UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS537
Introduction to Operating Systems Remz

CPU V IRTUALIZATION‘:]
SCHEDULING

What are different scheduling policies, such as:
FCFS, SJF, STCF, RR and MLFQ?

What type of workload performs well with each scheduler?

CPU VIRTUALIZATION:
TWO COMPONENTS

ANNOUNCEMENTS

REVIEW:
STATE TRANSITIONS

Descheduled
A B ——
Running Ready
Puita . AR TR
Scheduled

1/0: mﬁ% A: done

Blocked

How to transition? (“mechanism’)
When to transition? (“policy”)

VOCABULARY

WORKLOAD
ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. Alljobs only use the CPU (no 1/0)

4, Run-time of each job is known

SCHEDULING
PERFORMANCE METRICS

SCHEDULING BASICS

EXAMPLE: WORKLOAD,
SCHEDULER, METRIC

JOB arrival_time (5 run_time (s)
AT 10
Bioo =0 10
(@ =) 10

FIFO (IDENTICAL JOBS)

JOB arrival_time (5) run_time (s) A B C
10
10
10

Gantt chart:
Illustrateshow jobs are scheduled over time on a CPU

FIFO: EVENT TRACE

JOB arrival_time (5) run_time (s)
10
10
10

FIFO (IDENTICAL JOBS)

[A,B,C arrive]

lasc

What is the average turnaround time?
Def: turnaround_time= completion_time- arrival_time

FIFO (IDENTICAL JOBS)

A: 10s -
B:20s +——

C:30s ———

0 20 40 60 80

What is the average turnaround time?
Def: turmaround_time = completion_time - arrival_time

WORKLOAD
ASSUMPTIONS
Each iok o] o
2. Alljobs arrive at the same time
3. All jobs only use the CPU (no 1/0)

4. The run-time of each job is known

SCHEDULING BASICS

ANY PROBLEMATIC
WORKLOADS FOR FIFO?

EXAMPLE: BIG FIRST JOB

JOB arrival_time (5) run_time (s)
60
10
10

What is the average tumaround time?

CONVOY EFFECT

S %
"R
}#{-

EXAMPLE: BIG FIRST JOB

JOB arrival_time (5) run_time (s)
60
10
10

A: 60s
B: 70s
C: 80s

Average turaround time:

PASSING THE TRACTOR

Denhlom writh Drowd < (g g o]
Problem with Previous Scheduler:

SHORTEST JOB FIRST SJFE TURNAROUND TIME

A: 80s
B:10s <«—
C:208 +—

JOB arrival_time (5) run_time (s)
A ~0 60
Bl 10
(@) 10 B | C A

: b (R L R
Whatis the average tumaround time with SJE? What is the average tumaround time with SJF?

80+ 10+20)/3 =

WORKLOAD
ASSUMPTIONS
| Each ik or.d "
> Allick ¢ : .
3. Alljobs only use the CPU (no I/0)

SCHEDULING BASICS

4. The run-time of each job is known

SHORTEST JOB FIRST STUCK BEHIND A
(ARRIVAL TIME) TRACTOR AGAIN

JOB arrival_time (5) run_time (s)
A ~0 60
B ~10 10
C ~10 10

JOB arrival_time (§) run_time (s)
AN 60
B ~10 10

C ~10 10
B C

| R, T AT S R, W L

What is the average tumaround time with SJF? Ui e s)

What is the average tumaround time?

PREEMPTIVE SCHEDULING NON-PREEMPTIVE: SJF

JOB arrival_time (5) run_time (s)

A ~0 60

B ~10 10 [B,C arrive]
C ~10 10 l

A

0 20 40 60 80

Average turmaround time:

PREEMPTIVE: STCFE

JOB arrival_time (5) run_time (s)
A ~0 60 [B,C arrive]

B ~10 10 A: 80s
C ~10 10 B: 10s
C: 20s
A BN C A
0 20 40 60 80

Average tumaround time with STCF?

Average turnaround time with SJF:

RESPONSE TIME

Sometimes care about when job starts instead of when it
finishes

New metric:

response_time= first_run_time - arvival_time

SCHEDULING BASICS

RESPONSE VS.
TURNAROUND

B’s turnaround: 20s «——
B’s response: 105 «—

A B

0 20

ROUND-ROBIN
SCHEDULER

SCHEDULING BASICS

FIFO VS RR

T T e T R A T T [= |
0 5 O A S A 3 H(UFeals) Sy,

Avg Response Time? Avg Response Time?
(0+5+10)/3 = 0+1+2)/3=

In what way is RR worse?
Ave. turn-around time with equal job lengths ishorrible

Other reasons why RR could be better?
If don’t know run-time of each job, gives short jobsa chance

torun and finish fast

WORKLOAD
ASSUMPTIONS

4. The run-time of each job is known

NOT /O AWARE

40 60 80

Don’tlet Job A hold on to CPU while blocked waiting for disk

WORKLOAD
ASSUMPTIONS

/O AWARE (OVERLAP)

CPEN A1 BV A2 (B A3 B

Disk: A A

0 20 40 60 80

Treat Job A as 3 separate CPU bursts
When Job A completes I/0, another Job A is ready

Each CPU burst isshorter than Job B, so with SCTF,
Job A preempts Job B

MLEFQ
(MULTI-LEVEL FEEDBACK QUEUE)

Goal: general-purpose scheduling

Must support two job types with distinct goals
- “7 0 programs careabout
- “02000” programs care about (1

13

Approach: multiple levels of round-robin;
each levelhas higher priority than lower levels and
preempts them

PRIORITIES

Rule 1: If priority(A) > Priority(B), A runs
Rule 2: If priority(A) == Priority(B), A & B run in RR

Q3— a “Multi-level”
Q22— 8 How to know how to set priority?

Ql ,
Approach 1:nice
Q00— c — b Approach 2: history “feedback”

MORE MLFQ RULES

Rule 1: If priority(A) > Priority(B), A runs
Rule 2: If priority(A) == Priority(B), A & B run in RR

More rules:

HISTORY

» Use past behavior of process to predict future behavior
- Common technique in systems

+ Processes alternate between '~ and '~ = work

* Guess how CPU burst (job) will behave based on past CPU
bursts (jobs) of this process

ONE LONG JOB
(EXAMPLE)

AN INTERACTIVE
PROCESS JOINS

PROBLEMS WITH MLFQ?

Q3
o))
Q1

Qo0
120 140 160 180 200

Q3
Q2
Q1

Qo0
120 140 160 180 200

Problems
Interactive process never uses entire time slice, so never demoted -unforgiving + starvation
- gaming the system

PREVENT STARVATION PREVENT GAMING

(OX) Q3
Q2 Q2
Ql Q1
QO Qo
120 140 160 180 200 120 140 160 180 200

Problem: Low priority job may never get scheduled

Fix: Account for job’s total run time at prioritylevel
(instead of just this time slice);
downgrade when exceed threshold

Periodically boost priority of all jobs (or all jobs that
haven’t been scheduled)

LOTTERY SCHEDULING

Goal: proportional (fair) share

Approach:
- give processes lottery tickets
- whoever wins runs
- higher priority => more tickets

Amazingly simple to implement

LOTTERY EXAMPLE

int counter = 0;

int e = getrandom(0, totaltickets);

node_t *current = head,

while(current) { :
counter += current->tickets; Who runsif
if (counter >)break; 50
current = current->next; 350

} 0

// current gets to run

LOTTERY CODE

int counter = 0;
int 7o = getrandom(0, totaltickets);
node_t *current = head;
while (current) {
counter += current->tickets;
if (counter > 7127) break;
current = current->next;

}

// current isthe winner

OTHER LOTTERY IDEAS

Ticket Transfers
Ticket Currencies
Ticket Inflation

(read more in OSTEP)

SUMMARY

Understand goals (metrics) and workload, then design
scheduler around that

General purpose schedulers need to support processes
with different goals

Past behavior is good predictor of future behavior

Random algorithms (lottery scheduling) can be simple
to implement, and avoid corner cases.

