
9/25/15

1

Virtualizing Memory:
Faster with TLBS

Questions answered in this lecture:

Review paging...
How can page translations be made faster?
What is the basic idea of a TLB (Translation LookasideBuffer)?

What types of workloads perform well with TLBs?
How do TLBs interact with context-switches?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Announcements
• P1: Due last Saturday : Graded soon

• Late handin directory for unusual circumstances

• Project 2: Available now
• Due two weeks from yesterday: Monday, Oct 5
• Can work with project partner in your discussion section (unofficial)
• Two parts:

• Linux: Shell -- fork() and exec(), file redirection, history
• Xv6: Scheduler – simplistic MLFQ
• Two discussion videos again; watch early and often!

• Fill out form on course web page if you would like project partner assigned (5:35 Wed)
• Communicate with your project partner!

• Exam 1: Two weeks, Thu 10/1 7:15 – 9:15 in Humanities Bldg, Room 3650
• Class time that day for review
• Look at homeworks / simulations for sample questions
• Fill out form on course web if you have academic conflict and must take alternate exam :

DEADLINE THURSDAY; Notify Friday

• Reading for today: Chapter 19

9/25/15

2

P1

P2

P2

P1

PT

P1

0x4000

0x5000

0x6000

0x2000

0x3000

0x1000

0x0000

PT

P1 pagetable1 5 4 …

P2 pagetable6 2 3 …

P2
0x7000

Virtual Physical

Review: PaginG

0x0800

load 0x0000 load 0x0800

load 0x6000

load 0x1444 load 0x0808

load 0x2444

load 0x1444 load 0x0008

load 0x5444

Assume 4 KB pages

What do we need to know?
Location of page table in memory (ptbr)

ptbr

Size of each page table entry (assume 8 bytes)

Review:
Paging PROS and CONS

Advantages
• No external fragmentation

• don’t need to find contiguous RAM
• All free pages are equivalent

• Easy to manage, allocate, and free pages

Disadvantages
• Page tables are too big

• Must have one entry for every page of address space
• Accessing page tables is too slow [today’s focus]

• Doubles number of memory references per instruction

9/25/15

3

Translation Steps

H/W: for each mem reference:

1. extract VPN (virt page num) from VA (virt addr)
2. calculate addr of PTE (page table entry)
3. read PTE from memory
4. extract PFN (page frame num)
5. build PA (phys addr)
6. read contents of PA from memory into register

(cheap)

(cheap)

(cheap)

(cheap)

(expensive)

(expensive)

Which expensive step will we avoid in today’s lecture?

Which steps are expensive?

3) Don’t always have to read PTE from memory!

Example:
Array Iterator

int sum = 0;

for (i=0; i<N; i++){
sum += a[i];

}

Assume ‘a’ starts at 0x3000

Ignore instruction fetches

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

What virtual addresses?

load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C

What physical addresses?

Observation:
Repeatedly access same PTE because program repeatedly
accesses same virtual page

Aside: What can you infer?
• ptbr: 0x1000; PTE 4 bytes each
• VPN 3 -> PPN 7

9/25/15

4

Strategy: Cache
Page Translations

TLB: Translation Lookaside Buffer

(yes, a poor name!)

CPU RAM

memory interconnect

PT

Translation
Cache Some popular entries

TLB Organization

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

A
0
1
2
3
4
5
6
7

A B
0
1
2
3

A B C D

A B C D E L M N O P

Direct mapped

Fully associative

Two-way set associative

Four-way set associative

Tag (virtual page number) Physical page number (page table entry)
TLB Entry

Various ways to organize a 16-entry TLB (artificially small)

Lookup
• Calculate set (tag % num_sets)
• Search for tag within resulting set

Set

In
de
x

9/25/15

5

TLB Associativity
Trade-offs

Higher associativity
+ Better utilization, fewer collisions
– Slower

– More hardware

Lower associativity
+ Fast

+ Simple, less hardware
– Greater chance of collisions

TLBs usually fully associative

Array Iterator
(w/ TLB)

int sum = 0;

for (i = 0; i < 2048; i++){
sum += a[i];

}

Assume following virtual address stream:
load 0x1000

load 0x1004

load 0x1008

load 0x100C
…

What will TLB behavior look like?

9/25/15

6

Virt Phys

P1

P2

P2

P1

PT

P1

16 KB

20 KB

24 KB

8 KB

12 KB

4 KB

0 KB

PT

P1 pagetable

1 5 4 …

P2
28 KB

TLB Accesses:
SEQUENTIAL Example

load 0x1000

load 0x1004

load 0x1008

load 0x100c

…

load 0x2000

load 0x2004

load 0x0004
load 0x5000
(TLB hit)
load 0x5004
(TLB hit)
load 0x5008
(TLB hit)
load 0x500C
…
load 0x0008
load 0x4000
(TLB hit)
load 0x4004

0 1 2 3

CPU’s TLB

PTBR

Valid VPN PPN

1
1

1
2

5

4

PERFORMANCe OF TLB?

int sum = 0;
for (i=0; i<2048; i++) {

sum += a[i];
}

Calculate miss rate of TLB for data:
TLB misses / # TLB lookups

TLB lookups?
= number of accesses to a = 2048

TLB misses?
= number of unique pages accessed
= 2048 / (elements of ‘a’ per 4K page)
= 2K / (4K / sizeof(int)) = 2K / 1K
= 2

Miss rate?
2/2048 = 0.1%

Hit rate? (1 – miss rate)
99.9%

Would hit rate get better or worse with smaller pages?
Worse

9/25/15

7

TLB PERFORMANCE

How can system improve TLB performance (hit rate) given fixed
number of TLB entries?

Increase page size
Fewer unique page translations needed to access same amount of

memory

TLB Reach:
Number of TLB entries * Page Size

TLB PERFORMANCE
with Workloads

Sequential array accesses almost always hit in TLB
• Very fast!

What access pattern will be slow?
• Highly random, with no repeat accesses

9/25/15

8

Workload
acCESS PATTERNS

int sum = 0;

for (i=0; i<2048; i++) {
sum += a[i];

}

int sum = 0;
srand(1234);
for (i=0; i<1000; i++) {

sum += a[rand() % N];
}
srand(1234);
for (i=0; i<1000; i++) {

sum += a[rand() % N];
}

Workload A Workload B

time

Sequential Accesses

time

Repeated Random Accesses

… …

Workload
ACCESS PATTERNS

Spatial Locality Temporal Locality

9/25/15

9

Workload Locality

Spatial Locality: future access will be to nearby addresses

Temporal Locality: future access will be repeats to the same data

What TLB characteristics are best for each type?

Spatial:

• Access same page repeatedly; need same vpn->ppn translation

• Same TLB entry re-used

Temporal:
• Access same address near in future

• Same TLB entry re-used in near future

• How near in future? How many TLB entries are there?

TLB
Replacement policies

LRU: evict Least-Recently Used TLB slot when needed
(More on LRU later in policies next week)

Random: Evict randomly choosen entry

Which is better?

A B C D E L M N O P

9/25/15

10

LRU Troubles

Valid Virt Phys

0 ? ?

0 ? ?

0 ? ?

0 ? ?

virtual addresses:

0 1 2 3 4

Workload repeatedly accesses same offset across 5 pages (strided access),
but only 4 TLB entries

What will TLB contents be over time?
How will TLB perform?

TLB Replacement
policies

LRU: evict Least-Recently Used TLB slot when needed
(More on LRU later in policies next week)

Random: Evict randomly choosen entry

Sometimes random is better than a “smart” policy!

9/25/15

11

TLB PERFORMANCE

How can system improve TLB performance (hit rate) given fixed
number of TLB entries?

Increase page size
Fewer unique translations needed to access same amount of memory)

Context Switches

What happens if a process uses cached TLB entries from
another process?

Solutions?

1. Flush TLB on each switch
• Costly; lose all recently cached translations

2. Track which entries are for which process
• Address Space Identifier
• Tag each TLB entry with an 8-bit ASID

- how many ASIDs do we get?
- why not use PIDs?

9/25/15

12

P1

P2

P2

P1

PT

P1

16 KB

20 KB

24 KB

8 KB

12 KB

4 KB

0 KB

Virtual Physical

PT

P2
28 KB

PTBR

load 0x1444 load 0x2444

load 0x1444 load 0x5444

P1 pagetable (ASID 11)1 5 4 …

P2 pagetable (ASID 12)6 2 3 …

Valid Virt Phys ASID

0 1 9 11

1 1 5 11

1 1 2 12

1 0 1 11

TLB:

TLB Example with ASID

ASID: 12

ASID: 11

TLB Performance

Context switches are expensive

Even with ASID, other processes “pollute” TLB
• Discard process A’s TLB entries for process B’s

entries

Architectures can have multiple TLBs
• 1 TLB for data, 1 TLB for instructions

• 1 TLB for regular pages, 1 TLB for “super pages”

9/25/15

13

HW and OS Roles

Who Handles TLB MISS? H/W or OS?

H/W: CPU must know where pagetables are
• CR3 register on x86

• Pagetable structure fixed and agreed upon between HW and OS

• HW “walks” the pagetable and fills TLB

OS: CPU traps into OS upon TLB miss
• “Software-managed TLB”

• OS interprets pagetables as it chooses

• Modifying TLB entries is privileged
- otherwise what could process do?

Need same protection bits in TLB as pagetable
- rwx

Summary

• Pages are great, but accessing page tables for every memory
access is slow

• Cache recent page translations à TLB
• Hardware performs TLB lookup on every memory access

• TLB performance depends strongly on workload
• Sequential workloads perform well
• Workloads with temporal locality can perform well
• Increase TLB reach by increasing page size

• In different systems, hardware or OS handles TLB misses

• TLBs increase cost of context switches
• Flush TLB on every context switch
• Add ASID to every TLB entry

9/25/15

14

Announcements
• P1: Due last Saturday : Graded soon

• Late handin directory for unusual circumstances

• Project 2: Available now
• Due two weeks from yesterday: Monday, Oct 5
• Can work with project partner in your discussion section (unofficial)
• Two parts:

• Linux: Shell -- fork() and exec(), file redirection, history
• Xv6: Scheduler – simplistic MLFQ
• Two discussion videos again; watch early and often!

• Fill out form on course web page if you would like project partner assigned (5:35 Wed)
• Communicate with your project partner!

• Exam 1: Two weeks, Thu 10/1 7:15 – 9:15 in Humanities Bldg, Room 3650
• Class time that day for review
• Look at homeworks / simulations for sample questions
• Fill out form on course web if you have academic conflict and must take alternate exam :

DEADLINE THURSDAY; Notify Friday

• Reading for today: Chapter 19

