
12/8/15

1

Announcements
P5: File Systems - Only xv6;

• Test scripts available

• Due Monday, 12/14 at 9:00 pm

• Fill out form if would like a new project partner

Exam 4: In-class Tuesday 12/15
• Not cumulative!

• Only covers Advanced Topics starting today

• Worth ½ of other midterms

• No final exam in final exam period (none on 12/23)

Advanced Topics:
• Distributed Systems, Dist File Systems (NFS, AFS, MapReduce, GFS)

Course Feedback – Today and Tomorrow ONLY

Read as we go along: Technical Paper on MapReduce

Advanced Topics:
Map-Reduce

Questions answered in this lecture:

Review: When and how do NFS and AFS clients contact server?
Why is map-reduce model useful?
What types of application can be expressed with map-reduce?

What does a mapper do? What does a reducer do?
How does the system and GFS support map-reduce?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

12/8/15

2

NFS: STATELESS Server
with cached STATs

Upon open of file A:
Contact server to get file handle for future interactions

Upon close, client flush individual blocks of file to server
(Individual blocks may be flushed before this point)

Write():
Keep data local (as long as sufficient space)

Read():
Is this block locally cached on this client?
No – Fetch block from server; record time block was fetched
Yes – Have the attributes for this file expired? (every 3 secs)

No – Use locally cached copy of this block
Yes – Send STAT (or getattr) to server

Has the file been modified on server since client’s copy?
Yes – Refetch that block from server
No – Use locally cached copy of this block

AFS: Callbacks and
Whole-File Caching

Upon open of file A:
If file A is cached locally and callback to server still exists, use cached copy
Else, fetch whole file from server (storing in local memory or disk)

Upon close, client flushes file to server (if file was written)

Convenient and intuitive semantics:

- AFS needs to do work only for open/close
• Only check callback on open, not every read

- reads/writes are local

Use same version of file entire time between open and close

12/8/15

3

AFS vs nfs Protocols

When will server be contacted for NFS? For AFS?
What data will be sent? What will each client see?

Nfs Protocol

12/8/15

4

AFS Protocol

Map-Reduce
Motivation

Datasets are too large to process with single thread

Good concurrent programmers are rare

Want concurrent programming framework that is:
• easy to use (no locks or CVs)

• general (works for many problems)

12/8/15

5

Map-Reduce
Framework

Google published details in 2004
Open source implementation: Hadoop
Co-designed with Google File System (next lecture)

Input: set of key/value pairs

Output: set of key/value pairs

Strategy:
Group data into logical buckets and then compute over each
bucket

Map-Reduce Strategy

First set of processes groups and transforms data into logical buckets
• Mappers

Each bucket has a single process that computes over it
• Reducers

Claim:
If no bucket has too much data, no single process has to do too
much work.

12/8/15

6

MapReduce Overview

Motivation

MapReduce Programming

Implementation

Example:
Revenue per State

State Sale ClientID

WI 100 9292

CA 10 9523

WI 15 9331

CA 45 9523

TX 9 8810

WI 20 9292

How to quickly sum sales in every
state without any one machine
iterating over all results?

Pretend this table is huge…

12/8/15

7

State Sale

WI 100

CA 10

WI 15

CA 45

TX 9

WI 20

mapper 1

WI 100

CA 10

WI 15

mapper 2

CA 45

TX 9

WI 20

WI 100,15

CA 10

CA 45

TX 9

WI 20

reducer 1

reducer 2

Reduce WI

Reduce CA

Reduce TX

WI 135

CA 55

TX 9

M mappers R reducers

shuffle

Output

Compute sum of sales for each state

Revenue per State

State Sale ClientID

WI 100 9292

CA 10 9523

WI 15 9331

CA 45 9523

TX 9 8810

WI 20 9292

Mappers could have grouped by any
field desired (e.g., by ClientID)

12/8/15

8

SQL Equivalents

SELECT sum(sale)

FROM tbl_sales

GROUP BY state;

SELECT sum(sale)

FROM tbl_sales

GROUP BY clientID;

SELECT max(sale)

FROM tbl_sales

GROUP BY clientID;

reduce

map

How to change
Reducer?

12/8/15

9

State Sale

WI 100

CA 10

WI 15

CA 45

TX 9

WI 20

mapper 1

WI 100

CA 10

WI 15

mapper 2

CA 45

TX 9

WI 20

WI 100,15

CA 10

CA 45

TX 9

WI 20

reducer 1

reducer 2

Reduce WI

Reduce CA

Reduce TX

WI 100

CA 45

TX 9

M mappers R reducers

shuffle

Compute max of sales for each state

Mapper Output

Sometimes mappers simply classify records
(e.g., state revenue)

Sometimes mappers produce multiple intermediate
records per input
(e.g., friend counts)

12/8/15

10

Example: Counting
Friends

friend1 friend2

133 155

133 99

133 300

300 99

300 21

99 155

133

155

99300

21

What is input to each mapper?

friend1 friend2

133 155

133 99

133 300

300 99

300 21

99 155

mapper 1

133 155

133 99

133 300

mapper 2

300 99

300 21

99 155

133

155

99300

21

What does each mapper produce?

12/8/15

11

friend1 friend2

133 155

133 99

133 300

300 99

300 21

99 155

mapper 1

133 155

133 99

133 300

mapper 2

300 99

300 21

99 155

133 155,99,300

155 133

99 133

300 133

300 99,21

99 300,155

21 300

155 99

What is input to each reducer?

What does each reducer do?

Any optimizations??

Each reducer responsible for some friend ids
(e.g., R1<- 21, 99, 133; R2 <- 155, 300)

Each reducer sums counts for each friend id
(e.g., 21: 1, 99: 3, 133: 3)

Can perform part of reduction on each mapper
(e.g., 133: 3, 155: 1, 99: 1, 300: 1)

Many Other big-data
Workloads

Distributed grep (over text files)

URL access frequency (over web request logs)

Distributed sort (over strings)

PageRank (over all web pages)

…

12/8/15

12

Map/Reduce Function
Types

map(k1,v1) —> list(k2,v2)

reduce(k2,list(v2)) —> list(k3,v3)

Hadoop API

public void map(LongWritable key, Text value) {

// WRITE CODE HERE

}

public void reduce(Text key, Iterator<IntWritable>
values) {

// WRITE CODE HERE

}

map(k1,v1) —> list(k2,v2)

reduce(k2,list(v2)) —> list(k3,v3)

12/8/15

13

What does this do?

public void map(LongWritable key, Text value) {
String line = value.toString();
StringToke st = new StringToke(line);
while (st.hasMoreTokens())

output.collect(st.nextToken(), 1);

}

public void reduce(Text key,
Iterator<IntWritable> values) {

int sum = 0;
while (values.hasNext())

sum += values.next().get();
output.collect(key, sum);

}

map(k1,v1) —> list(k2,v2)

reduce(k2,list(v2)) —> list(k3,v3)

MapReduce Overview

Motivation

MapReduce Programming

Implementation

12/8/15

14

1. Split input files into M pieces of 16 MB-64 MB.
Start up many copies of program on cluster of machines

2. Master picks idle workers and assigns each
map task or a reduce task (portion of key space)

12/8/15

15

3. Mapper reads() contents of corresponding input split.
Parses key/value pairs and passes each pair to Map() function.

Intermediate key/value pairs buffered in memory.

4. Periodically, buffered pairs written to local disk, partitioned
into R regions. Locations are passed to master, who forwards

these locations to reducers.

12/8/15

16

5. Shuffle: After reducer is notified of locations, uses RPC to
read data from workers’ disks. When reducer has all

intermediate data, sorts data so same keys are adjacent.

6. Reducers iterate over sorted intermediate data; pass each
unique key and values to Reduce function. Output is appended

to final output file for this reduce partition.

12/8/15

17

MapReduce over GFS

MapReduce writes/reads data to/from GFS(next lecture)
GFS makes 3 replicas of each file

MapReduce workers run on same machines as GFS workers

GFS
files

M
mappers

intermediate
local files

R
reducers

GFS
files

Why not store intermediate files in GFS?

1 2 3 4

Don’t need to access outside map-reduce job
Don’t need replication for long-term life-time

What if machine holding local files dies?
Re-run mapper to generate output again

MapReduce over GFS

MapReduce writes/reads data to/from GFS(next lecture)
GFS makes 3 replicas of each file

MapReduce workers run on same machines as GFS workers

GFS
files

M
mappers

intermediate
local files

R
reducers

GFS
files

Which edges involve network I/O?

1 2 3 4

Edges 3+4. Maybe1.

How to avoid I/O for 1?
Place mapper on same machine

as one of the GFS replicas

12/8/15

18

Exposing Location

GFS exposes which servers store which files
(not transparent, but very useful!)

Hadoop example:

BlockLocation[]

getFileBlockLocations(Path p, long start, long len);

Spec: return an array containing hostnames,
offset and size of portions of the given file.

MapReduce Policy

MapReduce needs to decide which machines to use for
map and reduce tasks

Potential factors?

- try to put mappers near one of the three replicas

- for reducers, store one output replica locally

- try to use underloaded machines

- consider network topology

12/8/15

19

Number of Mappers
and reducers

What does the value of M (number of mappers) influence?

What if M is too big?

What if M is too small?

Choose M to control size of input data

Communication to input file, some disk IO, M to R communication

data is really small; too much overhead per data piece

less parallelism; affect load balancing. E.g. 5 nodes, 5 map task

Number of Mappers
and reducers

What if R is too big?

What if R is too small?

Goal:
M and R much larger than number of worker machines
• Each worker performing many different tasks improves dynamic load balancing
• Speeds up recovery if worker fails: its many completed map tasks can allocated across

many other machines

- Large number of output files

- Not enough parallelism

12/8/15

20

Failed Tasks

MapReduce master tracks status of all map and reduce tasks

If any tasks don’t respond to pings, what should master do?
Restart mapper or reducer tasks on new machines;

Possible because tasks are deterministic and idempotent
System still has all inputs

Slow Tasks

Sometimes machine is overloaded or network link is slow
• With 1000’s of tasks, this will always happen

What can master do?
Spawning duplicate tasks when there are only a few

stragglers left reduces some job times by 30%

12/8/15

21

Map-Reduce
Performance

MapReduce Summary

MapReduce makes concurrency easy!

Limited programming environment, but works for a
fairly wide variety of applications

Machine failures are easily handled

