
10/31/15

1

Announcements

2nd Exam: Congratulations on finishing!
• More than half-way through course material

P3: Due tomorrow at 9:00 pm
• Only turn in code in one project partner’s handin directory

P4: Threads (Part a and b) available near end of week

• Can choose or be matched with new partner

Read as we go along!
• Chapter 36 + 37

Persistence:
I/O devices

Questions answered in this lecture:

How does the OS interact with I/O devices (check status, send data+control)?

What is a device driver?

What are the components of a hard disk drive?

How can you calculate sequential and random throughput of a disk?

What algorithms are used to schedule I/O requests?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

10/31/15

2

Motivation

What good is a computer without any I/O devices?

- keyboard, display, disks

We want:

- H/W that will let us plug in different devices

- OS that can interact with different combinations

CPU RAM

Graphics

Memory Bus

General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

Why use hierarchical buses?

Hardware support
for I/O

10/31/15

3

Canonical Device

Status COMMAND DATA

OS reads/writes to these

Device Registers:

Canonical Device

Status COMMAND DATADevice Registers:

OS reads/writes to these

Hidden Internals: ???

10/31/15

4

Canonical Device

Status COMMAND DATADevice Registers:

OS reads/writes to these

Hidden Internals:
Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Example Write
Protocol

while (STATUS == BUSY)

; // spin

Write data to DATA register

Write command to COMMAND register

while (STATUS == BUSY)

; // spin

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

10/31/15

5

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

CPU:

Disk:

ACPU:

Disk: C

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

10/31/15

6

ACPU:

Disk: C

A wants to do I/O

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

1

ACPU:

Disk: C

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

10/31/15

7

1 2

ACPU:

Disk: AC

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

1 2

ACPU:

Disk: AC

3

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

10/31/15

8

1 2 4
3

ACPU:

Disk: C A

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

1 2 4
3

ACPU:

Disk: C A

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

10/31/15

9

1 2 4
3

A BCPU:

Disk: C A

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

how to avoid spinning? interrupts!

1 2 4
3

A BCPU:

Disk: C A

how to avoid spinning?
interrupts!

while (STATUS == BUSY) // 1

wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

wait for interrupt;

10/31/15

10

2
3,4

A BCPU:

Disk: C A

how to avoid spinning?
interrupts!

B B AA

1

while (STATUS == BUSY) // 1

wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

wait for interrupt;

Interrupts vs. Polling

Are interrupts ever worse than polling?

Fast device: Better to spin than take interrupt overhead
• Device time unknown? Hybrid approach (spin then use

interrupts)

Flood of interrupts arrive
• Can lead to livelock (always handling interrupts)
• Better to ignore interrupts while make some progress

handling them

Other improvement
• Interrupt coalescing (batch together several interrupts)

10/31/15

11

Protocol Variants

• Status checks: polling vs. interrupts

• Data: PIO vs. DMA

• Control: special instructions vs. memory-mapped I/O

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

2
3,4

A BCPU:

Disk: C A

what else can we optimize?

B B AA

1

while (STATUS == BUSY) // 1

wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

wait for interrupt;

data transfer!

10/31/15

12

Programmed I/O vs.
Direct Memory Access

PIO (Programmed I/O):
• CPU directly tells device what the data is

DMA (Direct Memory Access):
• CPU leaves data in memory

• Device reads data directly from memory

2
3,4

A BCPU:

Disk: C A

B B AA

1

while (STATUS == BUSY) // 1

wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

wait for interrupt;

10/31/15

13

2
3,4

A BCPU:

Disk: C A

B B AA

1

while (STATUS == BUSY) // 1

wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

wait for interrupt;

ACPU:

Disk: C A

B B A

1 3,4

while (STATUS == BUSY) // 1

wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

wait for interrupt;

10/31/15

14

Protocol Variants

Status checks: polling vs. interrupts

Data: PIO vs. DMA

Control: special instructions vs. memory-mapped I/O

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

ACPU:

Disk: C A

B B A

1 3,4

how does OS read and write registers?

while (STATUS == BUSY) // 1

wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

wait for interrupt;

10/31/15

15

Special Instructions vs.
Mem-Mapped I/O

Special instructions
• each device has a port
• in/out instructions (x86) communicate with device

Memory-Mapped I/O
• H/W maps registers into address space
• loads/stores sent to device

Doesn’t matter much (both are used)

Protocol Variants

Status checks: polling vs. interrupts

Data: PIO vs. DMA

Control: special instructions vs. memory-mapped I/O

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

10/31/15

16

Variety is a Challenge

Problem:
• many, many devices
• each has its own protocol

How can we avoid writing a slightly different OS for each H/W
combination?

Write device driver for each device

Drivers are 70% of Linux source code

Storage Stack

application

file system

scheduler

driver

hard drive
build common interface
on top of all HDDs

10/31/15

17

Hard Disks

Basic Interface

Disk has a sector-addressable address space
• Appears as an array of sectors

Sectors are typically 512 bytes or 4096 bytes.

Main operations: reads + writes to sectors

Mechanical (slow) nature makes management
“interesting”

10/31/15

18

Platter

Disk Internals

Platter is covered with a magnetic film.

10/31/15

19

Spindle

Surface

Surface

10/31/15

20

Many platters may be bound to the spindle.

Each surface is divided into rings called tracks.
A stack of tracks (across platters) is called a cylinder.

10/31/15

21

The tracks are divided into numbered sectors.

1
23

06
5 4

7
8

9
10

11

15
14
13

12

16

17

18

19

23

22

21

20

Heads on a moving arm can read from each surface.

1
23

06
5 4

7
8

9
10

11

15
14
13

12

16

17

18

19

23

22

21

20

10/31/15

22

1
23

06
5 4

7
8

9
10

11

15
14
13

12

16

17

18

19

23

22

21

20

Spindle/platters rapidly spin.

Disk Terminology
spindle

platter

surface

track
cylinder

sector

read/write head

10/31/15

23

Hard Drive Demo

• http://youtu.be/9eMWG3fwiEU?t=30s

• https://www.youtube.com/watch?v=L0nbo1VOF4M

Let’s Read 12!

1
23

06
5 4

7
8

9
10

11

15
14
13

12

16

17

18

19

23

22

21

20

10/31/15

24

Positioning

Drive servo system keeps head on track
• How does the disk head know where it is?

• Platters not perfectly aligned, tracks not perfectly concentric (runout) --
difficult to stay on track

• More difficult as density of disk increase

• More bits per inch (BPI), more tracks per inch (TPI)

Use servo burst:
• Record placement information every few (3-5) sectors

• When head cross servo burst, figure out location and adjust as needed

Let’s Read 12!

1
23

06
5 4

7
8

9
10

11

15
14
13

12

16

17

18

19

23

22

21

20

10/31/15

25

Seek to right track.

Seek to right track.

10/31/15

26

Seek to right track.

Wait for rotation.

10/31/15

27

Wait for rotation.

Wait for rotation.

10/31/15

28

Wait for rotation.

Wait for rotation.

10/31/15

29

Wait for rotation.

Transfer data.

10/31/15

30

Transfer data.

Transfer data.

10/31/15

31

Yay!

Time to Read/write

Three components:

Time = seek + rotation + transfer time

10/31/15

32

Seek, Rotate, Transfer

Seek cost: Function of cylinder distance
• Not purely linear cost

Must accelerate, coast, decelerate, settle

Settling alone can take 0.5 - 2 ms

Entire seeks often takes several milliseconds
• 4 - 10 ms

Approximate average seek distance = 1/3 max seek
distance

Seek, Rotate, Transfer

Depends on rotations per minute (RPM)
• 7200 RPM is common, 15000 RPM is high end.

With 7200 RPM, how long to rotate around?
1 / 7200 RPM =
1 minute / 7200 rotations =
1 second / 120 rotations =
8.3 ms / rotation

Average rotation?
8.3 ms / 2 = 4.15 ms

10/31/15

33

Seek, Rotate, Transfer

Pretty fast — depends on RPM and sector density.

100+ MB/s is typical for maximum transfer rate

How long to transfer 512-bytes?

512 bytes * (1s / 100 MB) = 5 us

Workload
Performance

So…

- seeks are slow

- rotations are slow

- transfers are fast

What kind of workload is fastest for disks?

Sequential: access sectors in order (transfer dominated)

Random: access sectors arbitrarily (seek+rotation dominated)

10/31/15

34

Disk Spec

Cheetah Barracuda

Capacity 300 GB 1 TB

RPM 15,000 7,200

Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s

Platters 4 4

Cache 16 MB 32 MB

Sequential workload: what is throughput for each?

Cheeta: 125 MB/s.
Barracuda: 105 MB/s.

Disk Spec

Random workload: what is throughput for each?
(what else do you need to know?)

Cheetah Barracuda

Capacity 300 GB 1 TB

RPM 15,000 7,200

Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s

Platters 4 4

Cache 16 MB 32 MB

What is size of each random read?
Assume 16-KB reads

10/31/15

35

Cheetah Barracuda

RPM 15,000 7,200

Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take
w/ Cheetah?

Seek + rotation + transfer

Seek = 4 ms

Cheetah Barracuda

RPM 15,000 7,200

Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take
w/ Cheetah?

avg rotation =
1

2

1 min

15000

60 sec

1 min

1000 ms

1 sec
= 2 ms

Average rotation in ms?

10/31/15

36

Cheetah Barracuda

RPM 15,000 7,200

Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take
w/ Cheetah?

transfer =
1 sec

125 MB
16 KB

1,000,000 us

1 sec
= 125 us

Transfer of 16 KB?

Cheetah Barracuda

RPM 15,000 7,200

Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take
w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms

Throughput?

10/31/15

37

Cheetah Barracuda

RPM 15,000 7,200

Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take
w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms

throughput =
16 KB

6.1ms

1 MB

1024 KB

100 ms

1 sec
= 2.5 MB/s

Cheetah Barracuda

RPM 15,000 7,200

Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take
w/ Barracuda?

Time = seek + rotation + transfer
Seek = 9ms

10/31/15

38

Cheetah Barracuda

RPM 15,000 7,200

Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take
w/ Barracuda?

avg rotation =
1

2

1 min

7200

60 sec

1 min

1000 ms

1 sec
= 4.1 ms

Cheetah Barracuda

RPM 15,000 7,200

Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take
w/ Barracuda?

transfer =
1 sec

105 MB
16 KB

1,000,000 us

1 sec
= 149 us

10/31/15

39

Cheetah Barracuda

RPM 15,000 7,200

Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take
w/ Barracuda?

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms

Cheetah Barracuda

RPM 15,000 7,200

Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take
w/ Barracuda?

throughput =
16 KB

13.2ms

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms

1 MB

1024 KB

1000 ms

1 sec
= 1.2 MB/s

10/31/15

40

Cheetah Barracuda

Sequential 125 MB/s 105 MB/s

Random 2.5 MB/s 1.2 MB/s

Cheetah Barracuda

Capacity 300 GB 1 TB

RPM 15,000 7,200

Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s

Platters 4 4

Cache 16 MB 32 MB

Other Improvements

Track Skew

Zones

Cache

10/31/15

41

8
9
10

11

15
14
13

12

16

17

18

19

23

22

21

20

Imagine sequential reading,
how should sectors numbers be laid out on disk?

8
9
10

11

15
14
13

12

16

17

18

19

23

22

21

20

When reading 16 after 15, the head won’t settle
quick enough, so we need to do a rotation.

10/31/15

42

8
9
10

11

15
14
13

12

23

23

16

17

21

20

19

18

8
9
10

11

15
14
13

12

23

23

16

17

21

20

19

18

enough time to settle now

10/31/15

43

Other Improvements

Track Skew

Zones

Cache

10/31/15

44

10/31/15

45

ZBR (Zoned bit recording): More sectors on outer tracks

Other Improvements

Track Skew

Zones

Cache

10/31/15

46

Drive Cache

Drives may cache both reads and writes.
• OS caches data too

What advantage does caching in drive have for reads?

What advantage does caching in drive have for writes?

8
9
10

11

15
14
13

12

16

17

18

19

23

22

21

20

Buffering

Disks contain internal memory (2MB-16MB) used as cache

Read-ahead: “Track buffer”
• Read contents of entire track into memory during rotational delay

Write caching with volatile memory
• Immediate reporting: Claim written to disk when not

• Data could be lost on power failure

Tagged command queueing
• Have multiple outstanding requests to the disk

• Disk can reorder (schedule) requests for better performance

10/31/15

47

I/O Schedulers

I/O Schedulers

Given a stream of I/O requests, in what order should they
be served?

Much different than CPU scheduling

Position of disk head relative to request position matters
more than length of job

10/31/15

48

FCFS
(First-Come-First-Serve)

Assume seek+rotate = 10 ms for random request

How long (roughly) does the below workload take?
• Requests are given in sector numbers

300001, 700001, 300002, 700002, 300003, 700003

~60ms

FCFS
(First-Come-First-Serve)

Assume seek+rotate = 10 ms for random request

How long (roughly) does the below workload take?
• Requests are given in sector numbers

300001, 700001, 300002, 700002, 300003, 700003

300001, 300002, 300003, 700001, 700002, 700003

~60ms

~20ms

10/31/15

49

Schedulers

OS

Disk

Scheduler

Scheduler

Where should the
scheduler go?

SPTF (Shortest Positioning
Time First)

Strategy: always choose request that requires least positioning
time (time for seeking and rotating)

• Greedy algorithm (just looks for best NEXT decision)

How to implement in disk?

How to implement in OS?

Use Shortest Seek Time First (SSTF) instead

Disadvantages?

Easy for far away requests to starve

10/31/15

50

SCAN

Elevator Algorithm:
• Sweep back and forth, from one end of disk other, serving

requests as pass that cylinder

• Sorts by cylinder number; ignores rotation delays

Pros/Cons?

Better: C-SCAN (circular scan)
• Only sweep in one direction

What happens?

void reader(int fd) {

char buf[1024];

int rv;

while((rv = read(buf)) != 0) {

assert(rv);

// takes short time, e.g., 1ms

process(buf, rv);

}

}

Assume 2 processes each calling read() with C-SCAN

10/31/15

51

Work Conservation

Work conserving schedulers always try to do work if
there’s work to be done

Sometimes, it’s better to wait instead if system
anticipates another request will arrive

Such non-work-conserving schedulers are called
anticipatory schedulers

CFQ (Linux Default)

Completely Fair Queueing
• Queue for each process

• Weighted round-robin between queues, with slice time
proportional to priority

• Yield slice only if idle for a given time (anticipation)

Optimize order within queue

10/31/15

52

I/O Device Summary

Overlap I/O and CPU whenever possible!

- use interrupts, DMA

Storage devices provide common block interface

On a disk: Never do random I/O unless you must!

- e.g., Quicksort is a terrible algorithm on disk

Spend time to schedule on slow, stateful devices

