
10/20/15

1

Announcements

Project 2a: Graded – see Learn@UW; contact your TA if questions
Part 2b will be longer….

Exam 2: Monday 10/26 7:15 – 9:15 Ingraham B10
• Covers all of Concurrency Piece (lecture and book)

• Light on chapter 29, nothing from chapter 33
• Very few questions from Virtualization Piece

• Multiple choice (fewer pure true/false)
• Look at two concurrency homeworks
• Questions from Project 2

Project 3: Only xv6 part; watch two videos early
• Due Wed 10/28

Today’s Reading: Chapter 31

Semaphores
Questions answered in this lecture:

Review: How to implement join with condition variables?

Review: How to implement producer/consumer with condition variables?

What is the difference between semaphores and condition variables?

How to implement a lock with semaphores?

How to implement semaphores with locks and condition variables?

How to implement join and producer/consumer with semaphores?

How to implement reader/writer locks with semaphores?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

10/20/15

2

Concurrency
Objectives

Mutual exclusion (e.g., A and B don’t run at same time)

- solved with locks

Ordering (e.g., B runs after A does something)

- solved with condition variables and semaphores

Condition Variables

wait(cond_t *cv, mutex_t *lock)

- assumes the lock is held when wait() is called

- puts caller to sleep + releases the lock (atomically)

- when awoken, reacquires lock before returning

signal(cond_t *cv)

- wake a single waiting thread (if >= 1 thread is waiting)

- if there is no waiting thread, just return, doing nothing

10/20/15

3

Join Implementation:
COrrect

void thread_exit() {
Mutex_lock(&m); // a
done = 1; // b
Cond_signal(&c); // c
Mutex_unlock(&m); // d

}

void thread_join() {
Mutex_lock(&m); // w
if (done == 0) // x

Cond_wait(&c, &m); // y
Mutex_unlock(&m); // z

}

Parent: Child:

Parent: w x y z

Child: a b c

Use mutex to ensure no race between interacting with state
and wait/signal

Producer/Consumer
Problem

Producers generate data (like pipe writers)

Consumers grab data and process it (like pipe readers)

Use condition variables to:
make producers wait when buffers are full
make consumers wait when there is nothing to consume

10/20/15

4

void *consumer(void *arg) {
while(1) {

Mutex_lock(&m); // c1
while(numfull == 0) // c2

Cond_wait(&cond, &m); // c3
int tmp = do_get(); // c4
Cond_signal(&cond); // c5
Mutex_unlock(&m); // c6
printf(“%d\n”, tmp); // c7

}
}

void *producer(void *arg) {
for (int i=0; i<loops; i++) {

Mutex_lock(&m); // p1
while(numfull == max) //p2

Cond_wait(&cond, &m); //p3
do_fill(i); // p4
Cond_signal(&cond); //p5
Mutex_unlock(&m); //p6

}
}

Producer: p1 p2 p4 p5 p6 p1 p2 p3
Consumer1: c1 c2 c3
Consumer2: c1 c2 c3 c2 c4 c5

wait()wait() wait() signal() signal()

does last signal wake producer or consumer2?

Broken Implementation of
Producer Consumer

Producer/Consumer:
Two CVs

void *producer(void *arg) {
for (int i = 0; i < loops; i++) {

Mutex_lock(&m); // p1
if (numfull == max) // p2

Cond_wait(&empty, &m); // p3
do_fill(i); // p4
Cond_signal(&fill); // p5
Mutex_unlock(&m); //p6

}
}

void *consumer(void *arg) {
while (1) {

Mutex_lock(&m); // c1
if (numfull == 0) // c2

Cond_wait(&fill, &m); // c3
int tmp = do_get(); // c4
Cond_signal(&empty); // c5
Mutex_unlock(&m); // c6

}
}

Is this correct? Can you find a bad schedule?
1. consumer1 waits because numfull == 0
2. producer increments numfull, wakes consumer1
3. before consumer1 runs, consumer2 runs, grabs entry, sets numfull=0.
4. consumer2 then reads bad data.

Producer: p1 p2 p4 p5 p6
Consumer1: c1 c2 c3 c4! ERROR
Consumer2: c1 c2 c4 c5 c6

10/20/15

5

CV Rule of Thumb 3

Whenever a lock is acquired, recheck assumptions about state!
Use “while” intead of “if”

Possible for another thread to grab lock between signal and wakeup from
wait
• Difference between Mesa (practical implementation) and

Hoare (theoretical) semantics
• Signal() simply makes a thread runnable, does not guarantee thread run next

Note that some libraries also have “spurious wakeups”
• May wake multiple waiting threads at signal or at any time

Producer/Consumer:
Two CVs and WHILE

void *producer(void *arg) {
for (int i = 0; i < loops; i++) {

Mutex_lock(&m); // p1
while (numfull == max) // p2

Cond_wait(&empty, &m); // p3
do_fill(i); // p4
Cond_signal(&fill); // p5
Mutex_unlock(&m); //p6

}
}

void *consumer(void *arg) {
while (1) {

Mutex_lock(&m);
while (numfull == 0)

Cond_wait(&fill, &m);
int tmp = do_get();
Cond_signal(&empty);
Mutex_unlock(&m);

}
}

Is this correct? Can you find a bad schedule?

Correct!
- no concurrent access to shared state
- every time lock is acquired, assumptions are reevaluated
- a consumer will get to run after every do_fill()
- a producer will get to run after every do_get()

10/20/15

6

Summary: rules of
thumb for CVs

Keep state in addition to CV’s

Always do wait/signal with lock held

Whenever thread wakes from waiting, recheck state

Condition Variables
vs Semaphores

Condition variables have no state (other than waiting queue)
• Programmer must track additional state

Semaphores have state: track integer value
• State cannot be directly accessed by user program, but state

determines behavior of semaphore operations

10/20/15

7

Semaphore Operations

Allocate and Initialize

sem_t sem;
sem_init(sem_t *s, int initval) {
s->value = initval;

}

User cannot read or write value directly after initialization

Wait or Test (sometime P() for Dutch word)

Waits until value of sem is > 0, then decrements sem value

Signal or Increment or Post (sometime V() for Dutch)

Increment sem value, then wake a single waiter

wait and post are atomic

Join with CV vs
Semaphores

void thread_exit() {
Mutex_lock(&m); // a
done = 1; // b
Cond_signal(&c); // c
Mutex_unlock(&m); // d

}

void thread_join() {
Mutex_lock(&m); // w
if (done == 0) // x

Cond_wait(&c, &m); // y
Mutex_unlock(&m); // z

}

CVs:

void thread_exit() {
sem_post(&s)

}

void thread_join() {
sem_wait(&s);

}

sem_t s;
sem_init(&s, ???);

Semaphores:
Sem_wait(): Waits until value > 0, then decrement
Sem_post(): Increment value, then wake a single waiter

Initialize to 0 (so sem_wait() must wait…)

10/20/15

8

Equivalence Claim

Semaphores are equally powerful to Locks+CVs

- what does this mean?

One might be more convenient, but that’s not relevant

Equivalence means each can be built from the other

Proof Steps
Want to show we can do these three things:

Locks

Semaphores

CV’s

Semaphores Locks

Semaphores

CV’s

10/20/15

9

Build Lock from
Semaphore

typedef struct __lock_t {
// whatever data structs you need go here
} lock_t;

void init(lock_t *lock) {
}

void acquire(lock_t *lock) {
}

void release(lock_t *lock) {
}

Locks

SemaphoresSem_wait(): Waits until value > 0, then decrement
Sem_post(): Increment value, then wake a single waiter

Build Lock from
Semaphore

typedef struct __lock_t {
sem_t sem;

} lock_t;

void init(lock_t *lock) {
sem_init(&lock->sem, ??);

}
void acquire(lock_t *lock) {

sem_wait(&lock->sem);
}
void release(lock_t *lock) {

sem_post(&lock->sem);
}

Locks

Semaphores

1 à 1 thread can grab lock

Sem_wait(): Waits until value > 0, then decrement
Sem_post(): Increment value, then wake a single waiter

10/20/15

10

Building CV’s over
Semaphores

Possible, but really hard to do right

Read about Microsoft Research’s attempts:

http://research.microsoft.com/pubs/64242/ImplementingCVs.pdf

CV’s

Semaphores

Build Semaphore
from Lock and CV

Typedef struct {
// what goes here?

} sem_t;

Void sem_init(sem_t *s, int value) {
// what goes here?

}

Locks

Semaphores

CV’sSem_wait(): Waits until value > 0, then decrement
Sem_post(): Increment value, then wake a single waiter

10/20/15

11

Build Semaphore
from Lock and CV

Typedef struct {
int value;
cond_t cond;
lock_t lock;

} sem_t;

Void sem_init(sem_t *s, int value) {
s->value = value;
cond_init(&s->cond);
lock_init(&s->lock);

}

Locks

Semaphores

CV’sSem_wait(): Waits until value > 0, then decrement
Sem_post(): Increment value, then wake a single waiter

Build Semaphore
from Lock and CV

Sem_wait{sem_t *s) {
// what goes here?

}

Sem_post{sem_t *s) {
// what goes here?

}

Locks

Semaphores

CV’sSem_wait(): Waits until value > 0, then decrement
Sem_post(): Increment value, then wake a single waiter

10/20/15

12

Build Semaphore
from Lock and CV

Sem_wait{sem_t *s) {
lock_acquire(&s->lock);
// this stuff is atomic

lock_release(&s->lock);
}

Sem_post{sem_t *s) {
lock_acquire(&s->lock);
// this stuff is atomic

lock_release(&s->lock);
}

Locks

Semaphores

CV’sSem_wait(): Waits until value > 0, then decrement
Sem_post(): Increment value, then wake a single waiter

Build Semaphore
from Lock and CV

Sem_wait{sem_t *s) {
lock_acquire(&s->lock);
while (s->value <= 0)

cond_wait(&s->cond);
s->value--;
lock_release(&s->lock);

}

Sem_post{sem_t *s) {
lock_acquire(&s->lock);
// this stuff is atomic

lock_release(&s->lock);
}

Locks

Semaphores

CV’sSem_wait(): Waits until value > 0, then decrement
Sem_post(): Increment value, then wake a single waiter

10/20/15

13

Build Semaphore
from Lock and CV

Sem_wait{sem_t *s) {
lock_acquire(&s->lock);
while (s->value <= 0)

cond_wait(&s->cond);
s->value--;
lock_release(&s->lock);

}

Sem_post{sem_t *s) {
lock_acquire(&s->lock);
s->value++;
cond_signal(&s->cond);
lock_release(&s->lock);

}

Locks

Semaphores

CV’sSem_wait(): Waits until value > 0, then decrement
Sem_post(): Increment value, then wake a single waiter

Producer/Consumer:
Semaphores #1

Simplest case:
• Single producer thread, single consumer thread
• Single shared buffer between producer and consumer

Requirements
• Consumer must wait for producer to fill buffer
• Producer must wait for consumer to empty buffer (if filled)

Requires 2 semaphores
• emptyBuffer: Initialize to ???
• fullBuffer: Initialize to ???

Producer

While (1) {

sem_wait(&emptyBuffer);
Fill(&buffer);

sem_signal(&fullBuffer);

}

Consumer

While (1) {

sem_wait(&fullBuffer);
Use(&buffer);

sem_signal(&emptyBuffer);

}

1 à 1 empty buffer; producer can run 1 time first
0 à 0 full buffers; consumer can run 0 times first

10/20/15

14

Producer/Consumer:
Semaphores #2

Next case: Circular Buffer
• Single producer thread, single consumer thread

• Shared buffer with N elements between producer and consumer

Requires 2 semaphores
• emptyBuffer: Initialize to ???

• fullBuffer: Initialize to ???

Producer

i = 0;
While (1) {

sem_wait(&emptyBuffer);
Fill(&buffer[i]);
i = (i+1)%N;
sem_signal(&fullBuffer);

}

Consumer

j = 0;
While (1) {

sem_wait(&fullBuffer);
Use(&buffer[j]);
j = (j+1)%N;
sem_signal(&emptyBuffer);

}

Nà N empty buffers; producer can run N times first
0 à 0 full buffers; consumer can run 0 times first

Producer/Consumer:
Semaphore #3

Final case:
• Multiple producer threads, multiple consumer threads

• Shared buffer with N elements between producer and consumer

Requirements

• Each consumer must grab unique filled element

• Each producer must grab unique empty element
• Why will previous code (shown below) not work???

Producer

i = 0;
While (1) {

sem_wait(&emptyBuffer);
Fill(&buffer[i]);
i = (i+1)%N;
sem_signal(&fullBuffer);

}

Consumer

j = 0;
While (1) {

sem_wait(&fullBuffer);
Use(&buffer[j]);
j = (j+1)%N;
sem_signal(&emptyBuffer);

}

Are i and j private or shared? Need each producer to grab unique buffer

10/20/15

15

Producer/Consumer:
Multiple Threads

Producer

While (1) {
sem_wait(&emptyBuffer);
myi = findempty(&buffer);
Fill(&buffer[myi]);
sem_signal(&fullBuffer);

}

Consumer

While (1) {
sem_wait(&fullBuffer);
myj = findfull(&buffer);
Use(&buffer[myj]);
sem_signal(&emptyBuffer);

}

Are myi and myj private or shared? Where is mutual exclusion needed???

Final case:
• Multiple producer threads, multiple consumer threads

• Shared buffer with N elements between producer and consumer

Requirements

• Each consumer must grab unique filled element

• Each producer must grab unique empty element

Producer/Consumer:
Multiple Threads

Consider three possible locations for mutual exclusion

Which work??? Which is best???

Producer #1
sem_wait(&mutex);
sem_wait(&emptyBuffer);
myi = findempty(&buffer);
Fill(&buffer[myi]);
sem_signal(&fullBuffer);
sem_signal(&mutex);

Consumer #1
sem_wait(&mutex);
sem_wait(&fullBuffer);
myj = findfull(&buffer);
Use(&buffer[myj]);
sem_signal(&emptyBuffer);
sem_signal(&mutex);

Problem: Deadlock at mutex (e.g., consumer runs first; won’t release mutex)

10/20/15

16

Producer/Consumer:
Multiple Threads

Consumer #2
sem_wait(&fullBuffer);
sem_wait(&mutex);
myj = findfull(&buffer);
Use(&buffer[myj]);
sem_signal(&mutex);
sem_signal(&emptyBuffer);

Producer #2
sem_wait(&emptyBuffer);
sem_wait(&mutex);
myi = findempty(&buffer);
Fill(&buffer[myi]);
sem_signal(&mutex);
sem_signal(&fullBuffer);

Consider three possible locations for mutual exclusion

Which work??? Which is best???

Works, but limits concurrency:
Only 1 thread at a time can be using or filling different buffers

Producer/Consumer:
Multiple Threads

Consumer #3
sem_wait(&fullBuffer);
sem_wait(&mutex);
myj = findfull(&buffer);
sem_signal(&mutex);
Use(&buffer[myj]);
sem_signal(&emptyBuffer);

Producer #3
sem_wait(&emptyBuffer);
sem_wait(&mutex);
myi = findempty(&buffer);
sem_signal(&mutex);
Fill(&buffer[myi]);
sem_signal(&fullBuffer);

Consider three possible locations for mutual exclusion

Which work??? Which is best???

Works and increases concurrency; only finding a buffer is protected by mutex;
Filling or Using different buffers can proceed concurrently

10/20/15

17

Reader/Writer Locks

Goal:

Let multiple reader threads grab lock (shared)

Only one writer thread can grab lock (exclusive)
• No reader threads

• No other writer threads

Let us see if we can understand code…

Reader/Writer Locks

1 typedef struct _rwlock_t {
2 sem_t lock;
3 sem_t writelock;
4 int readers;
5 } rwlock_t;
6
7 void rwlock_init(rwlock_t *rw) {
8 rw->readers = 0;
9 sem_init(&rw->lock, 1);
10 sem_init(&rw->writelock, 1);
11 }
12

10/20/15

18

Reader/Writer Locks
13 void rwlock_acquire_readlock(rwlock_t *rw) {
14 sem_wait(&rw->lock);
15 rw->readers++;
16 if (rw->readers == 1)
17 sem_wait(&rw->writelock);
18 sem_post(&rw->lock);
19 }
21 void rwlock_release_readlock(rwlock_t *rw) {
22 sem_wait(&rw->lock);
23 rw->readers--;
24 if (rw->readers == 0)
25 sem_post(&rw->writelock);]
26 sem_post(&rw->lock);
27 }
29 rwlock_acquire_writelock(rwlock_t *rw) { sem_wait(&rw->writelock); }
31 rwlock_release_writelock(rwlock_t *rw) { sem_post(&rw->writelock); }

T1: acquire_readlock()
T2: acquire_readlock()
T3: acquire_writelock()
T2: release_readlock()
T1: release_readlock()
T4: acquire_readlock()
T5: acquire_readlock() // ???
T3: release_writelock()
// what happens???

Semaphores

Semaphores are equivalent to locks + condition variables

• Can be used for both mutual exclusion and ordering

Semaphores contain state

• How they are initialized depends on how they will be used

• Init to 1: Mutex

• Init to 0: Join (1 thread must arrive first, then other)

• Init to N: Number of available resources

Sem_wait(): Waits until value > 0, then decrement (atomic)

Sem_post(): Increment value, then wake a single waiter (atomic)

Can use semaphores in producer/consumer relationships and for
reader/writer locks

