treated as a
gap filler. Consider this basic block from SUSE Linux
Enterprise Server 10, where we have observed an exit on
the first instruction:

* MOV -0x201000(%rax),%edx

MOV %eax,-0x7fc4215c(8*%rsi)

AND %eax,$0xfff

SUB %rax,%rcx

* MOV -0x200ff0(%rax),%r8d

MOV %eax,-0x7fc4215c(8*%rsi)

MOV %edx,0x60(%rsp)

AND %eax,$0xfff

SUB %rax,%rcx

* MOV -0x201000(%rax),%edi

MOV %eax,-0x7fc4215c(8*%rsi)

AND %eax,$0xfff

SUB %rax,%rcx

* MOV -0x200ff0(%rax),%edx

MOV %rax,0x21f1a1(%rip)

It may be possible to prove that a downstream instruc-
tion mustexit by starting from the fact that the initial
instruction did so. For example, one could use forward
data-flow analysis to find relationships between operands
of the first instruction and operands of the downstream
instructions. Exit pairs, described in Section 3 are a de-
generate and successful example of this type of analysis,
but the general problem is much harder and is best solved
by approximation.

Instead of attempting static analysis of guest code, we
have found that a dynamic prediction-based approach is
both simpler to implement and more powerful: it can
with high accuracy predict instructions that are likely to
exit most of the time, and do so without knowing any-
thing about x86 instruction semantics, 16/32/64 bit code,
segmentation, etc. In the above example, the instructions
marked with an asterisk were predicted to exit so the op-
timal translation unitexcludesthe last instruction as it
will execute faster directly in the context of the guest.

To obtain a dynamic prediction we defer translation
until the third time an instruction exits, handling the first
two exits with an interpreter and recording untranslated
exiting instructions. Then, when we eventually translate,
we will have observed two executions of the downstream

. . . . . . . . . . . . . 
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Figure 1:Exit tracking using leakage-rate aware FIFOs.

instructions from the exiting instruction, allowing the use
of past behavior as a predictor of the future. This per-
mits us to form clusters that avoid a large number of exits
without being too greedy (which would incur overheads
from translated execution of non-exiting instructions in a
cluster suffix).

The exit-tracking data structure must be compact, as is
true for any VMM data structure, and offer efficient guest
instruction lookup since it is on the critical path for exit
handling prior to translation. A fixed-size hash table can
meet these requirements, but it leaves one problem unad-
dressed: instructions may leak due to finite capacity, and
if that happens, how do we ensure that we will eventu-
ally get the guest exit working set translated? Failure to
“count to three exits” (due to hash table leakage) could
leave us perpetually interpreting exits, suffering an unac-
ceptable performance loss. For example, a guest reboot
loop where the guest uses address space randomization
could cause exit-tracking leakage since each reboot in-
carnation of the guest would look different and impose a
new exit working set upon the VMM. In a pathological
case, entries could leak from the hash table so fast that
some instructions’ execution count fail to reach the trans-
lation threshold, forcing the VMM to interpret on every
exit and, thus, resulting in severe loss of performance.

Instead of a simple hash table, we combine hashing
with an array of 8-deep FIFO queues to track exiting in-
structions. An exiting instruction is hashed into a 35 bit
value (using the program counter, length, and instruction
bytes). This 35 bit value is split into a 9 bit index and a
26 bit tag. The index selects a row in a 512-long array of
FIFOs where each element in the FIFO has a 26 bit tag, a
one-bit saturating counter, a 4 bit relative age (time since
last exit), and one or more property bits (see below). Fig-



ure 1 illustrates this data structure. In response to an exit
we hash the instruction and traverse the resulting row in
the array of FIFOs to look for a matching tag. The first
time an instruction exits, we insert it in the FIFO with
a count of zero, shifting out the oldest instruction in the
FIFO. The second time an instruction exits, we change
its count from zero to one. The third time an instruction
exits, we translate it.

To guard against the performance cliff that results if
we fail to ever translate (interpreting every exit), when
we drop the oldest element from the FIFO, we look at its
age. If the age is younger than a set threshold (think of it
as 10 seconds on a 2 GHz CPU), we must be “leaking en-
tries fast” and in response we force translation regardless
of exit count. The highest rate we may interpret without
disabling the threshold requirement is 2∗ 8 instructions
per FIFO per 10 seconds. Multiplied by the number of
FIFOs, we have an affordable maximal rate of interpre-
tation: 820 Hz.

The forced translation may cause loss of optimization
opportunities, but it avoids falling over the much deeper
cliff of interpreting an unbounded number of exits. In
practice, we have not encountered any guest that forces
us into immediate translation and the resulting loss of
optimization opportunities.

We can go one step further than merely using this
FIFO data structure to predict which instructions will
exit. Since each instruction will be interpreted at least
twice before being translated, we can observe not just
the fact that instructions exit butwhy they do so. For
example, we could record which device they access (if
they are device accessing instructions), or whether they
access traced memory. In our experience with a large
number of common guest operating systems, any given
instruction tends to access either one device or another or
page tables, but not a variety of such. This means that for
most instructions, we can use our FIFO data structure to
issue a reliable prediction that not only will the instruc-
tion be likely to exit, but also the reason for it to exit.
Even if we don’t cluster a particular instruction, know-
ing the likely cause for it to exit allows us to generate
better code. Today, we track accesses to the Advanced
Programmable Interrupt Controller (APIC), allowing us
to speed up guest interrupt processing by a measurable
amount. This same idea could be extended to recogniz-
ing accesses to other memory-mapped devices that are
deemed sufficiently important, such as network interface
cards, SCSI devices, etc.

6 Control-Flow in Clusters

In many cases, exiting instructions are separated by
control-flow instructions. Extending clusters from
straight sequences of instructions (i.e., basic blocks) to

code sequences with arbitrary control-flow can thus fur-
ther increase the benefits of clustering. However, includ-
ing control-flow instructions must be done carefully to
avoid costs that outweigh the benefits of clustering.

We describe three increasingly powerful approaches.
Our implementation gradually evolved through these dif-
ferent methods over time.

6.1 Method 1: No Intra-Cluster Control
Flow

The simplest approach allows branch instructions inside
clusters but treats all taken branches as cluster termina-
tion points. At runtime, a prefix of the cluster will be
executed. For instance, the execution of the cluster be-
low would either reach the second exitingIN instruction
if the JNZ branch instruction falls through, or would ter-
minate the cluster in the middle if the branch is taken:

* IN %ax,%dx

AND 0xd0,$0xfffffeff

TEST %ax,$0x20

JNZ 0x6 --+ M1: terminate if taken

OR 0xd0,$0x100 |

MOV %cx,$0xff <-+ M2: intra-cluster jump

* IN %ax,%dx

6.2 Method 2: Forward Branches

A more powerful approach allows intra-cluster forward
branches. At runtime, some of the instructions in the
cluster may be skipped if forward branches are taken. In
the example above, execution reaches the last exitingIN

instruction regardless of the path taken at theJNZ instruc-
tion. Forward control-flow provides a simple mechanism
to ensure we bound the amount of time spent outside of
direct execution.

To generate efficient code, the translator does not up-
date the virtual%rip at each instruction inside the clus-
ter. Instead, it updates it at cluster termination and be-
fore calling service routines that may cause early termi-
nation. As such, the translation of intra-cluster jumps
requires additionalglue code to adjust the delta%rip
amount from the source instruction to the target.

6.3 Method 3: Loops

The most general approach is to allow arbitrary branches
within a cluster, including control-flow backedges. Al-
though branches to prior instructions in the instruction
stream do not necessarily imply loops, in practice all
backedges we have encountered correspond to cluster
loops. Below is an example of a cluster containing two
small loops at the beginning, followed by more exiting
instructions:



* IN %al,%dx <---+

TEST %al,$0x8 |

JNZ 0xfb ----+

* IN %al,%dx <---+

TEST %al,$0x8 |

JNZ 0xfb ----+

MOV %dx,%bx

MOV %al,0x18(%esp)

* OUT %al,%dx

INC %dx

MOV %al,0x1c(%esp)

* OUT %al,%dx

MOV %al,0x20(%esp)

* OUT %al,%dx

Including loops in clusters has the potential of saving
large numbers of exits in a single cluster execution. For
instance, during the 64 bit Ubuntu installation a cluster
containing loops executes about 20,000 loop iterations
in a single runtime instance. However, with this bene-
fit also come two potential dangers: interrupt starvation
and performance degradation due to long executions in
translated code.

To avoid both of these dangers, we require that each
loop iteration checks for pending interrupts and executes
at least one exiting instruction. Instead of implementing
a full-blown control flow analysis to examine all paths
in the cluster, we designed a much simpler, yet effective
analysis: for each backedge, we require that the straight
list of instructions starting from its target up to the first
control-flow instruction encounters both an exiting in-
struction and an instruction whose translation checks
for interrupts. Otherwise the backedge is disabled: the
branch instruction is still included in the cluster, but its
branch taken path is treated as a cluster termination point.
This approach works well in practice: about 84% of all
analyzed backedges meet both the interrupt checking and
exiting instruction requirements.

But a danger still lurks in the presence of loops that
contain merely weakly exiting instructions. Such loops
risk degrading rather than improving performance. Con-
sider a loop containing a memory access instruction that
we have identified as exiting (using the exit-tracking
structure from Section 5). If only a small fraction of
the loop iterations touch traced memory, then only a
small number of the dynamic instances of that instruc-
tion would require exits. Running the entire loop in the
cluster may be less efficient because non-exiting mem-
ory accesses run faster in direct execution. To contain
this risk, we classify cluster backedges as either strong or
weak, depending on whether they are guaranteed to reach
a strongly exiting instruction or not. We then cap the
number of weak backedges traversed per dynamic cluster
execution to a small number, 10 in our implementation,
while allowing unlimited traversal of strong back edges.
This gives us a good balance between achieving most of

* 0x02e5:  IN    %al,%dx
  0x02e6:  TEST  %al,$0x8
  0x02e8:  JZ    0xb ;0x2f5

  0x02ea:  LOOP  %cx,-0x7 ;0x2e5

  0x02f5:  MOV   %bx,$0x40
  0x02f8:  SUB   %cx,%cx

  0x02ec:  DEC   %bx
  0x02ed:  JNZ   -0xa ;0x2e5

  0x02ef: <CS> MOV   0x2e8,$0xeb

* 0x02fa:  IN    %al,%dx
  0x02fb:  TEST  %al,$0x8
  0x02fd:  JNZ   0xb ;0x30a

  0x02ff:  LOOP  %cx,-0x7 ;0x2fa

  0x0301:  DEC   %bx
  0x0302:  JNZ   -0xa ;0x2fa

Figure 2:A cluster with complex control-flow from Windows
ME. The two exiting instructions are shadowed.

the benefits and avoiding severe performance degrada-
tion in the worst case: if none of the weakly exiting in-
structions would cause exits, we quickly leave the clus-
ter; if all of the weakly exiting instructions would trigger
exits, we only miss 10% of the exit reduction opportuni-
ties for that loop.

In the absence of loops and backedges, clusters always
end with an exiting instruction since going further would
yield no benefits. This is no longer true for loops: the
translator extends clusters up to the last backedge, if any.
In particular, it is possible to form a special case of clus-
ters having a single exiting instruction at the beginning
and ending with a backedge to the first instruction, such
as this code fragment from Windows 7:

* MOV (%rcx),%rdx <--+

ADD %rcx,$0x8 |

DEC %r9 |

JNZ -0xc ---+

Due to their small size, clusters usually have simple
control-flow. But this is not always the case. Control-
flow can become fairly complex within less than 16 con-
secutive instructions, as shown in Figure 2.



7 Checking Code Consistency

Cluster translations are reused every time an exit matches
the code address of the cluster. To ensure safety of reuse
we must detect cases where the cluster code changes be-
tween translation time and use time. This can happen
either if a new piece of code gets mapped in at that ad-
dress, or in the case of self-modifying code.

To detect code changes, each cluster translation be-
gins with a code coherency checking fragment that dy-
namically checks each byte of the cluster against its cor-
responding translation-time value. If a mismatch is de-
tected, the existing translation is thrown away and exe-
cution falls back to executing just the current exiting in-
struction. Subsequent exits at the same address will try
to form another cluster.

Coherency checks at cluster entry are necessary, but
are not sufficient to protect against code modifications.
Even if the cluster code matches at the time when an
exit is taken, the code may changeduring the execution
of the cluster. In other words, the cluster may be self-
modifying. We have encountered such clusters in Win-
dows “PatchGuard” code. To address this second issue
we have enhanced the translation of memory writes in-
side the cluster with checks against the pages being ac-
cessed. If a cluster tries to write into one of the pages that
the cluster belongs to, the cluster execution is terminated.
Because clusters contain a small number of adjacent in-
structions, they span at most two pages. Hence, self-
modifying code checks require at most two page checks.

The reader might have noticed that even the cluster
in Figure 2 contains self-modifying code. When the
MOV instruction at address0x02ef executes, it changes
the opcode of the first branch at address0x02e8 from
JZ to JMP. Our cluster runtime checks detect this self-
modification and immediately terminate the cluster. The
next exit at address0x2e5 will fail its cluster-entry co-
herency checks, in turn causing cluster re-translation.

8 Nested Virtualization

There is growing interest innested virtualization, where
an inner VMM runs inside a virtual machine managed
by an outer VMM (see Figure 3). Unfortunately, today’s
hardware does not provide direct assistance for virtual-
izing HV, so support for virtual HV must be provided
by the outer VMM through software emulation. When a
hardware exit occurs, control passes to the outer VMM.
The outer VMM must then determine whether it should
handle the exit itself, or whether it should forward the
exit to the inner VMM [13]. To forward an exit to the
inner VMM, the outer VMM must emulate the effects of
the exit on the state of the inner VM’s virtual CPU. This
emulation is extremely slow. With VMware Worksta-

Outer VM

Inner VM

Inner VMM

Outer VMM

Figure 3:Nested VMs: the inner VM and VMM run inside an
outer VM. The solid arrows for the outer VM represent hard-
ware virtualization transitions; the dashed arrows for theinner
VM represent emulated hardware virtualization transitions.

tion 8 running on a Sandy Bridge CPU, the virtual hard-
ware round-trip latency for a virtualization exit is 9794
cycles, which is over 10 times worse than the underlying
physical hardware; compare with Table 1.

Even though the outer VMM gets control of the pro-
cessor on each hardware exit, we do not try to avoid ex-
its which would have to be forwarded to the inner VMM
anyway. When an exit is forwarded to the inner VMM,
a large amount of virtual CPU state is modified, includ-
ing the mappings from linear addresses to physical ad-
dresses. Since we do not create translations that span
changes in guest paging mode, it is important that the
inner VMM exploits all available opportunities for exit
avoidance. Every virtual exit that the inner VMM can
avoid saves a corresponding hardware exit and the soft-
ware overhead for forwarding that exit from the outer
VMM to the inner VMM.

Exit avoidance in the outer VMM is also significant for
nested virtualization. A guest hypervisor often exhibits a
higher exit rate than a typical guest, due to frequent mod-
ifications of control registers and model specific registers
(MSRs), as well as the hardware-assisted virtualization
instructions themselves. This is particularly true on In-
tel hardware. To process an exit, the VMM must access
fields in avirtual machine control structure(VMCS) that
contains the state of the VM. In Intel’s implementation,
the VMCS is accessed by the new instructions,VMREAD

and VMWRITE, which are strongly-exiting instructions.
Typically, a VMM will execute ten or more of these in-
structions to process a single exit. Thus, a single round-
trip from the inner VM to the inner VMM and back again
can require ten or more round-trips between the outer
VM and the outer VMM, in addition to the emulated exit.

One possible solution to this problem is to paravirtu-



alize VMREAD andVMWRITE [6]. However, clustering in
the outer VMM offers some performance benefit without
resorting to paravirtualization. For example, in this code
sequence from a Hyper-V inner VMM, we save two of
three exits:

* VMREAD %r9,%rax ; Exit qualification

MOV %eax,$0x2400

* VMREAD %r10,%rax ; Physical address

MOV %eax,$0x4408

* VMREAD %rax,%rax ; IDT vectoring

A clustering-aware inner VMM can help its outer
VMM avoid even more exits through dense packing of
exiting instructions,withoutcreating any incompatibility
with unnested execution. This example, from a VMware
inner VMM, is executed as part of the exit processing for
every (nested) exit:

* VMREAD -0x22222a(%rip),%rbx ; RIP

* VMREAD -0x222209(%rip),%rcx ; RSP

* VMREAD %rdx,%rdx ; RFLAGS

* VMREAD -0x1f229b(%rip),%rbp ; Intr blocking

* VMREAD %rdi,%rdi ; Exit reason

* VMREAD %rsi,%rsi ; IDT vectoring

* VMREAD %rbx,%rax ; CS rights

ADD %eax,$0x2

* VMREAD %rbp,%rax ; SS rights

TEST %edi,%edi

JNZ 0x24

MOV %eax,$0x4404

* VMREAD %rax,%rax ; Interrupt info

Each execution of this cluster avoids at least seven
hardware exits. By using clustering in the outer VMM
and dense packing of exiting instructions in the inner
VMM, we have measured a 34% improvement in the
time it takes for the inner VMM to process a single
strongly-exiting instruction in a nested VM on Intel hard-
ware.

The benefits of clustering in the outer VMM are
less significant for nested virtualization on AMD hard-
ware since AMD-V has no equivalent ofVMREAD and
VMWRITE. However, there are still some opportunities for
clustering exits in the outer VMM. Moreover, exit clus-
tering in the inner VMM is just as important on AMD
hardware as it is on Intel hardware.

Table 2 illustrates the speedups observed for compil-
ing the Linux kernel in a nested VM with clustering en-
abled for the inner VMM, the outer VMM, and both
VMMs together. Speedups are computed as the ratio of
the running time with clusters disabled in both the outer
and the inner VM to the running time with clusters. The
inner VM runs a 32 bit PAE Linux kernel and the inner
VMM uses shadow paging to demonstrate the increased
benefits of exit pairs in a nested context. The outer VM
runs a 64 bit VMware VMM hosted on a 64 bit Linux OS
and the outer VMM uses hardware MMU virtualization.

Inner
Off On

Intel AMD Intel AMD

Outer
Off — — 1.20 1.13
On 1.27 1.06 1.52 1.19

Table 2:Nested kernel compile speedups due to clusters.

9 Evaluation

The techniques described in this paper have been fully
implemented in VMware products, including ESX,
Workstation, and Fusion. The implementation evolved
over several years, starting with simpler methods such as
just detecting pairs or consecutiveIN/OUT instructions in
older releases to full support for clusters with arbitrary
control-flow and loops in more recent releases. The im-
plementation has therefore been implicitly validated by
years of use in the field.

The implementation comprises approximately 10,000
lines of commented C code. This line-count includes
the code to translate handlers for single-instruction ex-
its, but excludes functionality that was already present in
our VMM for other reasons, such as the x86 instruction
decoder, instruction emitters, the translation cache, and
fault handlers.

Earlier sections of this paper show performance results
for particular techniques along with the description of the
technique. These numbers were harvested at the time we
implemented the optimization and focused on that one
step only. We now step back and look at the aggregate
effects of clustering across a number of workloads, in-
cluding both regular and nested virtual machines.

Figure 4 shows performance data for several varia-
tions of Linux kernel compilation (KC), and a nested VM
performing Linux kernel compilation (NKC) as well as
PassMark 2D graphics. In each case, we run the work-
load twice, once without clusters and once with clusters.
For the KC workloads, we plot the ratio of running time
without clusters to running time with clusters. For the
NKC cases, as described in Section 8, the nominator is
the running time of the nested setup with clustering dis-
abled both in the inner and outer VMM. For PassMark,
where a higher score is better, we plot the inverse ratio of
scores, i.e. scores with clusters divided by scores with-
out clusters. A ratio greater than 1.0 therefore indicates
a performance improvement.

The PassMark test ran in a Windows XP VM using
VMware Workstation. The KC benchmarks ran in a
SUSE 10.1 VM (either 32 bit using PAE or 64 bit, as
indicated). The compiling VM was configured with 2GB
of RAM and measurements were taken after a warm-
up run so that the workload could run out of the buffer
cache. The NKC benchmarks ran in the same SUSE
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Figure 4:Relative performance improvements using clustering.

10.1 VM (of the indicated code size) running on the
same build of VMware Workstation inside an outer 64 bit
SUSE 10.1 VM itself running inside VMware Worksta-
tion. The outer SUSE 10.1 VM was allocated 4GB of
RAM to avoid the need for any disk swapping.

The PassMark result has been previously discussed,
and is repeated here for easy comparison, so consider
the KC results in the second through fifth column in the
figure. We first note that clusters deliver a significant im-
provement for 32 bit KC when using the software MMU
due to dynamically frequent PTE update pairs. The 64 bit
KC test, in contrast, shows no gain (the small slowdown
is within the noise) as the majority of exits are still due to
PTE updates but (1) no PTE pairs exist since a 64 bit VM
can (and does) update a PTE with a single 64 bit write
and (2) we are unable to cluster from one PTE update to
another. While this result may at first blush seem disap-
pointing, the 64 bit KC test runs more than twice as fast
as the 32 bit KC test. Put differently, in absolute terms,
the 64 bit KC test case has quite good performance from
the outset and offers little opportunity for clustering to
give it a helping hand. Likewise, when using hardware
support for MMU virtualization, clustering provides no
benefits whether the guest is 32 bit or 64 bit since this
configuration has too low an exit frequency for any exit
optimization to matter much.

The rightmost twelve columns in Figure 4 show var-
ious nested kernel compile configurations. For NKC
workloads we have the option of enabling clustering in-
dependently on the inner or the outer VMM. Enabling
clustering on just the inner level shows a similar but ex-
aggerated pattern as the non-nested case: 32 bit compiles
win significantly while 64 bit compiles show little if any
improvement. The larger savings for the nested case re-
sult from nested exits being substantially more expensive
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than non-nested exits.
Enabling clustering on the outer VMM shows im-

provements for both 32 bit and 64 bit compiles. Here,
instead of avoiding exits from the inner guest, we see
benefit from being able to cluster virtualization-related
exits made by the inner VMM. This win is visible when
using both the software MMU and the hardware MMU,
although the win is larger when using the software MMU
due to the higher exit rates of the inner guest.

The effects of clustering at the inner and outer levels
are not strictly additive but do complement each other as
can be best seen by comparing the 32 bit NKC cases.

Clustering fundamentally depends on temporal local-
ity of exits to deliver benefits. With hardware perfor-
mance counters we can measure the distribution of “dis-
tances” between consecutive exits. This data offers an
upper bound on the clustering opportunities that exist for
an ideal binary translator: one that yields no slowdown
over guest mode direct execution and has infinite trans-



lation cache capacity. While an ideal translator does not
exist, the distribution still offer insights, including sug-
gesting how close to ideal we can reasonably get with
translation units capped at 16 instructions.

Figure 5 shows, for a selection of workloads, the cu-
mulative percentage of trips through guest mode where
the number of instructions retired is less than or equal to
the indicated maximum. PassMark “jumps” to almost
40% at just two instructions, reflecting the extremely
high dynamic frequency of the tight debug-register clus-
ters. Even more impressively, 32 bit KC, with the zero-
distance PTE pairs, starts out at over 50% of all exits
having zero distance, i.e., they must be pairs.

These graphs show that for many workloads a substan-
tial fraction of exits can be captured with simple clusters
of at most 16 instructions. However, this does not mean
that all workloads benefit meaningfully from clustering:
exit rates must be factored in to obtain the “bottom line.”
For example, the 64 bit KC, which we previously noted
shows no measurable runtime benefit from clustering still
has 16% of all exits amenable to clustering, but an insuf-
ficient exit frequency for it to matter.

Nested VMs, KC, and PassMark all benefit exception-
ally well from clustering, and were motivating cases dur-
ing development. We looked to VMmark 2.0 for testing
against other guests, using only the portions of VMmark
that involved actually running VMs and omitting meta-
tasks like deploying and moving VMs. Since VMmark
runs the workloads for fixed duration (including a ramp-
up time), we cannot measure speedup with VMmark. In-
stead, we looked at the reported throughput scores for
the individual VMs. We found that results with and with-
out clustering were about the same, factoring in the noise
margin. To determine if this null result is due to cluster-
ing being ineffective or due to exits being too infrequent
for exit avoidance to matter, we measured exit rates per
virtual CPU for the VMmark constituent workloads dur-
ing their steady state period; see Figure 6.

Encouragingly, clustering reduced the exit rates on
all of the workloads. But, as the following calcula-
tion shows, these workloads are not dominated by exit
costs. We assume a combined hardware and software
cost of servicing an exit at 3000 cycles. Then, on the
3.33 GHz machine used here, each exit saved by cluster-
ing amounts to 0.9 us of CPU time. For the Mail Server
workload, clustering saves about 1400 us of CPU time
each second, i.e., just 0.14% of a core. So we see a small
win, but one that is too small to detect on the bottom line.

While this result may at first seem disappointing,
we note three positives: (1) clustering is either a
net win or neutral but never a loss; (2) for some
latency-sensitive workloads, including request-response
client/server workloads and HPC workloads over a low-
latency network, even a microsecond may matter; (3) we

have found many actual workloads for which clustering
delivers a bottom-line visible throughput improvement.

As a final dimension to the performance and effective-
ness of clusters, let us relate them to work that has been
done in the space of device virtualization. We ran net-
perf in a VM on VMware Workstation to determine if
clusters can improve virtualized network performance.
Netperf can measure either throughput or latency. We
used the latter, configuring netperf to measure number of
network packet roundtrips achievable per second. Mean-
while, in the hypervisor, we counted number of exits per
second, allowing us to “normalize” exit counts per net-
work roundtrip. With this setup, we first gave the VM a
virtual e1000 NIC. This NIC is an emulated version of a
well-known physical NIC produced by Intel. For e1000,
with clusters disabled, each network roundtrip induces
2.6 exits. With clustering enabled, the exit count drops
by 24% to 1.97 exits per roundtrip.

Replacing e1000 with a paravirtualized vmxnet NIC, a
device specifically designed to be virtualization-friendly
(i.e., designed to require fewer device touches from guest
software) we found that clusters drop the exit rate per
roundtrip from 1.3 to 1.2, a reduction of about 8%.

We are encouraged that clusters make a standard
e1000 NIC perform measurably better and closer to the
level of performance of a paravirtualized NIC. While the
latter remains faster, extra steps are needed when switch-
ing from an e1000 NIC that works “out of the box” to a
paravirtualized NIC that requires an add-on driver. This
means that many virtual machines will continue to use an
e1000 NIC.

We also find it interesting that a guest running with the
paravirtualized NIC benefits nontrivially from clusters.
Most likely, the measured improvement can be attributed
to guest software outside of the NIC driver per se, per-
haps on the general interrupt delivery path, although we
have not been able to determine this with certainty.

10 Related Work

The cost of an exit has three components: the hardware
transition where, typically, microcode switches the CPU
from executing guest code to executing hypervisor code,
the software transition where hypervisor code saves re-
maining guest state and loads hypervisor state, and the
actual handling of the exiting guest instruction. More-
over, the first two cost components have counter-parts
that apply when resuming guest execution. Clusters im-
prove virtual machine performance by avoiding transi-
tion costs. They do not significantly speed up the ac-
tual handling of instructions that would, absent cluster-
ing, have caused their own exits.

Exits can be avoided using hardware or software tech-
niques, or a combination thereof. The history of build-
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ing hardware that avoids certain types of exits goes back
to the classical IBM mainframe era. Initial mainframe
VMMs executed the guest with reduced privileges, caus-
ing all privileged instructions to trap. Soon, however,
hardware support emerged to avoid many of these traps.
For example, IBM’s System 370 architecture introduced
interpretive execution[12], a new hardware execution
mode for running guest operating systems. This architec-
tural extension specifies an encoding of guest privileged
state and provides a newSIE “start interpretive execu-
tion” instruction to enable the VMM to hand off guest
execution to the actual hardware. Many instructions that
would otherwise have trapped in a simple deprivileged
execution environment now can run directly in hardware
against the provided guest privileged state.

Today, Intel and AMD use the same approach to
avoid many virtualization exits. As previously explained,
contemporary x86 virtual machines do not merely run
in a less privileged protection ring, but run in guest
mode with a VMCS (Intel terminology) or a VMCB
(AMD terminology) capturing select vCPU state. Intel’s
VMRESUME and AMD’sVMRUN instructions are equivalent
to IBM’s SIE instruction. As was the case on main-
frames, this arrangement allows privileged x86 instruc-
tions like CLI (disable interrupts) andSTI (enable in-
terrupts) to execute without taking exits in guest mode:
the instructions simply clear and set the vCPU’s interrupt
flag (IF) and check for a pending interrupt wheneverIF

changes from 0 to 1.

Along the same lines, and even more recently, both
AMD and Intel have added hardware support for vir-
tualizing the x86 MMU. This hardware support elimi-
nates the need for the VMM to implement shadow page
tables to virtualize guest virtual memory. Instead, the
RVI/EPT hardware extensions allow the guest and hy-

pervisor, each, to designate a set of page tables that map
from guest virtual to guest physical memory and from
guest physical memory to host physical memory, respec-
tively. Giving the hardware MMU access to these two
sets of page tables significantly reduces the number of
exits required for running workloads that have frequent
context switches, frequent page faults, and/or frequent
memory map/unmap operations [7, 1]. However, these
techniques come at the price of higher TLB miss costs
and additional MMU implementation complexity.

Turning now to software techniques, paravirtualiza-
tion [5] was initially used to overcome obstacles to
virtualizing the x86 architecture without the need for
deeper software techniques such as binary translation
[1]. Specifically, if a paravirtualized guest kernel avoids
all use of non-trapping privileged instructions such as
POPF, it can run on a trap-and-emulate VMM. Addi-
tionally, paravirtualization was used to improve perfor-
mance using a batched hypercall interface to amortize the
guest/VMM crossing overhead. For example, a bulk up-
date of shadow PTEs was deemed beneficial in the days
prior to RVI/EPT hardware support for memory virtual-
ization [4]. Batching of hypercalls resembles our clus-
tering technique, but with the key difference that clusters
are “native hardware compatible” whereas (batched) hy-
percalls only work on a hypervisor and possibly not even
across different hypervisors.

Paravirtualization has also been used to accelerate vir-
tual machine I/O. For example, instead of giving the
guest operating system a virtual device that behaves ex-
actly like an existing physical device, the VMM may im-
plement a special-purpose NIC that has been developed
specifically for the virtualized environment. Such a para-
virtualized NIC side-steps the complexity/performance
trade-off that a “real” NIC implemented in silicon must



obey. It can present an interface to the guest that al-
lows packets to be sent using fewer device “touches” than
would be the case for common physical NICs. Xen’s
device architecture, for example, uses a shared memory
area to allow the guest’s network driver to communi-
cate asynchronously with the hypervisor [5]. VMware’s
SVGA graphics device also uses a shared memory FIFO
to transmit graphics commands from guest to hypervisor
in a low-overhead manner [8].

While device paravirtualization delivers performance
gains, it requires that the hypervisor vendor provides not
just a VMM but also guest drivers for the paravirtualized
devices. Thus, device paravirtualization realizes perfor-
mance benefits only in exchange for taking on the burden
of writing both device emulation code and guest drivers,
and probably for multiple guest operating systems. As
shown in Section 9, clustering can deliver some of the
same benefits as device paravirtualization by reducing
the number of exits required to complete an I/O trans-
action against a standard device.

Pass-through of physical devices to virtual machines
eliminates exits in a different manner. With pass-
through (also sometimes called “direct device assign-
ment”), guests contain drivers for physical devices, per-
mitting exit-free programming of I/O requests. Gordon
et al. [9] describe how a hypervisor can carefully manage
physical resources, such as the Interrupt Descriptor Table
and the APIC, to further eliminate most interrupt-related
exits.

In the Turtles project, Ben-Yehuda et al. took the lead
in investigating performance of nested virtualization on
Intel x86 processors with VT-x [6]. They discuss virtu-
alization of EPT using EPT shadowing, and discuss de-
vice performance extensively, including the pass-through
scenario. Impressively, Turtles achieves nested virtual
performance within 6–8% of non-nested virtual perfor-
mance for nontrivial workloads. Much as in our own
nested virtualization work, Turtles uses VMCS shadow-
ing to multiplex (“flatten”) the inner hypervisor’s use of
VT-x/EPT onto the underlying physical CPU.

However, as explained earlier, Intel’s use of spe-
cial VMCS accessor instructions,VMREAD andVMWRITE,
presents a particular challenge to nested performance
since use of these instructions in the inner hypervisor
triggers exits. It appears that to get the best performance,
the Turtles project paravirtualizesVMREAD andVMWRITE,
allowing the inner hypervisor to instead use simple mem-
ory reads and writes. (This creates exit-behavior simi-
lar to what would have been the case on an AMD CPU
where VMCB fields are memory mapped.) Since use of
paravirtualized VMCS accessors prevents the inner hy-
pervisor from working in a unnested setup, Ben-Yehuda
et al. propose use of binary rewriting to convert inner hy-
pervisorVMREADandVMWRITE instructions into memory-

accesses on the fly. Such code rewriting resembles the
dynamic code rewriting techniques proposed by LeV-
asseur et al. in that they are guest visible [11]. In con-
trast, our clustering technology does not leave any visible
traces that the inner hypervisor can detect, other than in-
direct timing effects. Moreover, clusters apply not just at
the outer hypervisor level (when the inner hypervisor co-
operates) but also allows the inner hypervisor to collapse
multiple inner guest exits into faster-executing clusters.

11 Future Work and Conclusions

The exit avoidance techniques described in this paper
have been incorporated in recent VMware ESX, Work-
station, and Fusion products. They have been enhanced
from release to release and have been running success-
fully on customer systems for a few years. While we feel
that the work has probably reached a sweet spot for to-
day’s CPUs and workloads, several directions of future
work exist that may take this system to the next level.

First, an adaptive cost/benefit model can more ac-
curately estimate when translations are justified. This
would include modeling the costs of expensive transla-
tions (e.g., gap-filler memory accesses) and the savings
of avoided exits. To capture differences across CPUs
or between native and nested executions, the calibration
must be done dynamically, e.g., during VMM power-on.

Second, cluster formation can be generalized. While
we currently support intra-cluster control-flow, transla-
tions are still fairly restrictive: they are small, consec-
utive, control-flow permits only conditional jumps, and
clusters always begin with an exiting instruction. Re-
moving these restrictions permits more powerful clusters
such as: loop clusters where the initial exiting instruction
is in the middle of the loop; clusters with non-adjacent
instructions; and clusters that span call/return control in-
structions. A branch prediction mechanism could point
the translator towards the more frequent execution paths.

Third, caching page walks can reduce the cost of gap-
filler memory accesses. For each data memory reference
in a cluster, we currently generate a separate walk of the
guest page tables to translate the guest linear address to a
guest physical address. Often, multiple references to the
same guest linear page exist in the same cluster. A simple
cache of page translations maintained for the duration of
a cluster invocation could reduce the cost of page table
walks, in turn permitting us to relax the constraint on the
number of memory references in a cluster.

The hardware costs of a virtualization exit have gen-
erally improved from one CPU generation to the next.
However, the rate of improvement has been slowing. As
the hardware round-trip latency bottoms out, efforts to
improve virtualization performance must shift to tech-
niques for avoiding virtualization exits. For nested virtu-



alization, exit avoidance is even more important, because
virtual hardware is way behind on the curve. Virtualiza-
tion exits can either be avoided through more sophisti-
cated hardware, or by software techniques such as those
described in this paper.
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