
11/17/15

1

Persistence:
Log-Structured FS (LFS)

Questions answered in this lecture:

Besides Journaling, how else can disks be updated atomically?
Does on-disk log help performance of writes or reads?
How to find inodes in on-disk log?

How to recover from a crash?
How to garbage collect dead information?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

File-System Case
Studies

Local

- FFS: Fast File System

- LFS: Log-Structured File System

Network

- NFS: Network File System

- AFS: Andrew File System

11/17/15

2

General Strategy for
Crash Consistency

Never delete ANY old data, until ALL new data is safely on disk

Implication:
At some point in time, all old AND all new data must be on disk

Two techniques popular in file systems:

1. journal new info, then overwrite old info with new info in place

2. copy-on-write: write new info to new location, discard old info

Review: Journal New,
Overwrite In-Place

12

In-place file data

5

Journal

11/17/15

3

Review: Journal New,
Overwrite In-Place

12

file data

5 10 ...

Journal

Imagine journal header describes in-place destinations

Review: Journal New,
Overwrite In-Place

12

file data

5 10 7

Journal

Imagine journal commit block designates transaction complete

11/17/15

4

Review: Journal New,
Overwrite In-Place

10

file data

5 10 7

Journal

Perform checkpoint to in-place data when transaction is complete

Review: Journal New,
Overwrite In-Place

10

file data

7 10 7

Journal

11/17/15

5

Review: Journal New,
Overwrite In-Place

10

file data

7

Journal

Clear journal commit block to show checkpoint complete

TODAY: Write New,
Discard Old

12

file data

5

Make a copy-on-write (COW)

11/17/15

6

TODAY: Write New,
Discard Old

12

file data

5 10 ...

TODAY: Write New,
Discard Old

12

file data

5 10 7

11/17/15

7

TODAY: Write New,
Discard Old

12

file data

5 10 7

TODAY: Write New,
Discard Old

file data

10 7

Obvious advantage?
Only write new data once instead of twice

11/17/15

8

LFS Performance Goal

Motivation:
• Growing gap between sequential and random I/O performance
• RAID-5 especially bad with small random writes

Idea: use disk purely sequentially

Easy for writes to use disk sequentially – why?
• Can do all writes near each other to empty space – new copy
• Works well with RAID-5 (large sequential writes)

Hard for reads – why?
• User might read files X and Y not near each other on disk
• Maybe not be too bad if disk reads are slow – why?

• Memory sizes are growing (cache more reads)

LFS Strategy

File system buffers writes in main memory until “enough” data
• How much is enough?
• Enough to get good sequential bandwidth from disk (MB)

Write buffered data sequentially to new segmenton disk

Never overwrite old info: old copies left behind

11/17/15

9

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

11/17/15

10

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

11/17/15

11

S1

Big Picture

buffer:

S0disk: S3S2

segments

Data Structures
(attempt 1)

What data structures from FFS can LFS remove?
• allocation structs: data + inode bitmaps

What type of name is much more complicated?
• Inodes are no longer at fixed offset
• Use current offset on disk instead of table index for name

• Note: when update inode, inode number changes!!

S1S0 S3S2

11/17/15

12

D’I2 Dir I9 D

Attempt 1

root inode

file inode

file data

root directory entries

How to update Inode 9 to point to new D’ ???

Overwrite data in /file.txt

D’I2 Dir I9 D

AttempT 1

Can LFS update Inode 9 to point to new D’?

NO! This would be a random write

Overwrite data in /file.txt

11/17/15

13

I2'Dr’I9'D’I2 Dir I9 D

Attempt 1

old new

Must update all structures in sequential order to log

Overwrite data in /file.txt

Attempt 1: Problem w/
Inode Numbers

Problem:
For every data update, must propagate updates all the way up
directory tree to root

Why?
When inode copied, its location (inode number) changes

Solution:
Keep inode numbers constant; don’t base name on offset

FFS found inodes with math. How now?

I2'Dr’I9'D’I2 Dir I9 D

11/17/15

14

Data Structures
(attempt 2)

What data structures from FFS can LFS remove?
• allocation structs: data + inode bitmaps

What type of name is much more complicated?
• Inodes are no longer at fixed offset
• Use imap structure to map:

inodenumber => inode location on disk

imap

Where to keep Imap?

S1S0disk: S3S2

segments

table of millions of
entries (4 bytes each)

Where can imap be stored???? Dilemma:
1. imap too large to keep in memory
2. don’t want to perform random writes for imap

Solution:
Write imap in segments
Keep pointers to pieces of imap in memory

imap: inode number => inode location on disk

11/17/15

15

Solution:
Imap in Segments

S1S0disk: S3S2

segments

ptrs to
imap piecesmemory:

Solution:
Write imap in segments
Keep pointers to pieces of imap in memory
Keep recent accesses to imap cached in memory

imapinodedata

Example Write

…disk:

Solution:
Write imap in segments
Keep pointers to pieces of imap in memory
Keep recent accesses to imap cached in memory

11/17/15

16

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

(read)
(read)

(read)
(read)

read
write

write

read
write

write

Most data structures same in LFS as FFS!

Use imap to find location of root and foo inodes
Update imap with new locations for foo and bar inodes

Other Issues

Crashes

Garbage Collection

11/17/15

17

Crash Recovery

What data needs to be recovered after a crash?
• Need imap (lost in volatile memory)

Naive approach?
• Scan entire log to reconstruct pointers to imap pieces. Slow!

Better approach?
• Occasionally checkpoint to known on-disk location the pointers to

imap pieces

How often to checkpoint?
• Checkpoint often: random I/O
• Checkpoint rarely: lose more data, recovery takes longer
• Example: checkpoint every 30 secs

Checkpoint

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint

after last
checkpoint

tail after last
checkpoint

Crash!

11/17/15

18

Reboot

S1S0disk: S3S2

checkpoint

ptrs to
imap piecesmemory:

tail after last
checkpoint

Reboot

S1S0disk: S3S2

checkpoint

ptrs to
imap piecesmemory: get pointers

from checkpoint

tail after last
checkpoint

11/17/15

19

Reboot

S1S0disk: S3S2

checkpoint

ptrs to
imap piecesmemory:

get pointers by
scanning after tail
à Roll forward

tail after last
checkpoint

Checkpoint Summary

Checkpoint occasionally (e.g., every 30s)

Upon recovery:

- read checkpoint to find most imap pointers and segment tail

- find rest of imap pointers by reading past tail

What if crash during checkpoint?

11/17/15

20

v2???

Checkpoint Strategy

Have two checkpoint regions

Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint

S1S0disk: S3S2

writing

v2v3

Checkpoint Strategy

S1S0disk: S3S2

Have two checkpoint regions

Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint

11/17/15

21

???v3

Checkpoint Strategy

S1S0disk: S3S2

writing

Have two checkpoint regions

Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint

v4v3

Checkpoint Strategy

S1S0disk: S3S2

Have two checkpoint regions

Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint

11/17/15

22

v4???

Checkpoint Strategy

S1S0disk: S3S2

writing

Have two checkpoint regions

Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint

v4v5

Checkpoint Strategy

S1S0disk: S3S2

Have two checkpoint regions

Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint

11/17/15

23

Other Issues

Crashes

Garbage Collection

What to do
with old data?

Old versions of files -> garbage

Approach 1: garbage is a feature!
• Keep old versions in case user wants to revert files later
• Versioning file systems

• Example: Dropbox

Approach 2: garbage collection…

11/17/15

24

Garbage Collection

Need to reclaim space:

1. When no more references (any file system)

2. After newer copy is created (COW file system)

LFS reclaims segments (not individual inodes and data blocks)

- Want future overwites to be to sequential areas

- Tricky, since segments are usually partly valid

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

11/17/15

25

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

FREEUSED

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35% 95%

compact 2 segments to one

When move data blocks, copy new inode to point to it
When move inode, update imap to point to it

11/17/15

26

FREEUSED

Garbage Collection

USEDFREEdisk segments: FREEUSED

10% 95% 95%

release input segments

Garbage Collection

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
How does LFS know whether data in segments is valid?

Policy:
Which segments to compact?

11/17/15

27

Garbage Collection
Mechanism

Is an inode the latest version?
• Check imap to see if this inode is pointed to
• Fast!

Is a data block the latest version?
• Scan ALL inodes to see if any point to this data

• Very slow!

How to track information more efficiently?
• Segment summary lists inode and data offset

corresponding to each data block in segment (reverse
pointers)

Block Liveness

:Ddisk: SS… …

am i alive?

…

11/17/15

28

inode

Block Liveness

:Ddisk: SS… …

am i alive?

imap

…

inode

Block Liveness

:Ddisk: SS… …

am i alive?

imap

… D’

11/17/15

29

inode

Block Liveness

:Ddisk: SS… …

am i alive?

imap

… D’

Nope!

inode

Block Liveness

:’(disk: SS… …

am i alive?

imap

… D’

Nope!

11/17/15

30

Garbage Collection

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
How does LFS know whether data in segments is
valid? [segment summary]

Policy:
Which segments to compact?

• clean most empty first
• clean coldest (ones undergoing least change)
• more complex heuristics…

Conclusion

Journaling:
Put final location of data wherever file system chooses
(usually in a place optimized for future reads)

LFS:
Puts data where it’s fastest to write
(assume future reads cached in memory)

Other COW file systems: WAFL, ZFS, btrfs

