
Justin Gottschlich

Principal Scientist & Director/Founder of Machine Programming Research

University of Wisconsin – Machine Learning Optimizing Systems (MLOS)
(September 28, 2020)

(Incomplete) Active Collaborators: Maaz Ahmad, Todd Anderson, Saman
Amarasinghe, Jim Baca, Regina Barzilay, Michael Carbin, Carlo Carino, Alvin
Cheung, Pradeep Dubey, Kayvon Fatahalian, Henry Gabb, Craig Garland, Moh
Haghighat, Mary Hall, Niranjan Hasabnis, Adam Herr, Jim Held, Roshni Iyer,
Nilesh Jain, Tim Kraska, Brian Kroth, Insup Lee, Geoff Lowney, Shanto Mandal,
Ryan Marcus, Tim Mattson, Abdullah Muzahid, Mayur Naik, Paul Petersen, Alex
Ratner, Tharindu Rusira, Martin Rinard, Vivek Sarkar, Koushik Sen, Oleg
Sokolsky, Armando Solar-Lezama, Julia Sukharina, Yizhou Sun, Joe Tarango,
Nesime Tatbul, Josh B. Tenenbaum, Jesmin Tithi, Javier Turek, Rich Uhlig,
Anand Venkat, Wei Wang, Jim Weimer, Markus Weimer, Fangke Ye, Shengtian
Zhou … and many others.

Intel Labs

(Non-Exhaustive) MP Topics

2

machine programming USES STOCHASTIC AND DETERMINISTIC methods
extraction of evolving and multi-dimensional code semantics
novel structural representations of code
automation for software and hardware heterogeneity
intentional programming
the future of data, communication, and computation for MP

But first – some Background

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

some background
3QUESTIONS / COMMENTS: justin.gottschlich@intel.com

4

Intel Labs’ MPR GOALS

5

Automation of software (and hardware) to improve:
1. productivity: minimal human effort*

*Measured as 1000x+ improvement over human work performed today

2. quality: better software than the best human programmers*
*Measured as superhuman correctness, performance, security, etc.

We speculate this end-point to be at least 2+ decades away.

MPR = Machine Programming Research

6“THE Three Pillars of Machine Programming”, Gottschlich et al., Mapl ’18 @ pldi ‘18

The Three Pillars of Machine Programming (MP)
Justin Gottschlich, Intel Labs
Armando Solar-Lezama, MIT
Nesime Tatbul, Intel Labs
Michael Carbin, MIT
Martin Rinard, MIT
Regina Barzilay, MIT
Saman Amarasinghe, MIT
Joshua B Tenenbaum, MIT
Tim Mattson, Intel Labs

Intention

Invention DataData

Data

Adaptation

• MP is the automation of software development
– Intention: Discover the intent of a programmer
– Invention: Create new algorithms and data structures
– Adaptation: Evolve in a changing hardware/software world

Summarized ~90 works.

Key efforts by Berkeley,
Google, Microsoft, MIT,
Stanford, UW and others.

7QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Why call it Machine Programming?

8QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Why call it Machine Programming?
Names matter. Should infer meaning from name.

9QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Why call it Machine Programming?
Names matter. Should infer meaning from name.

Why isn’t this seminar series called?
- AI for Computer Science
- Neural Networks for Optimization

- Machine Learning for Software

None of these name precisely match the intention of this
seminar series (as I understand it J).

10

§ Likewise, our alternatives were:
– Program Synthesis

– AI/ML for Code

– Software 2.0

QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Why call it Machine Programming?

11MP = Machine Programming, AI = Artificial Intelligence, ML = Machine Learning

§ Likewise, our alternatives were:
– Program Synthesis (historical w/ formal methods; not always synthesizing)

– AI/ML for Code (it’s not just AI/ML – this is important)

– Software 2.0 (what does this mean?)
– And Software 3.0, and 4.0, and 5.0?

§ The machine programming name was coined to avoid
confusion and broaden scope.

Why call it Machine Programming?

(Non-Exhaustive) Topics

12

machine programming USES STOCHASTIC AND DETERMINISTIC methods
extraction of evolving and multi-dimensional code semantics
novel structural representations of code
automation for software and hardware heterogeneity
intentional programming
the future of data, communication, and computation for MP

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

13MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

MP uses STOCHASTIC and DETERMINISTIC Methods
Stochastic Deterministic

More stochastic, but may have a larger solution space More deterministic, but may have smaller solution space

MP uses STOCHASTIC and DETERMINISTIC Methods

14

Emerging Solutions Using a fusion of both

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

MP uses STOCHASTIC and DETERMINISTIC Methods

15

Emerging Solutions Using a fusion of both

CAV 2020

ICLR 2019

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

MP uses STOCHASTIC and DETERMINISTIC Methods

16

Formal Methods for increased determinism of Neural Nets

Neuron Coalescence via Mathematical Transitivity
Using Counterexample-Guided Abstraction Refinement

CAV 2020

“An Abstraction-Based Framework for Neural Network Verification” (Elboher et al., CAV ‘20)

1. 2. 3.

MACHINE PROGRAMMING + DEEP LEARNING = Neural Programming?

17MP = MACHINE PROGRAMMING, DL = DEEP LEARNING, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Neural Programming: use of neural networks as a replacement of code.

18

ICLR 2017

NEURIPS 2019

MP = MACHINE PROGRAMMING, DL = DEEP LEARNING, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

MACHINE PROGRAMMING + DEEP LEARNING = Neural Programming?
Neural Programming: use of neural networks as a replacement of code.

AutoPerf: Performance REGRESSION Testing

19“A Zero-Positive Learning Approach for Diagnosing Software Performance Regressions” (Alam et al., NeurIPS ‘19)

AutoPerf invents and adapts these tests

NEURIPS 2019

20MP = MACHINE PROGRAMMING, DL = DEEP LEARNING, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

§ Uses zero-positive learning (ZPL),
autoencoders, hardware telemetry

§ Emits no false negatives (no missed
performance bugs)

§ Negligible (4%) performance
overhead using hardware
performance counters (HWPCs)

How is this neural programming?

ML invents the regression tests and adapts them to the specialized hardware to analyze performance.

NN is the code/test.

AutoPerf: Performance REGRESSION Testing

AutoPerf System Design

21MP = MACHINE PROGRAMMING, DL = DEEP LEARNING, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

MACHINE PROGRAMMING + DEEP LEARNING = Neural Programming?

How is this neural programming?

ML invents the regression tests and adapts them to the specialized hardware to analyze performance.

NN is the code/test.

Some Concerns W/ Neural Programming
Only Improved BY RETRAINING?

UNDERSTANDABLE, INTERPRETABLE, DEBUGGABLE?

There are other MP Approaches that generate actual code
(We’ll see some examples today)

(Non-Exhaustive) Topics

22

machine programming USES STOCHASTIC AND DETERMINISTIC methods
extraction of evolving and multi-dimensional code semantics
novel structural representations of code
automation for software and hardware heterogeneity
intentional programming
the future of data, communication, and computation for MP

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

extraction of EVOLVING and multi-dimensional code semantics

23QUESTIONS / COMMENTS: justin.gottschlich@intel.com

extraction of EVOLVING and multi-dimensional code semantics

24QUESTIONS / COMMENTS: justin.gottschlich@intel.com

extraction of code semantics

25QUESTIONS / COMMENTS: justin.gottschlich@intel.com

§ Why care about code
semantics?

extraction of code semantics

26

§ Why care about code
semantics?

ICLR 2020

“Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Programs” (Dinella et al., ICLR ‘20)

Hoppity: Code Repair as Graph Transformations

27

§ Example of Hoppity’s bug repair graph transformation

§ How does Hoppity find bug fixes to learn from?

“Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Programs” (Dinella et al., ICLR ‘20)

How Does Hoppity Find Bug Fixes to Learn From?

28

§ Looks at repo changesets – if small enough, deem a potential bug fix
– Infers bug fix semantics on repository delta size

§ How would Hoppity perform if the semantics of bug fix are known?
– What about other environmental factors that could be inferred?

QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Why Evolving and multi-dimensional CODE semantics?

29QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Why Evolving and multi-dimensional CODE semantics?

30

§ Evolving:
– Code that is used, tends to be maintained

– “Software that is used is never finished”

– Evolving code == evolving semantics?

§ Multi-dimensional:
– A code snippet may have multiple semantic meanings
– A bit more challenging to understanding ...

QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Why multi-dimensional CODE semantics?

31QUESTIONS / COMMENTS: justin.gottschlich@intel.com

PREPRINT

Why multi-dimensional CODE semantics?

32QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Why multi-dimensional CODE semantics?

33QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Why multi-dimensional CODE semantics?

34QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Each semantic may be useful.
Can influence code comprehension,
call stacks, speculative execution
(branch prediction), etc.

Some semantics:

Both implement exponentiation (only integers)
Both are correct
One is recursive
One is iterative
One has multiple branches
One has one branch path

35QUESTIONS / COMMENTS: justin.gottschlich@intel.com

SOME Thoughts:

BIG AND DENSE code, Few semantic code labels

DISCOVER NOVEL ways to lift semantics
Lift Semantics without Compilation (Works with Broken Code)?

Find semantics from surroundings?

extraction of EVOLVING and multi-dimensional code semantics

(Non-Exhaustive) Topics

36

machine programming USES STOCHASTIC AND DETERMINISTIC methods
extraction of evolving and multi-dimensional code semantics
novel structural representations of code
automation for software and hardware heterogeneity
intentional programming
the future of data, communication, and computation for MP

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Novel structural representations of code

37

§ Why do we need new code structures?

QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Novel structural representations of code

38

§ Why do we need new code structures?

QUESTIONS / COMMENTS: justin.gottschlich@intel.com

OOPSLA 2019

PREPRINT

Machine Inferred Code Similarity (MISIM)

39

M
IS

IM
 S

ys
te

m
 D

es
ig

n

MISIM – Machine Inferred Code Similarity (Intel, Georgia Tech, MIT, https://arxiv.org/pdf/2006.05265.pdf).

MISIM created by Intel, Georgia Tech, and MIT

https://arxiv.org/pdf/2006.05265.pdf

40MISIM – Machine Inferred Code Similarity (Intel, Georgia Tech, MIT, https://arxiv.org/pdf/2006.05265.pdf).

M
IS

IM
 S

ys
te

m
 D

es
ig

n Novelties

#1: New & Extensible
Structural Representations

#2: New & Extensible Neural
Network Architectures

Machine Inferred Code Similarity (MISIM)

https://arxiv.org/pdf/2006.05265.pdf

Novel structural representations of code

41

§ Aroma introduced the simplified parse tree (SPT)

§ MISIM introduced the context-aware semantics structure (CASS)

§ Both intentionally moved away from classical structures (like AST)

These structures have led to state-of-the-art accuracy

Take-away:
Historical code representations may restrict our thinking for
pioneering research in MP. Let’s not do that. J

QUESTIONS / COMMENTS: justin.gottschlich@intel.com

OOPSLA 2019

PREPRINT

Novel structural representations of code

42

SOME Challenges:

Good Early Progress

More Structures to Discover / problems to solve
(e.g., how to build the Program-derived semantics graph?)

I BELIEVE a NEW CLASS OF structures ARE ABOUT TO EMERGE:

structures THAT CAN ONLY BE LEARNED

(Non-Exhaustive) Topics

43

machine programming USES STOCHASTIC AND DETERMINISTIC methods
extraction of evolving and multi-dimensional code semantics
novel structural representations of code
automation for software and hardware heterogeneity
intentional programming
the future of data, communication, and computation for MP

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

automation for software and hardware heterogeneity

44QUESTIONS / COMMENTS: justin.gottschlich@intel.com

§ SW / HW heterogeneity is creating multiplicative complexity

automation for software and hardware heterogeneity

45QUESTIONS / COMMENTS: justin.gottschlich@intel.com

SIGGRAPH ASIA 2019

SIGGRAPH 2016

Verified Lifting:
Target multiple programming languages

Halide:
Target multiple hardware compute devices

Verified Lifting Evolution: MetaLift

46QUESTIONS / COMMENTS: justin.gottschlich@intel.com

47

An Open Question:

What are the quality metrics for
Heterogeneous translation?

Correct & Performance (Of course)

What about Security, maintainability, Power footprint, etc.?

automation for software and hardware heterogeneity

(Non-Exhaustive) Topics

48

machine programming USES STOCHASTIC AND DETERMINISTIC methods
extraction of evolving and multi-dimensional code semantics
novel structural representations of code
automation for software and hardware heterogeneity
intentional programming
the future of data, communication, and computation for MP

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

INTENTIONAL PROGRAMMING

49QUESTIONS / COMMENTS: justin.gottschlich@intel.com

§ Focus on what the intention is, not how that intention may manifest

50QUESTIONS / COMMENTS: justin.gottschlich@intel.com

ICLR 2020

§ Focus on what the intention is, not how that intention may manifest

INTENTIONAL PROGRAMMING

51QUESTIONS / COMMENTS: justin.gottschlich@intel.com

ICLR 2020

§ Focus on what the intention is, not how that intention may manifest

INTENTIONAL PROGRAMMING

If you haven’t read this
paper, please read it!

§ Identify semantics of code

§ Provide function semantics signatures

§ Powerful & elegant

INTENTIONAL PROGRAMMING WITH HALIDE

52QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Credit: Andrew Adams et al.
SIGGRAPH 2019

Credit: Andrew Adams et al.

§ Halide is a domain-specific
language (DSL)

§ Separation of concerns
– Splits programming intention

from programming adaptation

§ Focus on what the intention is, not how that intention may manifest

53QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Intention Adaptation

Credit: Andrew Adams et al.

SIGGRAPH 2019

Credit: Andrew Adams et al.

INTENTIONAL PROGRAMMING WITH HALIDE

54QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Credit: Andrew Adams et al.

INTENTIONAL PROGRAMMING CAN LEAD TO SUPER-HUMAN PERFORMANCE

55QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Credit: Andrew Adams et al.

INTENTIONAL PROGRAMMING CAN LEAD TO SUPER-HUMAN PERFORMANCE

§ Concrete example of
byproduct of separating
intention from other pillars

56QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Credit: Andrew Adams et al.

MY BURNING Questions:

Can we build General-Purpose Intentional Programming systems?

Perhaps we provide intention-based interfaces to existing widely used
languages (C++, Python, JavaScript)?

INTENTIONAL PROGRAMMING CAN LEAD TO SUPER-HUMAN PERFORMANCE

(Non-Exhaustive) Topics

57

machine programming USES STOCHASTIC AND DETERMINISTIC methods
extraction of evolving and multi-dimensional code semantics
novel structural representations of code
automation for software and hardware heterogeneity
intentional programming
the future of data, communication, and computation for MP

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

the future of data, communication, and computation for MP

58

Challenges:
§ Computational workload via FM and ML may be large

§ MP data is large, can be dense, and is mostly unlabeled

§ Given this, what does the future MP hardware look like?

FM = Formal Methods, MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

the future of data, communication, and computation for MP

59

Challenges:
§ Computational workload via FM and ML may be large

§ MP data is large, can be dense, and is mostly unlabeled

§ Given this, what does the future MP hardware look like?

I have no idea.

But I do have ideas about things we can think about.

FM = Formal Methods, MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

the future of data, communication, and computation for MP

60

Some open questions:
§ What interfaces do we expect for expression of intention?

– What ramifications are associated with those?

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

the future of data, communication, and computation for MP

61

Some open questions:
§ What interfaces do we expect for expression of intention?

– What ramifications are associated with those?

§ What are the core techniques used for MP?
– What are the data, communication, and compute implications?

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

the future of data, communication, and computation for MP

62

Some open questions:
§ What interfaces do we expect for expression of intention?

– What ramifications are associated with those?

§ What are the core techniques used for MP?
– What are the data, communication, and compute implications?

§ We have a massive big and dense data problem in front of us
– As of summer 2020, there were over 200M+ github repos

– Code is multi-dimensional by nature

– This data implies new frontiers of compute, communication, and data hardware

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

The era of Machine Programming is NOW

63

We are on the verge of a revolutionary shift

Machine Programming is a Pioneering Research Initiative at Intel

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

The era of Machine Programming is NOW

64

We are on the verge of a revolutionary shift

Machine Programming is a Pioneering Research Initiative at Intel

Many institutions are heavily investing in MP
– Many large tech companies (Amazon, Google, IBM, Intel, Microsoft, etc.)

– Both research and engineering

– Dozens of startups to solve a single MP problem

– Several leading academic institutions (like UWisc)

MP has the potential to change the rules for (almost) everything

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Let’s Become the 100%

65MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

66

We can democratize the creation of software with MP
– Imagine a global population, where everyone can express their creativeness

– Imagine a world where coders only spent time expressing our intentions, not fixing code

– What kind of scientific, artistic, innovative things might we discover?

A great way forward is to build a community (like Remzi et al. are)!
We need more of this; please help us spread the word

Please reach out to me if you are interested in collaborating!

MP = Machine Programming, QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Let’s Become the 100%

67

Machine Programming Inside

QUESTIONS / COMMENTS: justin.gottschlich@intel.com

Thank you!

