ANNOUNCEMENTS

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537 Andrea C. Arpaci-Dusseau
Introduction to Operating Systems Remzi H. Arpaci-Dusseau

ADVANCED TOPICS:
MAP-REDUCE

NFES: STATELESS SERVER
WITH CACHED STATS

AES: CALLBACKS AND
WHOLE-FILE CACHING

AES VS NES PROTOCOLS

v AL a o TV N Yy T o P Y T e ot A T T VT S R A R LA S AT R A LR
Time | Client A Client B Server Action?
0 fd = open(“file A”);
10 read(fd, block1);
20 read(fd, block2);
30 read(fd, block1);

|31 read(fd, block2); P
:vcag 40 fd = open(“file A”); ,‘;j
N | 50 write(fd, block1); ey
| |60 read(fd, block1); "
- |70 close(fd); a.

80 read(fd, block1);
81 read(fd, block2);
90 close(fd);

100 | fd = open(“fileA”);
110 |read(fd, blockl);
120 | close(fd);

When will server be contacted for NFS? For AFS?

What data will be sent? What will each client see?

NES PROTOCOL

Time | Client A Client B Server Action?
0 |fd=open(“fileA”); —] Moakingnl)
10 read(fd, blockl); —=—a ~ ool
20 read(fd, block2); —oZCT el
(30 |[read(fd, block1); e\ cagu’, W erpiredt o0 oot ot
31 [read(fd, block2); oM et kypicedd use local I
{40 fd = open(“file A”); ——F= ‘oo \ep ;u
50 write(fd, block1); Y% o e
60 | read(fd, blockl); &Y & {9 e e atir O
70 close(fd); wrile B o derger. wiile Av Aok
80 |read(fd, block1); Y\ EEGEED £(LE - pideont reah N
81 read(fd, block2); wt iw caddh > vead (e (N
90 close(fd);
100 | fd = open(“fileA”); lopkup—
110 | read(fd, block1); (N '™ FF e ot Gt
120 | close(fd); 2

AES PROTOCOL

Client A Client B | Server Action? |
fd = open(“file A"); %% Fhup callbetieniy
read(fd, block1); | hle A
read(fd, block2);
read(fd, block1);
read(fd, block2);

fd = open(“file A”);, —————b sehvp c el b4
write(fd, block1); “ wewd |all b A

read(fd, block1);

close(fd); ————u WL nlmﬁﬁ_
read(fd, blockl); Jlocal- reak &l Yoec ok

read(fd, block2); _Lpca®
close(fd); "oy chrerge Al T

fd = open(“fileA”); M SR d Ml \ o
read(fd, block1); Al

close(fd); A o

MAP-REDUCE
MOTIVATION

MAP-REDUCE
FRAMEWORK

yublished details 1n 2004

MAP-REDUCE STRATEGY

MAPREDUCE OVERVIEW

EXAMPLE:

REVENUE PER STATE

CA
9331
TX |9 [ssi0 |

mapper 1 reducer 1

M mappers R reducers

Compute sum of sales for each state

REVENUE PER STATE

SQL EQUIVALENTS

HOW TO CHANGE
REDUCER?

mapper 1 reducer 1

]

M mappers R reducers

Compute max of sales for each state

MAPPER OUTPUT

Sometimes mappers simply classify records
(e.g., state revenue)

Sometimes mappers produce multiple intermediate
records per input
(e.g., friend counts)

EXAMPLE: COUNTING
FRIENDS

155

What is input to each mapper?

mapper 1

133 |99 |

What does each mapper produce?

mapper 1

155 |133

oo s |
15 oo |

99 300,155 |

300

What is input to each reducer? Each reducer responsible for some friend ids
(e.g.,R1<- 21,99, 133; R2 <- 155, 300)

What does each reducer do? Each reducer sums counts for each friend id
(e.g.,21: 1,99: 3, 133: 3)

Can perform part of reduction on each mapper

L
Any optimizations?: T b ol 1l 0 1L 3T)

MANY OTHER BIG-DATA
WORKLOADS

Distributed grep (overtext files)

URL access frequency (over web request logs)

Distributed sort (over strings)

PageRank (over all web pages)

MAP/REDUCE FUNCTION
PRES

map(’<i,vi) = list(’<2,v2)
reduce(,list()) — list(,

HADOOP API

map(,) — list(,)

reduce(,list()) — list(,

WHAT DOES THIS DO?

MAPREDUCE OVERVIEW

(1) fork - : .
i 'm_ (1) fork £1) fork

@,

@) assign
assign reduce. |
map

&
output

split 1 worker file 0

(5) remote read

split 0

(6) write

split 2 (4) local write

worker
. output
split 3 filg 1
split4

Map Intermediate files Output
phase (on local disks) files

1. Splitinput filesinto M pieces of 16 MB-64 MB.
Start up many copies of program on cluster of machines

(1) fork .~

(1) fok £1) fork

G,

) assign
assign reduce . |
map

output

worker
(5) remote read file 0
(4) local write

worker @ output
file 1
COR|

Map Intermediate files
phase (on local disks)

(6) write

2. Master picks idle workers and assigns each
map task or a reduce task (portion of key space)

(1) fork - : .
i 'm_ (1) fork £1) fork

@,

@) assign
assign reduce. |
map

&
output

split 1 worker file 0

(5) remote read

split 0

(6) write

split 2 (4) local write

worker
. output
split 3 filg 1
split4

Map Intermediate files Output
phase (on local disks) files

3. Mapper reads() contents of correspondinginput split.
Parses key/value pairs and passes each pair to Map() function.
Intermediate key/value pairs buffered in memory.

(1) fork .~

(1) fok £1) fork

G,

) assign
assign reduce . |
map

output

worker
(5) remote read file 0
(4) local write

worker @ output
file 1
COR|

Map Intermediate files
phase (on local disks)

(6) write

4. Periodically, buffered pairs written to local disk, partitioned
into R regions. Locations are passed to master, who forwards
these locations to reducers.

(1) fork - : .
i 'm_ (1) fork £1) fork

@,

@) assign
assign reduce. |
map

&
output

split 1 worker file 0

(5) remote read

split 0

(6) write

split 2 (4) local write

worker
. output
split 3 filg 1
split4

Map Intermediate files Output
phase (on local disks) files

5. Shuffle: After reducer is notified of locations, uses RPC to
read data from workers’ disks. When reducer has all
intermediate data, sorts data so same keys are adjacent.

(1) fork .~

(1) fok £1) fork

G,

) assign
assign reduce . |
map

output

worker
(5) remote read file 0
(4) local write

worker @ output
file 1
COR|

Map Intermediate files
phase (on local disks)

(6) write

6. Reducers iterate over sorted intermediate data; pass each
unique key and valuesto Reduce function. Output is appended

to final output file for this reduce partition.

MAPREDUCE OVER GFES

GFS nd¥ M | intermediate =1 R =Al| GFS
files P8 mappers (21 localfiles E38 reducers [files

MAPREDUCE OVER GES

GFS £x 0| M o | intermediate {0 R AL GFS
files BI8 mappers 24 local files 3" reducers |4 files

EXPOSING LOCATION

MAPREDUCE POLICY

NUMBER OF MAPPERS
AND REDUCERS
&

(6) write

(5) remote read

(4) local write

1l

Intermediate files
(on local disks)

NUMBER OF MAPPERS
AND REDUCERS

1l

(6) write

worker
(5) remote

(4) local write

1l

Intermediate files
(on local disks)

FAILED TASKS
<)

@
| .assign
map

|

(5) remote

(6) write

worker

(4) local write

Map Intermediate files
phase (on local disks)

SLOW TASKS

@

| .assign
map

S|

(5) remote read
(4) local write

worker

Map Intermediate files
phase (on local disks)

(6) write

MAP-REDUCE
PERFORMANCE

Shuffle (MB/s)

Output (MB/s)

/\J\M
Seconds

(2) Normal execution (b) No backup tasks (¢) 200 tasks killed

MAPREDUCE SUMMARY

