
10/22/15

1

Announcements
Project 2a: Graded – see Learn@UW; contact your TA if questions

Part 2b will be graded next week

Exam 2: Monday 10/26 7:15 – 9:15 Ingraham B10
• Covers all of Concurrency Piece (lecture and book)

• Light on chapter 29, nothing from chapter 33

• Very few questions from Virtualization Piece

• Multiple choice (fewer pure true/false)
• Look at two concurrency homeworks
• Questions from Project 2
• Goal: Sample questions available Friday evening

Tomorrow: No instructor office hours
Instead: Office hours in 1:45 – 2:45 in CS 2310 -- Come with questions!

Project 3: Only xv6 part; watch two videos early
• Due Wed 10/28
• Create and handin specified user programs for testing

Today’s Reading: Chapter 32

Concurrency Bugs
Questions answered in this lecture:

Why is concurrent programming difficult?

What type of concurrency bugs occur?

How to fix atomicity bugs (with locks)?

How to fix ordering bugs (with condition variables)?

How does deadlock occur?

How to prevent deadlock (with waitfree algorithms, grab all locks atomically,
trylocks, and ordering across locks)?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

10/22/15

2

Concurrency in Medicine:
Therac-25 (1980’s)

“The accidents occurred when the high-power electron beam
was activated instead of the intended low power beam, and
without the beam spreader plate rotated into place. Previous
models had hardware interlocks in place to prevent this, but
Therac-25 had removed them, depending instead on software
interlocks for safety. The software interlock could fail due to a
race condition.”

“…in three cases, the injured patients later died.”

Source: http://en.wikipedia.org/wiki/Therac-25

Lu etal. Study:

For four major projects, search for concurrency bugs among >500K
bug reports. Analyze small sample to identify common types of
concurrency bugs.

0

15

30

45

60

75

MySQL Mozilla

Bu
gs

Atomicity Order Deadlock Other

Source: http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

Concurrency Study from 2008

OpenOfficeApache

10/22/15

3

Atomicity: MySQL

Thread 1:

if (thd->proc_info) {

…

fputs(thd->proc_info, …);

…

}

What’s wrong?

Thread 2:

thd->proc_info = NULL;

Test (thd->proc_info != NULL) and set (writing to thd->proc_info)
should be atomic

Fix Atomicity Bugs
with Locks

Thread 1:

pthread_mutex_lock(&lock);

if (thd->proc_info) {

…

fputs(thd->proc_info, …);

…

}

pthread_mutex_unlock(&lock);

Thread 2:

pthread_mutex_lock(&lock);
thd->proc_info = NULL;
pthread_mutex_unlock(&lock);

10/22/15

4

Lu etal. Study:

For four major projects, search for concurrency bugs among >500K
bug reports. Analyze small sample to identify common types of
concurrency bugs.

0

15

30

45

60

75

MySQL Mozilla

Bu
gs

Atomicity Order Deadlock Other

Source: http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

Concurrency Study from 2008

OpenOfficeApache

Ordering: Mozilla

Thread 1:

void init() {

…

mThread =
PR_CreateThread(mMain, …);

…

}

Thread 2:

void mMain(…) {
…

mState = mThread->State;

…

}

What’s wrong?

Thread 1 sets value of mThread needed by Thread2
How to ensure that reading MThread happens after mThread initialization?

10/22/15

5

Fix Ordering bugs with
Condition variables

Thread 2:

void mMain(…) {
…

Mutex_lock(&mtLock);
while (mtInit == 0)

Cond_wait(&mtCond, &mtLock);
Mutex_unlock(&mtLock);

mState = mThread->State;
…

}

Thread 1:
void init() {

…

mThread =
PR_CreateThread(mMain, …);

pthread_mutex_lock(&mtLock);
mtInit = 1;
pthread_cond_signal(&mtCond);
pthread_mutex_unlock(&mtLock);

…
}

Lu etal. Study:

For four major projects, search for concurrency bugs among >500K
bug reports. Analyze small sample to identify common types of
concurrency bugs.

0

15

30

45

60

75

MySQL Mozilla

Bu
gs

Atomicity Order Deadlock Other

Source: http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

Concurrency Study from 2008

OpenOfficeApache

10/22/15

6

Deadlock

Deadlock: No progress can be made because two or more
threads are waiting for the other to take some action and
thus neither ever does

“Cooler" name: the deadly embrace (Dijkstra)

S
TO

P

STOP

S
TO

P

STOP

10/22/15

7

S
TO

P

STOP

S
TO

P

STOP

A

S
TO

P

STOP

S
TO

P

STOP

A

B

10/22/15

8

S
TO

P

STOP

S
TO

P

STOP

A

B

S
TO

P

STOP

S
TO

P

STOP

A

B

who goes?

10/22/15

9

S
TO

P

STOP

S
TO

P

STOP

A

B

S
TO

P

STOP

S
TO

P

STOP

A

B

10/22/15

10

S
TO

P

STOP

S
TO

P

STOP

S
TO

P

STOP

S
TO

P

STOP

A

B

C

D

10/22/15

11

S
TO

P

STOP

S
TO

P

STOP

A

B

C

D

who goes?

S
TO

P

STOP

S
TO

P

STOP

AB

CD

who goes?

10/22/15

12

S
TO

P

STOP

S
TO

P

STOP

AB

CD

Deadlock!

Code Example

Thread 2:

lock(&B);
lock(&A);

Thread 1:

lock(&A);
lock(&B);

Can deadlock happen with these two threads?

10/22/15

13

Circular Dependency

Lock A

Lock B

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

Fix Deadlocked Code

Thread 2

lock(&A);
lock(&B);

Thread 1

lock(&A);
lock(&B);

Thread 2:

lock(&B);
lock(&A);

Thread 1:

lock(&A);
lock(&B);

How would you fix this code?

10/22/15

14

Non-circular
Dependency (fine)

Lock A

Lock B

Thread 1

Thread 2

holds

wanted
by

wanted
by

What’s Wrong?

set_t *set_intersection (set_t *s1, set_t *s2) {

set_t *rv = Malloc(sizeof(*rv));

Mutex_lock(&s1->lock);

Mutex_lock(&s2->lock);

for(int i=0; i<s1->len; i++) {

if(set_contains(s2, s1->items[i])

set_add(rv, s1->items[i]);

Mutex_unlock(&s2->lock);

Mutex_unlock(&s1->lock);

}

10/22/15

15

Encapsulation

Modularity can make it harder to see deadlocks

Thread 1:

rv = set_intersection(setA,
setB);

Thread 2:

rv = set_intersection(setB,
setA);

Solution?
if (m1 > m2) {

// grab locks in high-to-low address order
pthread_mutex_lock(m1);
pthread_mutex_lock(m2);

} else {
pthread_mutex_lock(m2);
pthread_mutex_lock(m1);

}

Any other problems?
Code assumes m1 != m2 (not same lock)

Deadlock Theory

Deadlocks can only happen with these four conditions:

- mutual exclusion

- hold-and-wait

- no preemption

- circular wait

Eliminate deadlock by eliminating any one condition

S
TO

P

STOP

S
TO

P

STOP

AB

CD

10/22/15

16

Mutual Exclusion

Def:

Threads claim exclusive control of resources that
they require (e.g., thread grabs a lock)

Wait-Free Algorithms

Strategy: Eliminate locks!

Try to replace locks with atomic primitive:

int CompAndSwap(int *addr, int expected, int new)
Returns 0: fail, 1: success

void add (int *val, int amt) {
do {

int old = *value;
} while(!CompAndSwap(val, ??, old+amt);

}

void add (int *val, int amt) {
Mutex_lock(&m);
*val += amt;
Mutex_unlock(&m);

}

?? à old

10/22/15

17

Wait-Free Algorithms:
Linked List Insert

Strategy: Eliminate locks!

int CompAndSwap(int *addr, int expected, int new)
Returns 0: fail, 1: success

void insert (int val) {
node_t *n = Malloc(sizeof(*n));
n->val = val;
lock(&m);
n->next = head;
head = n;
unlock(&m);

}

void insert (int val) {
node_t *n = Malloc(sizeof(*n));
n->val = val;
do {

n->next = head;
} while (!CompAndSwap(&head,

n->next, n));
}

Deadlock Theory

Deadlocks can only happen with these four conditions:

- mutual exclusion

- hold-and-wait

- no preemption

- circular wait

Eliminate deadlock by eliminating any one condition

10/22/15

18

Hold-and-Wait

Def:

Threads hold resources allocated to them (e.g., locks
they have already acquired) while waiting for additional
resources (e.g., locks they wish to acquire).

Eliminate
Hold-and-Wait

Strategy: Acquire all locks atomically once
Can release locks over time, but cannot acquire again until all have
been released

How to do this? Use a meta lock, like this:
lock(&meta);
lock(&L1);
lock(&L2);
…
unlock(&meta);

// Critical section code

unlock(…);

Disadvantages?
Must know ahead of time which locks will be needed
Must be conservative (acquire any lock possibly needed)
Degenerates to just having one big lock

10/22/15

19

Deadlock Theory

Deadlocks can only happen with these four conditions:

- mutual exclusion

- hold-and-wait

- no preemption

- circular wait

Eliminate deadlock by eliminating any one condition

No preemption

Def:

Resources (e.g., locks) cannot be forcibly removed from
threads that are holding them.

10/22/15

20

Support Preemption

Strategy: if thread can’t get what it wants, release what it holds

top:

lock(A);

if (trylock(B) == -1) {

unlock(A);

goto top;

}

…

Disadvantages?

Livelock:
no processes make progress, but the state
of involved processes constantly changes
Classic solution: Exponential back-off

Deadlock Theory

Deadlocks can only happen with these four conditions:

- mutual exclusion

- hold-and-wait

- no preemption

- circular wait

Eliminate deadlock by eliminating any one condition

10/22/15

21

Circular Wait

Def:

There exists a circular chain of threads such that each
thread holds a resource (e.g., lock) being requested by
next thread in the chain.

Eliminating
Circular Wait

Strategy:

- decide which locks should be acquired before others

- if A before B, never acquire A if B is already held!

- document this, and write code accordingly

Works well if system has distinct layers

10/22/15

22

Lock Ordering
in Linux

In linux-3.2.51/include/linux/fs.h

/* inode->i_mutex nesting subclasses for the lock

* validator:

* 0: the object of the current VFS operation

* 1: parent

* 2: child/target

* 3: quota file

* The locking order between these classes is

* parent -> child -> normal -> xattr -> quota

*/

Summary

When in doubt about correctness, better to limit
concurrency (i.e., add unneccessary lock)

Concurrency is hard, encapsulation makes it harder!

Have a strategy to avoid deadlock and stick to it

Choosing a lock order is probably most practical

