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[NON-EXHAUSTIVE) MP TOPICS

MACHINE PROGRAMMING USES STOCHASTIC AND DETERMINISTIC METHODS
EXTRACTION OF EVOLVING AND MULTI-DIMENSIONAL CODE SEMANTICS
NOVEL STRUCTURAL REPRESENTATIONS OF CODE

AUTOMATION FOR SOFTWARE AND HARDWARE HETEROGENEITY

INTENTIONAL PROGRAMMING
THE FUTURE OF DATA, COMMUNICATION, AND COMPUTATION FOR MP

BUT FIRST - SOME BACKGROUND

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



SOME BACKGROUND
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INTRODUCING:

MACHINE PROGRAMMING
RESEARCH (MPR]
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INTEL LABS' MPR GOALS

Automation of software (and hardware) to improve:

1. productivity: minimal human effort*
*Measured as 1000x+ improvement over human work performed today

2. quality: better software than the best human programmers*
*Measured as superhuman correctness, performance, security, etc.

We speculate this end-point to be at least 2+ decades away.

MPR = Machine Programming Research



THE THREE PILLARS OF MACHINE PROGRAMMING (MP)

' Adaptation

 MP is the automation of software development
— Intention: Discover the intent of a programmer
— Invention: Create new algorithms and data structures
— Adaptation: Evolve in a changing hardware/software world

Justin Gottschlich, Intel Labs
Armando Solar-Lezama, MIT
Nesime Tatbul, Intel Labs
Michael Carbin, MIT

Martin Rinard, MIT

Regina Barzilay, MIT

Saman Amarasinghe, MIT
Joshua B Tenenbaum, MIT
Tim Mattson, Intel Labs

Summarized ~90 works.

Key efforts by Berkeley,
Google, Microsoft, MIT,
Stanford, UW and others.

“THE THREE PILLARS OF MACHINE PROGRAMMING", GOTTSCHLICH ET AL., MAPL'18 (@ PLDI ‘18



WHY GALL IT MACHINE PROGRAMMING?

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



WHY GALL IT MACHINE PROGRAMMING?

Names matter. Should infer meaning from name.

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



WHY GALL IT MACHINE PROGRAMMING?

Names matter. Should infer meaning from name.

Why isn't this seminar series called?
- Al for Computer Science
- Neural Networks for Optimization

- Machine Learning for Software

None of these name precisely match the intention of this
seminar series (as | understand it ©).

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



WHY GALL IT MACHINE PROGRAMMING?

» Likewise, our alternatives were:

— Program Synthesis
— AlI/ML for Code
— Software 2.0

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



WHY GALL IT MACHINE PROGRAMMING?

» Likewise, our alternatives were:

— Program Synthesis (historical w/ formal methods; not always synthesizing)
— AI/ML for Code (it's not just Al/ML - this is important)

— Software 2.0 (what does this mean?)
— And Software 3.0, and 4.0, and 5.0?

* The machine programming name was coined to avoid
confusion and broaden scope.

MP = MACHINE PROGRAMMING, Al = ARTIFICIAL INTELLIGENCE, ML = MACHINE LEARNING



[NON-EXHAUSTIVE) TOPICS

MACHINE PROGRAMMING USES STOCHASTIC AND DETERMINISTIC METHODS
EXTRACTION OF EVOLVING AND MULTI-DIMENSIONAL CODE SEMANTICS
NOVEL STRUCTURAL REPRESENTATIONS OF CODE

AUTOMATION FOR SOFTWARE AND HARDWARE HETEROGENEITY
INTENTIONAL PROGRAMMING

THE FUTURE OF DATA, COMMUNICATION, AND COMPUTATION FOR MP

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



MP USES STOCHASTIC AND DETERMINISTIC METHODS

STOCHASTIC DETERMINISTIC

Machine Learning Formal Methods
(e.g., Neural Networks, Reinforcement
Learning, Genetic Algorithms, Bayesian
Networks, etc.)

(e.g., Formal Verifiers, Spatial and
Temporal Logics, Formal Program
Synthesizers, etc.)

More stochastic, but may have a larger solution space More deterministic, but may have smaller solution space

Software: Programming Languages,
Algorithms, Data Structures, etc.
Hardware: Compute,
Communication, & Memory

Architectures, etc.
O = Main Components Used in MP Systems

O= Main Techniques Used to Build by MP

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



MP USES STOCHASTIC AND DETERMINISTIC METHODS

EMERGING SOLUTIONS USING A FUSION OF BOTH

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



MP USES STOCHASTIC AND DETERMINISTIC METHODS

EMERGING SOLUTIONS USING A FUSION OF BOTH

Learning to Infer Program Sketches

Maxwell Nye !> Luke Hewitt!2> Joshua Tenenbaum'2* Armando Solar-Lezama?

Abstract

Our goal is to build systems which write code
automatically from the kinds of specifications hu-
mans can most easily provide, such as examples
and natural language instruction. The key idea of
this work is that a flexible combination of pattern
recognition and explicit reasoning can be used
to solve these complex programming problems.
We propose a method for dynamically integrating
these types of information. Our novel intermedi-
ate representation and training algorithm allow a
program synthesis system to learn, without direct
supervision, when to rely on pattern recognition
and when to perform symbolic search. Our model
matches the memorization and generalization per-
formance of neural synthesis and symbolic search,
respectively, and achieves state-of-the-art perfor-
mance on a dataset of simple English description-
to-code programming problems.

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM

way to combine these language constructs to construct an
expression with the desired behavior.

A moderately experienced programmer might immediately
recognize, from learned experience, that because the output
list is always a subset of the input list, a filter function
is appropriate:

filter (input, <HOLE>)

where <HOLE> is a lambda function which filters elements
in the list. The programmer would then have to reason about
the correct code for <HOLE>.

Finally, a programmer very familiar with this domain might
immediately recognize both the need for a filter func-
tion, as well as the correct semantics for the lambda function,
allowing the entire program to be written in one shot:

filter (input, lambda x: x%2==0)

CLR 2019

An Abstraction-Based Framework
for Neural Network Verification

Yizhak Yisrael Elboher!, Justin Gottschlich?, and Guy Katz!(®)

! The Hebrew University of Jerusalem, Jerusalem, Israel
{yizhak.elboher,g.katz}@mail.huji.ac.il
2 Intel Labs, Santa Clara, USA
Jjustin.gottschlich@intel.com

GAV 2020

Abstract. Deep neural networks are increasingly being used as con-
trollers for safety-critical systems. Because neural networks are opaque,
certifying their correctness is a significant challenge. To address this issue,
several neural network verification approaches have recently been pro-
posed. However, these approaches afford limited scalability, and applying
them to large networks can be challenging. In this paper, we propose a
framework that can enhance neural network verification techniques by
using over-approximation to reduce the size of the network—thus mak-
ing it more amenable to verification. We perform the approximation such
that if the property holds for the smaller (abstract) network, it holds
for the original as well. The over-approximation may be too coarse, in
which case the underlying verification tool might return a spurious coun-
terexample. Under such conditions, we perform counterexample-guided
refinement to adjust the approximation, and then repeat the process.
Our approach is orthogonal to, and can be integrated with, many exist-
ing verification techniques. For evaluation purposes, we integrate it with
the recently proposed Marabou framework, and observe a significant
improvement in Marabou’s performance. Our experiments demonstrate
the great potential of our approach for verifying larger neural networks.



MP USES STOCHASTIC AND DETERMINISTIC METHODS

FORMAL METHODS FOR INCREASED DETERMINISM OF NEURAL NETS

An Abstraction-Based Framework
for Neural Network Verification

Yizhak Yisrael Elboher!, Justin Gottschlich?, and Guy Katz'®)

! The Hebrew University of Jerusalem, Jerusalem, Israel
{yizhak.elboher,g.katz}@mail.huji.ac.il
2 Intel Labs, Santa Clara, USA
justin.gottschlich@intel.com

Abstract. Deep neural networks are increasingly being used as con-
trollers for safety-critical systems. Because neural networks are opaque,
certifying their correctness is a significant challenge. To address this issue,
several neural network verification approaches have recently been pro-
posed. However, these hes afford limited ility, and applying
them to large networks can be challenging. In this paper, we propose a
framework that can enhance neural network verification techniques by
using over-approximation to reduce the size of the network—thus mak-
ing it more amenable to verification. We perform the approximation such
that if the property holds for the smaller (abstract) network, it holds
for the original as well. The over-approximation may be too coarse, in
which case the underlying verification tool might return a spurious coun-

Under such itions, we perform ided
refinement to adjust the approximation, and then repeat the process.
Our approach is orthogonal to, and can be integrated with, many exist-
ing verificati i For ion purposes, we integrate it with
the recently proposed Marabou framework, and observe a significant
improvement in Marabou’s performance. Our experiments demonstrate
the great potential of our approach for verifying larger neural networks.

CAV 2020
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NEURON COALESCENCE VIA MATHEMATICAL TRANSITIVITY
USING COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT

“An Abstraction-Based Framework for Neural Network Verification” (Elboher et al., CAV ‘20) 16




MACHINE PROGRAMMING + DEEP LEARNING = NEURAL PROGRAMMING?

Neural Programming: use of neural networks as a replacement of code.

MP = MACHINE PROGRAMMING, DL = DEEP LEARNING, QUESTIONS | COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



MACHINE PROGRAMMING + DEEP LEARNING = NEURAL PROGRAMMING?

Neural Programming: use of neural networks as a replacement of code.

Learning to Optimize A Zero-Positive Learning Approach for
Diagnosing Software Performance Regressions

Ke Li Jitendra Malik

Department of Electrical Engineering and Computer Sciences Mejbah Alam Justin Gottschlich
University of California, Berkeley Intel Labs Intel Labs
Berkeley, CA 94720 mejbah.alam@intel.com justin.gottschlich@intel.com
United States
{ke.li,malik}@eecs.berkeley.edu Nesime Tatbul Javier Turek
Intel Labs and MIT Intel Labs
tatbul@csail.mit.edu javier.turek@intel.com
ICLR20T7 Abstract
Timothy Mattson Abdullah Muzahid
. A . . . . Intel Labs Texas A&M University
Algorithm design is a laborious process and often requires many iterations of timothy.g.mattson@intel.com abdullah.muzahid@tamy.edu

ideation and validation. In this paper, we explore automating algorithm design and
present a method to learn an optimization algorithm, which we believe to be the
first method that can automatically discover a better algorithm. We approach this
problem from a reinforcement learning perspective and represent any particular NEURIPS 2019
optimization algorithm as a policy. We learn an optimization algorithm using
guided policy search and demonstrate that the resulting algorithm outperforms The field of machine programming (MP), the automation of the development

existing hand-engineered algorithms in terms of convergence speed and/or the final of software, is making notable research advances. This is, in part, due to the
objective value. emergence of a wide range of novel techniques in machine learning. In this paper,

Abstract

MP = MACHINE PROGRAMMING, DL = DEEP LEARNING, QUESTIONS | COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM




AUTOPERF: PERFORMANGE REGRESSION TESTING

AutoPerf invents and adapts these tests

Performance Regression Testing

| Degraded
performayfce
Performance
Regression

Testing

Bug fix/
| |Add new feature

Test for detecting performance anomaly introduced by a change in software

“A Zero-Positive Learning Approach for Diagnosing Software Performance Regressions” (Alam et al., NeurlPS “19)

A Zero-Positive Learning Approach for
Diagnosing Software Performance Regressions

Mejbah Alam Justin Gottschlich
Intel Labs Intel Labs
me fbah. alan@intel.con justin.gottschlicheintel.com
Nesime Tatbul Javier Turek
Intel Labs and MIT Intel Labs
tatbulecsail.mit.edu javier.turekeintel.com
Timothy Mattson ‘Abdullah Muzahid
Intel Labs Texas A&M University

timothy.g.mattson@intel.com abdullah.muzahid@tamu.edu

Abstract

he field of machine programning (MP),the autorsation of the development

of software, is making notable research advan
emergence of a wide range of ‘novel techniques in machmc lelrmnz In this paper,

19



AUTOPERF: PERFORMANGE REGRESSION TESTING

Automatic annotation Zero-Positive Learning & Modeling Composition
of modified functions

= Uses zero-positive learning (ZPL),

Collection of Cluster, train
autoencoders, hardware telemetry ; T — - e,
i kot telemetric data clustering & training determine thresholds

= Emits no false negatives (no missed N amEE e e P S -
performance bugs)

- Collection of inferencing Clustered & trained
Modified hardware autoencoders
* Negligible (4%) performance ALoCl telemetric data = =
overhead using hardware Root Cause — Inferencing, Root Cause Analysis & Ranking RN O |
performance counters (HWPCs) Analysis & gl e,
Ranking performance Reconstruction ; -
(RCAR) -—{ Found performance bu error >
subsystem P "f 9 Threshold

o No performance bug

AutoPerf System Design

How is this neural programming?

ML invents the regression tests and adapts them to the specialized hardware to analyze performance.

NN is the code/test.

MP = MACHINE PROGRAMMING, DL = DEEP LEARNING, QUESTIONS | COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



MACHINE PROGRAMMING + DEEP LEARNING = NEURAL PROGRAMMING?
SOME CONCERNS W/ NEURAL PROGRAMMING

ONLY IMPROVED BY RETRAINING?
UNDERSTANDABLE, INTERPRETABLE, DEBUGGABLE?

THERE ARE OTHER MP APPROACHES THAT GENERATE ACTUAL CODE
[WE'LL SEE SOME EXAMPLES TODAY)

MP = MACHINE PROGRAMMING, DL = DEEP LEARNING, QUESTIONS | COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



[NON-EXHAUSTIVE) TOPICS

MACHINE PROGRAMMING USES STOCHASTIC AND DETERMINISTIC METHODS
EXTRACTION OF EVOLVING AND MULTI-DIMENSIONAL CODE SEMANTICS
NOVEL STRUCTURAL REPRESENTATIONS OF CODE

AUTOMATION FOR SOFTWARE AND HARDWARE HETEROGENEITY
INTENTIONAL PROGRAMMING

THE FUTURE OF DATA, COMMUNICATION, AND COMPUTATION FOR MP

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



EXTRACTION OF EVOLVING AND MULTI-DIMENSIONAL CODE SEMANTICS

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



EXTRACTION OF CODE SEMANTICS

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



EXTRACTION OF CODE SEMANTICS

= Why care about code
semantics?

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



EXTRACTION OF CODE SEMANTICS

- Why care about code HOPPITY: LEARNING GRAPH TRANSFORMATIONS TO
DETECT AND FIX BUGS IN PROGRAMS

semantics?
Elizabeth Dinella* Hanjun Dai* Ziyang Li
University of Pennsylvania Google Brain University of Pennsylvania
Mayur Naik Le Song Ke Wang
University of Pennsylvania Georgia Tech Visa Research
[CLR 2020 ABSTRACT

We present a learning-based approach to detect and fix a broad range of bugs in
Javascript programs. We frame the problem in terms of learning a sequence of
graph transformations: given a buggy program modeled by a graph structure, our
model makes a sequence of predictions including the position of bug nodes and
corresponding graph edits to produce a fix. Unlike previous works built upon deep
neural networks, our approach targets bugs that are more diverse and complex in
nature (i.e. bugs that require adding or deletlng statements to ﬁx) We have reahzed
our approach in a tool callg RiDg=0n :
change commits on Githul§,
of 36,361 programs in an €
the fix, HOPPITY also outperfonns the basehne approach by a w1de margin.

“Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Programs” (Dinella et al., ICLR ‘20)




HOPPITY: CODE REPAIR AS GRAPH TRANSFORMATIONS

= Example of Hoppity's bug repair graph transformation

Graph i AST i Value i
XXXIXXINICD [XXXXXXX] € Global value dictionary Global type dictionary
EXXXXXXX]
EXXXXXXX] EXXXXXXX] : - i : "
= : i False, React, require, B 1 1fStmt, WithStmt, ArrayExpr, CallExpr, ......
...... XXXxxxx
XXIXXXITIES pyyyyyyxy o @T_‘
; FuncDecl del replace [l replace No
node type value Action
name_Bindid body FuncBod
J |
" name_Bindld [ expr_stmt } Modify Graph
jp add ] -
O-----. . o 200 :
o e --— — /ﬁ e
Terminals  Non-terminals  Local Valuelink  ASTedge  Suce link -7
Vs = ‘. .
Graph Editor
i + b; —_ i s v — i . Text Editor
function add(a) { a + b; } Add variable dedlmation TUNction add(a, b) { a + b; }, e function add(a, b) { return a + b; }

Figure 2: Code repair as graph transformation. Each step the source code graph is edited via one of
the operator module until STOP is triggered by controller.

= How does Hoppity find bug fixes to learn from?

“Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Programs” (Dinella et al., ICLR ‘20)




HOW DOES HOPPITY FIND BUG FIXES TO LEARN FROM?

Given a commit, we download the Javascript file before and after the change: (S7cbuggy, STCfized)-
Commits can contain many types of changes such as feature additions, refactorings, bug fixes, etc. In
an attempt to filter our dataset to only include bug fixes, we use a heuristic based on the number of

A differences 1S more

likely to be a bug ﬁx than a commit containing large changes Thus for the experiments, we use three

different datasets: OneDiff with precisely one edit; ZeroOneD1i ff with zero and one edit and
ZzeroOneTwoDif f with zero, one or two edits. We additionally filter out data points with ASTs
larger than 500 nodes as a parameter in our system. A detailed overview of our corpus crawler is
available in Appendix B.

* Looks at repo changesets - if small enough, deem a potential bug fix

— Infers bug fix semantics on repository delta size

* How would Hoppity perform if the semantics of bug fix are known?

— What about other environmental factors that could be inferred?

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



WHY EVOLVING AND MULTI-DIMENSIONAL CODE SEMANTIGS?

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



WHY EVOLVING AND MULTI-DIMENSIONAL CODE SEMANTIGS?

= Evolving:

— Code that is used, tends to be maintained
— “Software that is used is never finished”

— Evolving code == evolving semantics?

= Multi-dimensional:

— A code snippet may have multiple semantic meanings
— A bit more challenging to understanding ...

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



WHY MULTI-DIMENSIONAL CODE SEMANTIGS?

Software Language Comprehension using a Program-Derived
Semantic Graph

Roshni G. Iyer Yizhou Sun
University of California, Los Angeles, USA University of California, Los Angeles, USA
roshnigiyer@cs.ucla.edu yzsun@cs.ucla.edu
Wei Wang Justin Gottschlich
University of California, Los Angeles, USA Intel Labs, USA
weiwang@cs.ucla.edu University of Pennsylvania, USA

PREPRI"T justin.gottschlich@intel.com
ABSTRACT Capturing Semantic Information
Traditional code transformation structures, such as an abstract (" sealtevetol ]
syntax tree, may have limitations in their ability to extract seman- SYAL Level: -n
tic meaning from code. Others have begun to work on this issue,
such as the state-of-the-art Aroma system and its simplified parse Z::Ll t:\‘/’:: ol St Higher
tree (SPT). Continuing this research direction, we present a new gl
graphical structure to capture semantics from code using what we :yi:‘\::::j”""" _| seAtteve2 | Abstraction
refer to as a program-derived semantic graph (PSG). The principle agnostic levels b i
behind the PSG is to provide a single structure that can capture
program semantics at many levels of granularity. Thus, the PSG is
hierarchical in nature. Moreover, because the PSG may have cycles
due to dependencies in semantic layers, it is a graph, not a tree. e |
In this paper, we describe the PSG and its fundamental structural Beusicar=, L
differences to the Aroma’s SPT. Although our work in the PSGisin =~ oo SeAlleveln | I Codelevel
its infancy, our early results indicate it is a promising new research ALk D
direction to explore to automatically extract program semantics. e ElE) {::N;; of

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



WHY MULTI-DIMENSIONAL CODE SEMANTIGS?

Software Language Comprehension using a Program-Derived Semantic Graph Preprint, April, 2020

Implementation 1

0 signed int recursive_power (signed int X, unsigned int y)
1{
2 if (y == 0)
Deta oata Code- =G Forced- 3 return 1;
! 4 else if (y % 2 == 0)
’ 5 return recursive power(x, y / 2) *
Ty == Fecuson . ) recursive_power(x, y / 2);
else
7 return x * recursive power(x, y / 2) *
e recursive power(x, y / 2);
8 }

code-specific
level

Figure 5: PSG of Recursive Power Function. The shaded region denotes overlap in the nodes of the PSG for the iterative power function
shown in Figure 6. These total 17 of the 24 total nodes, a 70.83% overlap.

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM




WHY MULTI-DIMENSIONAL CODE SEMANTIGS?

Sofwar Langasge G g Progran Derived Semantc Gral Prprin, Apr, 2120
) Implementation 1
¥
(o 0 signed int recursive power (signed int x, unsigned int y)
15 11 —
2 if (y == 0)
3 return 1;
4 else if (y $ 2 == 0)
5 return recursive power(x, y / 2) *
recursive power(x, y / 2);
6 else =
7 return x * recursive power(x, y / 2) *
recursive power(x, y / 2);
Figure 5: PSG of Recursive Power Function. The shaded region denotes overlap in the nodes of the PSG for the iterative power function 8 )
shown in Figure 6. These total 17 of the 24 total nodes, a 70.83% overlap.
TR = %& Implementation 2
= 0 signed int iterative power (signed int x, unsigned int y)
1
2 signed int val = 1;
3 while (y > 0) {
4 val *= x;
5 y = 1;
6 }
7 return val;
8 }

Figure 6: PSG of Iterative Power Function. The shaded region denotes overlap in the nodes of the PSG for the recursive power function
shown in Figure 5. These total 19 of the 27 total nodes, a 70.37% overlap.

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



WHY MULTI-DIMENSIONAL CODE SEMANTIGS?

Implementation 1

Some semantics: 2 ?igned int recursive_power (signed int X, unsigned int y)
2 if (y == 0)
. - . 3 return 1;
Both implement exponentiation (only integers) 4  eise if (y % 2 == 0)
5 return recursive power(x, y / 2) *

BOth_are corr?ct recursive power(x, y / 2);

One is recursive else

.. . return x * recursive power(x, y / 2) *
One is iterative recursive_power(x, y / 2);

One has multiple branches &1

One has one branch path

<o

Implementation 2

0 signed int iterative power (signed int x, unsigned int y)

1 {

Each semantic may be useful. A e el
4 val *= x;

Can influence code comprehension, A

call stacks, speculative execution . M val;

(branch prediction), etc.

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



EXTRACTION OF EVOLVING AND MULTI-DIMENSIONAL CODE SEMANTICS

SOME THOUGHTS:

BIG AND DENSE CODE, FEW SEMANTIC CODE LABELS

DISCOVER NOVEL WAYS TO LIFT SEMANTIGS
LIFT SEMANTICS WITHOUT COMPILATION (WORKS WITH BROKEN CODE}?
FIND SEMANTICS FROM SURROUNDINGS?

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



[NON-EXHAUSTIVE) TOPICS

MACHINE PROGRAMMING USES STOCHASTIC AND DETERMINISTIC METHODS
EXTRACTION OF EVOLVING AND MULTI-DIMENSIONAL CODE SEMANTICS
NOVEL STRUCTURAL REPRESENTATIONS OF CODE

AUTOMATION FOR SOFTWARE AND HARDWARE HETEROGENEITY
INTENTIONAL PROGRAMMING

THE FUTURE OF DATA, COMMUNICATION, AND COMPUTATION FOR MP

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



NOVEL STRUCTURAL REPRESENTATIONS OF CODE

= Why do we need new code structures?

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



NOVEL STRUCTURAL REPRESENTATIONS OF CODE

= Why do we need new code structures?

MISIM: An End-to-End Neural Code Similarity

System
Fangke Ye * Shengtian Zhou *
Intel Labs and Georgia Institute of Technology Intel Labs
yefangke@gatech.edu shengtian.zhou@intel.com
. . Anand Venkat R M: Nesime Tatbul
Aroma: Code Recommendation via Structural Code Search Tntel Labs Tntel Labs and MIT el Labs and MIT

SIFEI LUAN, Facebook, USA

DI YANG?, University of California, Irvine, USA

CELESTE BARNABY, Facebook, USA

KOUSHIK SENT, University of California, Berkeley, USA

SATISH CHANDRA, Facebook, USA 00PSLA 2019

Programmers often write code that has similarity to existing code written somewhere. A tool that could help
programmers to search such similar code would be immensely useful. Such a tool could help programmers
to extend partially written code snippets to completely implement necessary functionality, help to discover
extensions to the partial code which are commonly included by other programmers, help to cross-check
against similar code written by other programmers, or help to add extra code which would fix common
mistakes and errors. We propose Aroma, a tool and technique for code recommendation via structural code
search. Aroma indexes a huge code corpus including thousands of open-source projects, takes a partial code
snippet as input, searches the corpus for method bodies containing the partial code snippet, and clusters and
intersects the results of the search to recommend a small set of succinct code snippets which both contain the
query snippet and appear as part of several methods in the corpus. We evaluated Aroma on 2000 randomly
selected queries created from the corpus, as well as 64 queries derived from code snippets obtained from
Stack Overflow, a popular website for discussing code. We implemented Aroma for 4 different languages, and
developed an IDE plugin for Aroma. Furthermore, we conducted a study where we asked 12 programmers to
complete programming tasks using Aroma, and collected their feedback. Our results indicate that Aroma is
capable of retrieving and recommending relevant code snippets efficiently.

anand.venkat@intel.com ryanmarcus@csail.mit.edu tatbul@csail.mit.edu

Jesmin Jahan Tithi Paul Petersen
Intel Labs Intel
jesmin.jahan.tithi@intel.com paul.petersen@intel.com
Timothy Mattson Tim Kraska Pradeep Dubey
Intel Labs MIT Intel Labs

timothy.g.mattson@intel.com kraska@mit.edu pradeep.dubey@intel.com

Vivek Sarkar Justin Gottschlich
Georgia Institute of Technology Intel Labs and University of Pennsylvania
vsarkar@gatech.edu justin.gottschlich@intel.com

PREPRI"T Abstract

Code similarity systems are integral to a range of applications from code recom-
mendation to automated construction of software tests and defect mitigation. In
this paper, we present Machine Inferred Code Similarity (MISIM), a novel end-to-
end code similarity system that consists of two core components. First, MISIM
uses a novel context-aware semantic structure, which is designed to aid in lifting
semantic meaning from code syntax. Second, MISIM provides a neural-based
code similarity scoring algorithm, which can be implemented with various neural
network architectures with learned parameters. We compare MISIM to three state-
of-the-art code similarity systems: (i) code2vec, (ii) Neural Code Comprehension,
and (iii) Aroma. In our experimental evaluation across 45,780 programs, MISIM
consistently outperformed all three systems, often by a large factor (upwards of
40.6x).
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MISIM created by Intel, Georgia Tech, and MIT

MISIM - Machine Inferred Code Similarity (Intel, Georgia Tech, MIT, https://arxiv.org/pdf/2006.05265.pdf).
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NOVEL STRUCTURAL REPRESENTATIONS OF CODE

= Aroma introduced the simplified parse tree (SPT)
= MISIM introduced the context-aware semantics structure (CASS)

= Both intentionally moved away from classical structures (like AST)

These structures have led to state-of-the-art accuracy

Take-away:

Historical code representations may restrict our thinking for
pioneering research in MP. Let's not do that. ©

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM
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PREPRINT

Code similarity systems are integral to a range of applications from code recom-
‘mendation to automated construction of software tests and defect mitigation. In
this paper, we present Machine Inferred Code Simil el end-to-
end code similarity system that consists of two core components. First, MISIM
uses a novel context-aware semantic structure, which is designed to aid in lifting
semantic meaning from code syntax. Second, MISIM provides a neural-based
code similarity scoring algorithm, which can be implemented with various neural
‘network architectures with learned parameters. We compare MISIM (o three state-
of-the-art code similarity systems: (i) code2vec, (ii) Neural Code Comprehension,
and (iii) Aroma. In our experimental evaluation across 45,780 programs, MISIM
consistently outperformed all three systems, often by a large factor (upwards of
40.6%).

Abstract

Aroma: Code Recommendation via Structural Code Search

SIFEI LUAN, Facebook, USA

DI YANG', University of California, Irvine, USA
CELESTE BARNABY, Facebook, USA

KOUSHIK SENT, University of California, Berkeley, USA
SATISH CHANDRA, Facebook, USA

Programmers often write code that has similarity to existing code written somewhere. A tool that could help
programmers to search such similar code would be immensely useful. Such a tool could help programmers
to extend partially written code snippets to completely implement necessar help to discover
extensions to the partial code which are commonly included by other programmers, help to cross-check
against similar code written by other programmers, or help to add extra code which would fix common
‘mistakes and errors. We propose Aroma, a tool and technique for code recommendation via structural code
search. Aroma indexes a huge code corpus including thousands of open-source projects, takes a partial code
snippet as input, searches the corpus for method bodies containing the partial code snippet, and clusters and
intersects the results of the search to recommend a small set of succinct code snippets which both contain the
query snippet and appear as part of several methods in the corpus. We evaluated Aroma on 2000 randomly
selected queries created from the corpus, as wll as 64 queries derived from code snippets obtained from
Stack Overflow, a popular wbsite for discussing code. We implemented Aroma for 4 different languages, and
developed an IDE plugin for Aroma. Furthermore, we conducted a study where we asked 12 programmers to
complete ing tasks using Aroma, and collected their feedback. Our results indicate that Aroma is

capable of retrieving and recommending relevant code snippets efficiently.




NOVEL STRUCTURAL REPRESENTATIONS OF CODE

SOME CHALLENGES:
GOODEARLY PROGRESS

MORE STRUCTURES TO DISCOVER | PROBLEMS T0 SOLVE

| BELIEVE ANEW CLASS OF STRUCTURES ARE ABOUT TO EMERGE
STRUCTURES THAT CAN ONLY BE LEARNED

(E.6., HOW TO BUILD THE PROGRAM-DERIVED SEMANTICS GRAPH?

Software Language Comprehension using a Program-Derived
Semantic Graph

Roshni G. Iyer
University of California, Los Angeles, USA
roshnigiyer@cs.ucla.edu

Wei Wang
University of California, Los Angeles, USA
weiwang@es.ucla.cdu

ABSTRACT

‘Traditional code transformation structures, such as an abstract
syntax tree, may have limitations in their ability to extract seman-
tic meaning from code. Others have begun to work on this issue,
such as the state-of-the-art Aroma system and its simplified parse
tree (SPT). Continuing this research direction, we present a new.
graphical structure to capture semanties from code using what we
refer to as a program-derived semantic graph (PSG). The principle
behind the PSG is to provide a single structure that can capture
program semantics at many levels of granularity. Thus, the PSG is
hierarchical in nature. Moreaver, because the PSG may have cycles
due to dependencies in semantic layers, it is a graph, not a tree.
In this paper, we describe the PSG and its fundamental structural
differences to the Aroma’s SPT. Although our work in the PSG is in
its infancy, our early results indicate it is a promising new research
direction to explore to automatically extract program semantics.

Software Languag usinga P

o e o
g o)

Yizhou Sun
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yzsun@esucla.edu
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Figure 5: PSG of Recursive Power Function. The shaded region denotes overlap in the nodes of the PSG for the iterative power function
shown in Figure 6. These total 17 of the 24 total nodes, a 70.83% overlap.
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MACHINE PROGRAMMING USES STOCHASTIC AND DETERMINISTIC METHODS
EXTRACTION OF EVOLVING AND MULTI-DIMENSIONAL CODE SEMANTICS
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AUTOMATION FOR SOFTWARE AND HARDWARE HETEROGENEITY

= SW / HW heterogeneity is creating multiplicative complexity

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM
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Verified Lifting:
Target multiple programming languages

Automatically Translating Image Processing Libraries to Halide

MAAZ BIN SAFEER AHMAD, University of Washington, Seattle
JONATHAN RAGAN-KELLEY, University of California, Berkeley
ALVIN CHEUNG, University of California, Berkeley

SHOAIB KAMIL, Adobe

SIGGRAPH ASIA 2019

void blur(uint8_t+ dst, uints_ts src, int rows, int cols,
int rowdytes)
inte tp = new int(rowssromBytes];
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Fig. 1. DEXTER parses the input C++ function (shown on the left) into a DAG of smaller stages, then uses our 3-step synthesis algorithm to infer the semantics

of each stage, expressed in a high-level IR (middle). Finally, code generation rules compile the IR specifications into executable Halide code (right).

Halide:

Target multiple hardware compute devices

Automatically Scheduling Halide Image Processing Pipelines

Ravi Teja Mullapudi* Andrew Adams?

*Carnegie Mellon University

Abstract

The Halide image processing language has proven to be an effec-
tive system for authoring high-performance image processing code.
Halide programmers need only provide a high-level strategy for map-
ping an image processing plpe]me to a parallel machine (a schedule),

Dillon Sharletf

Jonathan Ragan-Kelley' Kayvon Fatahalian®

tGoogle fStanford University

algorithm’s execution on a machine (called a schedule). The Halide
compiler then handles the tedious, mechanical task of genera!mg

platform-specific code that impl the schedule (e, g, P! g
threads, ing buffers, ing SIMD i
Although Halide provides high-level ab ions for

and the Halide compiler carries out the mechanical task of
platform-specific code that i the schedule. U ly,
deslgnmg high-| perfonnance schedules for complex image process-
mg pip ines requires ledge of modern

imizati hni In this paper we
provide an algorithm for aulomaucally generar.mg high-performance
schedules for Halide programs. Our solution extends the function
bounds analysis already present in the Halide compiler to automat-
ically perform locality and parallelism-enhancing global program
transformations typical of those employed by expert Halide develop-
ers. The algorithm does not require costly (and often impractical)
auto-tuning, and, in seconds, generates schedules for a broad set
of image processing benchmarks that are performance-competitive
with, and often better than, schedules manually authored by expert
Halide developers on server and mobile CPUs, as well as GPUs.

Keywords: image p ing, optimizing ilers, Halide
C «Ci i

— Graphics systems an

interfaces;

that perform well on modern hard-
ware is hard; it requires expertise in modern optimization techniques
and hardware archi For le, around 70 en-
gineers at Google currently write image processing algorithms in
Halide, but they rely on a much smaller cadre of Halide scheduling
experts to produce the most efficient implementations. Further, pro-
duction image processing pipelines are long and complex, and are
difficult to schedule even for the best Halide programmers. Arriving
at a good schedule remains a laborious, iterative process of schedule
tweaking and performance measurement. Also, in large produc-
tion pipelines, software engineering considerations (e.g., modularity,
code reuse) may preclude experts from having the global program
knowledge needed to create optimal schedules.

In this paper we address this problem by providing an algorithm

SIGGRAPH 2016




VERIFIED LIFTING EVOLUTION: METALIFT Metalift

Leveraging DSLs made easy

Target
Code
Fragments

DSL Codegen
Semantics Rules

Input Code . Code Output \.Nlth
Source |dentifi Synthesizer G t Synthesized
Code entifier enerator DSL Code

Synthesis -
People Verified lifting has been the underlying technology used to build the following compilers:
MetalLift is jointly developed by the folks at the University of Washington Programming Languages
and Software Engineering Research Group, Adobe Research, and Intel Labs. The following are Dexter is a compiler that translates image processing kernels from C to Halide.

the main developers of MetalLift:

Casper is a compiler that translates sequential Java to Spark and Hadoop.

STN G STNG is a compiler that enables Fortran kernels to leverage GPUs by compiling

Maaz Ahmad them into the Halide DSL.

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM




AUTOMATION FOR SOFTWARE AND HARDWARE HETEROGENEITY
AN OPEN QUESTION:

WHAT ARE THE QUALITY METRICS FOR
HETEROGENEQUS TRANSLATION?

CORRECT & PERFORMANCE (OF COURSE)

WHAT ABOUT SECURITY, MAINTAINABILITY, POWER FOOTPRINT, ETC.?
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INTENTIONAL PROGRAMMING

= Focus on what the intention is, not how that intention may manifest

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



INTENTIONAL PROGRAMMING

= Focus on what the intention is, not how that intention may manifest

LEARNING TO REPRESENT PROGRAMS
WITH PROPERTY SIGNATURES

Augustus Odena, Charles Sutton
Google Research
{augustusodena, charlessutton}@google.com

ABSTRACT

We introduce the notion of property signatures, a representation for programs and
program specifications meant for consumption by machine learning algorithms.
Given a function with input type 7;,, and output type 7,,, a property is a function
of type: (Tin, Tout) — Bool that (informally) describes some simple property
of the function under consideration. For instance, if 7;,, and 7., are both lists
of the same type, one property might ask ‘is the input list the same length as the
output list?’. If we have a list of such properties, we can evaluate them all for our
function to get a list of outputs that we will call the property signature. Crucially,
we can ‘guess’ the property signature for a function given only a set of input/output
pairs meant to specify that function. We discuss several potential applications of
property signatures and show experimentally that they can be used to improve
over a baseline synthesizer so that it emits twice as many programs in less than
one-tenth of the time.
ICLR 2020

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



INTENTIONAL PROGRAMMING

= Focus on what the intention is, not how that intention may manifest

LEARNING TO REPRESENT PROGRAMS
WITH PROPERTY SIGNATURES

If you haven't read this
Augustus Odena, Charles Sutton .
Google Research paper, please read it!

{augustusodena, charlessutton}@google.com

ABSTRACT

We introduce the notion of property signatures, a representation for programs and
program specifications meant for consumption by machine learning algorithms.
Given a.function with input type 7;;, and output type 7oy, a property is a function ™ I d en tify semant i cS of COd e
of type: (Tin, Tout) — Bool that (informally) describes some simple property
of the function under consideration. For instance, if 7;,, and 7., are both lists
of the same type, one property might ask ‘is the input list the same length as the . . - .
output list?’. If we have a list of such properties, we can evaluate them all for our u P rovi d e fu n CtIO n se mantICS S |gn atu res
function to get a list of outputs that we will call the property signature. Crucially,
we can ‘guess’ the property signature for a function given only a set of input/output
pairs meant to specify that function. We discuss several potential applications of ™
property signatures and show experimentally that they can be used to improve Powe rfu" & elegant
over a baseline synthesizer so that it emits twice as many programs in less than
one-tenth of the time.
ICLR 2020

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



INTENTIONAL PROGRAMMING WITH HALIDE

*= Focus on what the intention is, not how that intention may manifest

= Halide is a domain-specific
language (DSL)
= Separation of concerns

— Splits programming intention
from programming adaptation

Learning to Optimize Halide with Tree Search and Random Programs

ANDREW ADAMS, Facebook Al Research

KARIMA MA, UC Berkeley

LUKE ANDERSON, MIT CSAIL

RIYADH BAGHDADI, MIT CSAIL

TZU-MAO LI, MIT CSAIL

MICHAEL GHARBI, Adobe

BENOIT STEINER, Facebook Al Research

STEVEN JOHNSON, Google

KAYVON FATAHALIAN, Stanford University

FREDO DURAND, MIT CSAIL

JONATHAN RAGAN-KELLEY, UC Berkeley

We present a new algorithm to automatically schedule Halide programs
for high-performance image processing and deep learning. We significantly
improve upon the performance of previous methods, which considered a lim-
ited subset of schedules. We define a ization of possible schedul,
much larger than prior methods and use a variant of beam search to search
over it. The search optimizes runtime predicted by a cost model based on a
combination of new derived features and machine learning. We train the
cost model by ing and izing hundreds of t ds of random

programs and schedules. We show that this approach operates effectively
with or without autotuning. It produces schedules which are on average

almost twice as fast as the existing Halide autoscheduler without autotun-

ing, or more than twice as fast with, and is the first automatic scheduling
algorithm to significantly outperform human experts on average.

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM

TRAINING
train

benchmark
performance

learned
cost model

guides

importance
random Halide ——
algorithms

AUTOSCHEDULING

learned fine-tune with autotuning
cost model benchmark
performance hedul
guides .
importance
ample

i:rut Halide tree search
gorithm on schedules i

search optimum

Fig. 1. We generate schedules for Halide programs using tree search over
the space of schedules (Sec. 3) guided by a learned cost model and optional
autotuning (Sec. 4). The cost model is trained by benchmarking thousands of
doml: 1 Halide progr and schedules (Sec. 5). The resulting
code significantly outperforms prior work and human experts (Sec. 6).




INTENTIONAL PROGRAMMING WITH HALIDE

Halide

Domain-specific language for imaging and learning

Intention Adaptation

/0:9
D Algorithm Schedule

o 8 What to
& compute - compute it

Credit: Andrew Adams et al.
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INTENTIONAL PROGRAMMING GAN LEAD T0 SUPER-HUMAN PERFORMANGE

A new automatic scheduling algorithm for Halide

Speed-up (higher is better)

2.5x

Larger search space
2 X B - includes more Halide scheduling
features
1.5 x — - extensible

1 x | Hybrid cost model

- Mix of machine learning and
hand-designed terms

- Can model complex architectures

0.5x — — —

ox — —

Prior work Expert This paper

(Mullapudi 2016) Humans
Credit: Andrew Adams et al. ,,

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM 54 (intel



INTENTIONAL PROGRAMMING GAN LEAD T0 SUPER-HUMAN PERFORMANGE

A new automatic scheduling algorithm for Halide

Speed-up (higher is better)

2.5x

Larger search space
2 X B - includes more Halide scheduling
features
1.5 x — - extensible

1x = = Concrete example of
byproduct of separating
intention from other pillars

0.5x — — —

ox — —

Prior work Expert This paper

(Mullapudi 2016) Humans
Credit: Andrew Adams et al. ,,
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INTENTIONAL PROGRAMMING GAN LEAD T0 SUPER-HUMAN PERFORMANGE

MY BURNING QUESTIONS:

CAN WE BUILD GENERAL-PURPOSE INTENTIONAL PROGRAMMING SYSTEMS?

PERHAPS WE PROVIDE INTENTION-BASED INTERFACES TO EXISTING WIDELY USED
LANGUAGES (C++, PYTHON, JAVASCRIPT)?

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM
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THE FUTURE OF DATA, COMMUNICATION, AND COMPUTATION FOR MP
Challenges:

= Computational workload via FM and ML may be large
= MP datais large, can be dense, and is mostly unlabeled

= Given this, what does the future MP hardware look like?

FM = FORMAL METHODS, MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



THE FUTURE OF DATA, COMMUNICATION, AND COMPUTATION FOR MP
Challenges:

= Computational workload via FM and ML may be large
= MP datais large, can be dense, and is mostly unlabeled

= Given this, what does the future MP hardware look like?

| have no idea.

But | do have ideas about things we can think about.

FM = FORMAL METHODS, MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



THE FUTURE OF DATA, COMMUNICATION, AND COMPUTATION FOR MP

Some open questions:

= What interfaces do we expect for expression of intention?

— What ramifications are associated with those?

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



THE FUTURE OF DATA, COMMUNICATION, AND COMPUTATION FOR MP

Some open questions:

» What are the core techniques used for MP?

— What are the data, communication, and compute implications?

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



THE FUTURE OF DATA, COMMUNICATION, AND COMPUTATION FOR MP

Some open questions:

= We have a massive big and dense data problem in front of us
— As of summer 2020, there were over 200M+ github repos
— Code is multi-dimensional by nature

— This data implies new frontiers of compute, communication, and data hardware

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



THE ERA OF MAGHINE PROGRAMMING IS NOW

We are on the verge of a revolutionary shift

Machine Programming is a Pioneering Research Initiative at Intel

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



THE ERA OF MAGHINE PROGRAMMING IS NOW

We are on the verge of a revolutionary shift

Machine Programming is a Pioneering Research Initiative at Intel

Many institutions are heavily investing in MP

— Many large tech companies (Amazon, Google, IBM, Intel, Microsoft, etc.)
— Both research and engineering

— Dozens of startups to solve a single MP problem

— Several leading academic institutions (like UWisc)

MP has the potential to change the rules for (almost) everything

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



LET'S BECOME THE 100%

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



LET'S BECOME THE 100%

We can democratize the creation of software with MP

— Imagine a global population, where everyone can express their creativeness
— Imagine a world where coders only spent time expressing our intentions, not fixing code

— What kind of scientific, artistic, innovative things might we discover?

A great way forward is to build a community (like Remzi et al. are)!

We need more of this; please help us spread the word

Please reach out to me if you are interested in collaborating!

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM






