
9/25/15

1

Virtualizing Memory:
Smaller Page TAbles

Questions answered in this lecture:

Review: What are problems with paging?
Review: How large can page tables be?
How can large page tables be avoided with different techniques?

Inverted page tables, segmentation + paging, multilevel page tables

What happens on a TLB miss?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Announcements

• P1: Will be graded by weekend (should be no surprises)

• Project 2: Available now
• Due Monday, Oct 5
• Shell:

• What should go in history? (Yes: cmds with errors; No: shell-level errors)

• Understand child process address space…

• Exam 1: Next week: Thu 10/1 7:15 – 9:15 in Humanities 3650
• Class time that day for review

• Look at homeworks / simulations for sample questions
• Alternate exam: notify you tomorrow about time

• Reading for today: Chapter 20

9/25/15

2

Disadvantages of
Paging

1. Additional memory reference to look up in page table
• Very inefficient
• Page table must be stored in memory

• MMU stores only base address of page table
• Avoid extra memory reference for lookup with TLBs (previous lecture)

2. Storage for page tables may be substantial
• Simple page table: Requires PTE for all pages in address space

• Entry needed even if page not allocated

• Problematic with dynamic stack and heap within address space (today)

QUIZ: How big are
page Tables?

1. PTE’s are 2 bytes, and 32 possible virtual page numbers

2. PTE’s are 2 bytes, virtual addrs are 24 bits, pages are 16 bytes

3. PTE’s are 4 bytes, virtual addrs are 32 bits, and pages are 4 KB

4. PTE’s are 4 bytes, virtual addrs are 64 bits, and pages are 4 KB

How big is each page table?

32 * 2 bytes = 64 bytes

2 bytes * 2^(24 – lg 16) = 2^21 bytes (2 MB)

4 bytes * 2^(32 – lg 4K) = 2^22 bytes (2 MB)

4 bytes * 2^(64 – lg 4K) = 2^54 bytes

9/25/15

3

code
heap

stack

Virt Mem Phys Mem

Waste!

Why ARE Page Tables
so Large?

Many invalid PT entries

PFN valid prot
10 1 r-x
- 0 -
23 1 rw-
- 0 -
- 0 -
- 0 -
- 0 -

- 0 -
- 0 -
- 0 -
- 0 -
28 1 rw-
4 1 rw-

…many more invalid…how to avoid
storing these?

Format of linear page tables:

9/25/15

4

Avoid
simple linear Page Table

Use more complex page tables, instead of just big array

Any data structure is possible with software-managed TLB
• Hardware looks for vpn in TLB on every memory access

• If TLB does not contain vpn, TLB miss
• Trap into OS and let OS find vpn->ppn translation

• OS notifies TLB of vpn->ppn for future accesses

Approach 1:
Inverted Page TAble

Inverted Page Tables
• Only need entries for virtual pages w/ valid physical mappings

Naïve approach:
Search through data structure <ppn, vpn+asid> to find match
• Too much time to search entire table

Better: Find possible matches entries by hashingvpn+asid
• Smaller number of entries to search for exact match

Managing inverted page table requires software-controlled TLB

For hardware-controlled TLB, need well-defined, simple
approach

9/25/15

5

Other Approaches

1. Inverted Pagetables

2. Segmented Pagetables

3. Multi-level Pagetables
• Page the page tables

• Page the pagetables of page tables…

valid Ptes are
Contiguous

PFN valid prot
10 1 r-x
- 0 -
23 1 rw-
- 0 -
- 0 -
- 0 -
- 0 -

- 0 -
- 0 -
- 0 -
- 0 -
28 1 rw-
4 1 rw-

…many more invalid…
how to avoid

storing these?

Note “hole” in addr space:
valids vs. invalids are clustered

How did OS avoid allocating holes in
phys memory?

Segmentation

9/25/15

6

Combine Paging and
Segmentation

Divide address space into segments (code, heap, stack)
• Segments can be variable length

Divide each segment into fixed-sized pages

Logical address divided into three portions

page offset (12 bits)page number (8 bits)
seg #

(4 bits)

Implementation
• Each segment has a page table
• Each segment track base (physical address) and bounds of page table

for that segment

Quiz: Paging and
Segmentation

seg base bounds R W

0 0x002000 0xff 1 0

1 0x000000 0x00 0 0

2 0x001000 0x0f 1 1

...

0x01f

0x011

0x003

0x02a

0x013

...

0x00c

0x007

0x004

0x00b

0x006

...

0x001000

0x002000

0x002070 read:

0x202016 read:

0x104c84 read:
0x010424 write:

0x210014 write:
0x203568 read:

page offset (12 bits)page number (8 bits)
seg #

(4 bits)

0x004070

0x003016

error

error

error

0x02a568

9/25/15

7

Advantages of Paging
and Segmentation

Advantages of Segments
• Supports sparse address spaces

• Decreases size of page tables
• If segment not used, not need for page table

Advantages of Pages
• No external fragmentation
• Segments can grow without any reshuffling

• Can run process when some pages are swapped to disk (next lecture)

Advantages of Both
• Increases flexibility of sharing

• Share either single page or entire segment
• How?

Disadvantages of Paging
and Segmentation

Potentially large page tables (for each segment)
• Must allocate each page table contiguously

• More problematic with more address bits

• Page table size?

• Assume 2 bits for segment, 18 bits for page number, 12 bits for offset

Each page table is:
= Number of entries * size of each entry
= Number of pages * 4 bytes
= 2^18 * 4 bytes = 2^20 bytes = 1 MB!!!

9/25/15

8

Other Approaches

1. Inverted Pagetables

2. Segmented Pagetables

3. Multi-level Pagetables
• Page the page tables

• Page the pages of page tables…

3) Multilevel
Page Tables

Goal: Allow each page tables to be allocated non-contiguously

Idea: Page the page tables
• Creates multiple levels of page tables; outer level “page directory”
• Only allocate page tables for pages in use
• Used in x86 architectures (hardware can walk known structure)

outer page
(8 bits)

inner page
(10 bits)

page offset (12 bits)

30-bit address:

base of page directory

9/25/15

9

Quiz: Multilevel
PPN

0x3
-
-
-
-
-
-
-
-
-
-
-
-
-

0x92

valid
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1

page directory
PPN
0x10
0x23

-
-

0x80
0x59

-
-
-
-
-
-
-
-
-

valid
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0

page of PT (@PPN:0x3)
PPN

-
-
-
-
-
-
-
-
-
-
-
-
-

0x55
0x45

valid
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

page of PT (@PPN:0x92)

translate 0x01ABC

outer page
(4 bits)

inner page
(4 bits)

page offset (12 bits)

20-bit address:

translate 0xFEED0

translate 0x00000

0x23ABC

0x10000

0x55ED0

QUIZ: Address format
for multilevel Paging

How should logical address be structured?
• How many bits for each paging level?

Goal?
• Each page table fits within a page
• PTE size * number PTE = page size

• Assume PTE size = 4 bytes
• Page size = 2^12 bytes = 4KB
• 2^2 bytes * number PTE = 2^12 bytes
• à number PTE = 2^10

• à # bits for selecting inner page = 10

Remaining bits for outer page:
• 30 – 10 – 12 = 8 bits

outer page inner page page offset (12 bits)

30-bit address:

9/25/15

10

Problem with 2 levels?

Problem: page directories (outer level) may not fit in a page

Solution:
• Split page directories into pieces
• Use another page dir to refer to the page dir pieces.

PT idx OFFSETPD idx 1

VPN

PD idx 0

How large is virtual address space with 4 KB pages, 4 byte PTEs,
each page table fits in page given 1, 2, 3 levels?

4KB / 4 bytes à 1K entries per level
1 level: 1K * 4K = 2^22 = 4 MB

2 levels: 1K * 1K * 4K = 2^32≈ 4 GB

3 levels: 1K * 1K * 1K * 4K = 2^42 ≈ 4 TB

outer page?
inner page
(10 bits)

page offset (12 bits)

64-bit address:

On TLB miss: lookups with more levels more expensive

How much does a miss cost?

Assume 3-level page table
Assume 256-byte pages
Assume 16-bit addresses
Assume ASID of current process is 211

How many physical accesses for each instruction? (Ignore previous ops changing TLB)

(a) 0xAA10: movl 0x1111, %edi

(b) 0xBB13: addl $0x3, %edi

(c) 0x0519: movl %edi, 0xFF10

ASID VPN PFN Valid

211 0xbb 0x91 1

211 0xff 0x23 1

122 0x05 0x91 1

211 0x05 0x12 0

QUIZ: FULL SYSTEM
WITH TLBS

0xaa: (TLB miss -> 3 for addr trans) + 1 instr fetch
0x11: (TLB miss -> 3 for addr trans) + 1 movl Total: 8

Total: 10xbb: (TLB hit -> 0 for addr trans) + 1 instr fetch from 0x9113

0x05: (TLB miss -> 3 for addr trans) + 1 instr fetch
0xff: (TLB hit -> 0 for addr trans) + 1 movl into 0x2310

Total: 5

9/25/15

11

Summary:
Better PAGE TABLES

Problem:
Simple linear page tables require too much contiguous memory

Many options for efficiently organizing page tables

If OS traps on TLB miss, OS can use any data structure
• Inverted page tables (hashing)

If Hardware handles TLB miss, page tables must follow specific format
• Multi-level page tables used in x86 architecture
• Each page table fits within a page

Next Topic:
What if desired address spaces do not fit in physical memory?

.

