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(Non-Exhaustive) MP Topics
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machine programming USES STOCHASTIC AND DETERMINISTIC methods
extraction of evolving and multi-dimensional code semantics
novel structural representations of code
automation for software and hardware heterogeneity
intentional programming
the future of data, communication, and computation for MP

But first – some Background

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com
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Intel Labs’ MPR GOALS
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Automation of software (and hardware) to improve:
1. productivity: minimal human effort*

*Measured as 1000x+ improvement over human work performed today

2. quality: better software than the best human programmers*
*Measured as superhuman correctness, performance, security, etc.

We speculate this end-point to be at least 2+ decades away.

MPR = Machine Programming Research



6“THE Three Pillars of Machine Programming”, Gottschlich et al., Mapl ’18 @ pldi ‘18

The Three Pillars of Machine Programming (MP)
Justin Gottschlich, Intel Labs
Armando Solar-Lezama, MIT
Nesime Tatbul, Intel Labs
Michael Carbin, MIT
Martin Rinard, MIT
Regina Barzilay, MIT
Saman Amarasinghe, MIT
Joshua B Tenenbaum, MIT
Tim Mattson, Intel Labs

Intention

Invention DataData

Data

Adaptation

• MP is the automation of software development
– Intention: Discover the intent of a programmer
– Invention: Create new algorithms and data structures
– Adaptation: Evolve in a changing hardware/software world

Summarized ~90 works.

Key efforts by Berkeley, 
Google, Microsoft, MIT, 
Stanford, UW and others.
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Why call it Machine Programming?
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Why call it Machine Programming?
Names matter. Should infer meaning from name.
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Why call it Machine Programming?
Names matter. Should infer meaning from name.

Why isn’t this seminar series called?
- AI for Computer Science
- Neural Networks for Optimization

- Machine Learning for Software

None of these name precisely match the intention of this 
seminar series (as I understand it J).
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§ Likewise, our alternatives were:
– Program Synthesis

– AI/ML for Code

– Software 2.0

QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Why call it Machine Programming?



11MP = Machine Programming, AI = Artificial Intelligence, ML = Machine Learning 

§ Likewise, our alternatives were:
– Program Synthesis (historical w/ formal methods; not always synthesizing)

– AI/ML for Code (it’s not just AI/ML – this is important)

– Software 2.0 (what does this mean?)
– And Software 3.0, and 4.0, and 5.0?

§ The machine programming name was coined to avoid 
confusion and broaden scope.

Why call it Machine Programming?
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machine programming USES STOCHASTIC AND DETERMINISTIC methods
extraction of evolving and multi-dimensional code semantics
novel structural representations of code
automation for software and hardware heterogeneity
intentional programming
the future of data, communication, and computation for MP

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com
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MP uses STOCHASTIC and DETERMINISTIC Methods
Stochastic Deterministic

More stochastic, but may have a larger solution space More deterministic, but may have smaller solution space



MP uses STOCHASTIC and DETERMINISTIC Methods
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Emerging Solutions Using a fusion of both

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com
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Emerging Solutions Using a fusion of both

CAV  2020

ICLR  2019

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com



MP uses STOCHASTIC and DETERMINISTIC Methods
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Formal Methods for increased determinism of Neural Nets

Neuron Coalescence via Mathematical Transitivity 
Using Counterexample-Guided Abstraction Refinement

CAV  2020

“An Abstraction-Based Framework for Neural Network Verification” (Elboher et al., CAV ‘20)

1. 2. 3.



MACHINE PROGRAMMING + DEEP LEARNING = Neural Programming?

17MP = MACHINE PROGRAMMING, DL = DEEP LEARNING, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Neural Programming: use of neural networks as a replacement of code.
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ICLR 2017

NEURIPS 2019

MP = MACHINE PROGRAMMING, DL = DEEP LEARNING, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

MACHINE PROGRAMMING + DEEP LEARNING = Neural Programming?
Neural Programming: use of neural networks as a replacement of code.



AutoPerf: Performance REGRESSION Testing

19“A Zero-Positive Learning Approach for Diagnosing Software Performance Regressions” (Alam et al., NeurIPS ‘19)

AutoPerf invents and adapts these tests

NEURIPS 2019



20MP = MACHINE PROGRAMMING, DL = DEEP LEARNING, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

§ Uses zero-positive learning (ZPL), 
autoencoders, hardware telemetry

§ Emits no false negatives (no missed 
performance bugs)

§ Negligible (4%) performance 
overhead using hardware 
performance counters (HWPCs)

How is this neural programming?

ML invents the regression tests and adapts them to the specialized hardware to analyze performance.

NN is the code/test.

AutoPerf: Performance REGRESSION Testing

AutoPerf System Design



21MP = MACHINE PROGRAMMING, DL = DEEP LEARNING, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

MACHINE PROGRAMMING + DEEP LEARNING = Neural Programming?

How is this neural programming?

ML invents the regression tests and adapts them to the specialized hardware to analyze performance.

NN is the code/test.

Some Concerns W/ Neural Programming 
Only Improved BY RETRAINING?

UNDERSTANDABLE, INTERPRETABLE, DEBUGGABLE?

There are other MP Approaches that generate actual code
(We’ll see some examples today)
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extraction of code semantics
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§ Why care about code 
semantics?



extraction of code semantics
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§ Why care about code 
semantics?

ICLR 2020

“Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Programs” (Dinella et al., ICLR ‘20)



Hoppity: Code Repair as Graph Transformations
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§ Example of Hoppity’s bug repair graph transformation

§ How does Hoppity find bug fixes to learn from?

“Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Programs” (Dinella et al., ICLR ‘20)



How Does Hoppity Find Bug Fixes to Learn From?
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§ Looks at repo changesets – if small enough, deem a potential bug fix
– Infers bug fix semantics on repository delta size

§ How would Hoppity perform if the semantics of bug fix are known?
– What about other environmental factors that could be inferred?

QUESTIONS / COMMENTS: justin.gottschlich@intel.com



Why Evolving and multi-dimensional CODE semantics?
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Why Evolving and multi-dimensional CODE semantics?
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§ Evolving:
– Code that is used, tends to be maintained

– “Software that is used is never finished”

– Evolving code == evolving semantics?

§ Multi-dimensional:
– A code snippet may have multiple semantic meanings
– A bit more challenging to understanding ...

QUESTIONS / COMMENTS: justin.gottschlich@intel.com
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PREPRINT



Why multi-dimensional CODE semantics?
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Why multi-dimensional CODE semantics?
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Why multi-dimensional CODE semantics?
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Each semantic may be useful.
Can influence code comprehension, 
call stacks, speculative execution 
(branch prediction), etc.

Some semantics:

Both implement exponentiation (only integers)
Both are correct
One is recursive
One is iterative
One has multiple branches
One has one branch path
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SOME Thoughts:

BIG AND DENSE code, Few semantic code labels

DISCOVER NOVEL ways to lift semantics
Lift Semantics without Compilation (Works with Broken Code)?

Find semantics from surroundings?

extraction of EVOLVING and multi-dimensional code semantics
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machine programming USES STOCHASTIC AND DETERMINISTIC methods
extraction of evolving and multi-dimensional code semantics
novel structural representations of code
automation for software and hardware heterogeneity
intentional programming
the future of data, communication, and computation for MP

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com



Novel structural representations of code

37

§ Why do we need new code structures?

QUESTIONS / COMMENTS: justin.gottschlich@intel.com



Novel structural representations of code
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§ Why do we need new code structures?

QUESTIONS / COMMENTS: justin.gottschlich@intel.com

OOPSLA 2019

PREPRINT
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MISIM – Machine Inferred Code Similarity (Intel, Georgia Tech, MIT, https://arxiv.org/pdf/2006.05265.pdf).

MISIM created by Intel, Georgia Tech, and MIT

https://arxiv.org/pdf/2006.05265.pdf
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#1: New & Extensible 
Structural Representations

#2: New & Extensible Neural 
Network Architectures

Machine Inferred Code Similarity (MISIM)

https://arxiv.org/pdf/2006.05265.pdf


Novel structural representations of code
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§ Aroma introduced the simplified parse tree (SPT)

§ MISIM introduced the context-aware semantics structure (CASS)

§ Both intentionally moved away from classical structures (like AST)

These structures have led to state-of-the-art accuracy

Take-away: 
Historical code representations may restrict our thinking for 
pioneering research in MP. Let’s not do that. J

QUESTIONS / COMMENTS: justin.gottschlich@intel.com

OOPSLA 2019

PREPRINT



Novel structural representations of code

42

SOME Challenges:

Good Early Progress

More Structures to Discover / problems to solve
(e.g., how to build the Program-derived semantics graph?)

I BELIEVE a NEW CLASS OF structures ARE ABOUT TO EMERGE: 

structures THAT CAN ONLY BE LEARNED
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machine programming USES STOCHASTIC AND DETERMINISTIC methods
extraction of evolving and multi-dimensional code semantics
novel structural representations of code
automation for software and hardware heterogeneity
intentional programming
the future of data, communication, and computation for MP

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com



automation for software and hardware heterogeneity
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§ SW / HW heterogeneity is creating multiplicative complexity 



automation for software and hardware heterogeneity
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SIGGRAPH ASIA 2019

SIGGRAPH 2016

Verified Lifting:
Target multiple programming languages

Halide:
Target multiple hardware compute devices



Verified Lifting Evolution: MetaLift

46QUESTIONS / COMMENTS: justin.gottschlich@intel.com



47

An Open Question:

What are the quality metrics for 
Heterogeneous translation?

Correct & Performance (Of course)

What about Security, maintainability, Power footprint, etc.?

automation for software and hardware heterogeneity
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extraction of evolving and multi-dimensional code semantics
novel structural representations of code
automation for software and hardware heterogeneity
intentional programming
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MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com



INTENTIONAL PROGRAMMING
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§ Focus on what the intention is, not how that intention may manifest
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ICLR 2020

§ Focus on what the intention is, not how that intention may manifest

INTENTIONAL PROGRAMMING
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ICLR 2020

§ Focus on what the intention is, not how that intention may manifest

INTENTIONAL PROGRAMMING

If you haven’t read this 
paper, please read it!

§ Identify semantics of code

§ Provide function semantics signatures

§ Powerful & elegant



INTENTIONAL PROGRAMMING WITH HALIDE
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Credit: Andrew Adams et al.
SIGGRAPH 2019

Credit: Andrew Adams et al.

§ Halide is a domain-specific 
language (DSL)

§ Separation of concerns
– Splits programming intention 

from programming adaptation

§ Focus on what the intention is, not how that intention may manifest



53QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Intention Adaptation

Credit: Andrew Adams et al.

SIGGRAPH 2019

Credit: Andrew Adams et al.

INTENTIONAL PROGRAMMING WITH HALIDE
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Credit: Andrew Adams et al.

INTENTIONAL PROGRAMMING CAN LEAD TO SUPER-HUMAN PERFORMANCE
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Credit: Andrew Adams et al.

INTENTIONAL PROGRAMMING CAN LEAD TO SUPER-HUMAN PERFORMANCE

§ Concrete example of 
byproduct of separating 
intention from other pillars
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Credit: Andrew Adams et al.

MY BURNING Questions:

Can we build General-Purpose Intentional Programming systems?

Perhaps we provide intention-based interfaces to existing widely used 
languages (C++, Python, JavaScript)?

INTENTIONAL PROGRAMMING CAN LEAD TO SUPER-HUMAN PERFORMANCE
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Challenges:
§ Computational workload via FM and ML may be large

§ MP data is large, can be dense, and is mostly unlabeled

§ Given this, what does the future MP hardware look like?

FM = Formal Methods, MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com



the future of data, communication, and computation for MP
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Challenges:
§ Computational workload via FM and ML may be large

§ MP data is large, can be dense, and is mostly unlabeled

§ Given this, what does the future MP hardware look like?

I have no idea.

But I do have ideas about things we can think about.

FM = Formal Methods, MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com



the future of data, communication, and computation for MP
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Some open questions:
§ What interfaces do we expect for expression of intention?

– What ramifications are associated with those?

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com
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Some open questions:
§ What interfaces do we expect for expression of intention?

– What ramifications are associated with those?

§ What are the core techniques used for MP?
– What are the data, communication, and compute implications?

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com
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Some open questions:
§ What interfaces do we expect for expression of intention?

– What ramifications are associated with those?

§ What are the core techniques used for MP?
– What are the data, communication, and compute implications?

§ We have a massive big and dense data problem in front of us
– As of summer 2020, there were over 200M+ github repos

– Code is multi-dimensional by nature

– This data implies new frontiers of compute, communication, and data hardware

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com
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We are on the verge of a revolutionary shift

Machine Programming is a Pioneering Research Initiative at Intel

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com
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We are on the verge of a revolutionary shift

Machine Programming is a Pioneering Research Initiative at Intel

Many institutions are heavily investing in MP
– Many large tech companies (Amazon, Google, IBM, Intel, Microsoft, etc.)

– Both research and engineering

– Dozens of startups to solve a single MP problem

– Several leading academic institutions (like UWisc)

MP has the potential to change the rules for (almost) everything

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com



Let’s Become the 100%
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We can democratize the creation of software with MP
– Imagine a global population, where everyone can express their creativeness

– Imagine a world where coders only spent time expressing our intentions, not fixing code

– What kind of scientific, artistic, innovative things might we discover?

A great way forward is to build a community (like Remzi et al. are)!
We need more of this; please help us spread the word

Please reach out to me if you are interested in collaborating!

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Let’s Become the 100%
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Machine Programming Inside

QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Thank you!


