
1

Virtual Memory
Questions answered in this lecture:

How to run process when not enough physical memory?

When should a page be moved from disk to memory?

What page in memory should be replaced?

How can the LRU page be approximated efficiently?

UNIVERSIT Y of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Announcements
P1 graded: Contact your TA if any problems

P2:
• Due date extended to Wednesday, Oct 7 at 9pm
• Watch xv6 scheduler video before discussion tomorrow
• Test scripts for shell very soon

1st Exam: Thursday 7:15 – 9:15 Humanities, Room 3650.
• Closed book, closed notes; multiple choice
• Old exams with solutions available (web page), but different…
• Covers Chapters 1 - 24 of the text book, excluding

Chapters 9 (Proportional Share), 10 (Multiprocessor Scheduling), 17
(Free-Space Management), and 23 (VAX/VMS Virtual Memory
System). Material from Project 1 and fork() and exec().

2

Motivation

OS goal: Support processes when not enough physical memory
• Single process with very large address space
• Multiple processes with combined address spaces

User code should be independent of amount of physical
memory
• Correctness, if not performance

Virtual memory: OS provides illusion of more physical memory

Why does this work?
• Relies on key properties of user processes (workload) and machine

architecture (hardware)

data
Program

LibA
ProgLibC data

heap

stack
Process 1

LibA LibB
ProgLibC

Virtual Memory

Phys Memory

ProgLibC

Called “paging” in

LibB

LibB

3

Locality of Reference

Leverage locality of reference within processes
• Spatial: reference memory addresses near previously referenced addresses

• Temporal: reference memory addresses that have referenced in the past

• Processes spend majority of time in small portion of code
• Estimate: 90% of time in 10% of code

Implication:
• Process only uses small amount of address space at any moment

• Only small amount of address space must be resident in physical memory

Memory Hierarchy
Leverage memory hierarchy of machine architecture

Each layer acts as “backing store” for layer above

disk storage

main memory

cache

registers

size
speed cost

4

Virtual Memory
Intuition

Idea: OS keeps unreferenced pages on disk
• Slower, cheaper backing store than memory

Process can run when not all pages are loaded into main memory

OS and hardware cooperate to provide illusion of large disk as
fast as main memory
• Same behavior as if all of address space in main memory
• Hopefully have similar performance

Requirements:
• OS must have mechanism to identify location of each page in address

space à in memory or on disk
• OS must have policy for determining which pages live in memory and

which on disk

Virtual Address Space
Mechanisms

Each page in virtual address space maps to one of three locations:
• Physical main memory: Small, fast, expensive
• Disk (backing store): Large, slow, cheap
• Nothing (error): Free

Extend page tables with an extra bit: present
• permissions (r/w), valid, present
• Page in memory: present bit set in PTE
• Page on disk: present bit cleared

• PTE points to block on disk

• Causes trap into OS when page is referenced
• Trap: page fault

5

Present Bit

PFN valid prot present
10 1 r-x 1
- 0 - -
23 1 rw- 0

28 1 rw- 0
4 1 rw- 1

- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -

Phys Memory

Disk

16 1 rw- 1

What if access vpn 0xb?

Virtual Memory
Mechanisms

Hardware and OS cooperate to translate addresses

First, hardware checks TLB for virtual address
• if TLB hit, address translation is done; page in physical memory

If TLB miss...
• Hardware or OS walk page tables
• If PTE designates page is present, then page in physical memory

If page fault (i.e., present bit is cleared)
• Trap into OS (not handled by hardware)
• OS selects victim page in memory to replace

• Write victim page out to disk if modified (add dirty bit to PTE)
• OS reads referenced page from disk into memory
• Page table is updated, present bit is set
• Process continues execution

What should scheduler do?

6

Mechanism for
Continuing a Process

Continuing a process after a page fault is tricky
• Want page fault to be transparent to user
• Page fault may have occurred in middle of instruction

• When instruction is being fetched

• When data is being loaded or stored

• Requires hardware support
• precise interrupts: stop CPU pipeline such that instructions before

faulting instruction have completed, and those after can be restarted

Complexity depends upon instruction set
• Can faulting instruction be restarted from beginning?

• Example: move +(SP), R2
• Must track side effects so hardware can undo

Virtual Memory
Policies

Goal: Minimize number of page faults

• Page faults require milliseconds to handle (reading from disk)
• Implication: Plenty of time for OS to make good decision

OS has two decisions
• Page selection

• When should a page (or pages) on disk be brought into memory?

• Page replacement
• Which resident page (or pages) in memory should be thrown out to

disk?

7

Page Selection
When should a page be brought from disk into memory?

Demand paging: Load page only when page fault occurs
• Intuition: Wait until page must absolutely be in memory
• When process starts: No pages are loaded in memory
• Problems: Pay cost of page fault for every newly accessed page

Prepaging (anticipatory, prefetching): Load page before referenced
• OS predicts future accesses (oracle) and brings pages into memory early
• Works well for some access patterns (e.g., sequential)
• Problems?

Hints: Combine above with user-supplied hints about page references
• User specifies: may need page in future, don’t need this page anymore, or

sequential access pattern, ...
• Example: madvise() in Unix

Page Replacement
Which page in main memory should selected as victim?

• Write out victim page to disk if modified (dirty bit set)
• If victim page is not modified (clean), just discard

OPT: Replace page not used for longest time in future
• Advantages: Guaranteed to minimize number of page faults
• Disadvantages: Requires that OS predict the future; Not practical, but good for comparison

FIFO: Replace page that has been in memory the longest
• Intuition: First referenced long time ago, done with it now
• Advantages: Fair: All pages receive equal residency; Easy to implement (circular buffer)
• Disadvantage: Some pages may always be needed

LRU: Least-recently-used: Replace page not used for longest time in past
• Intuition: Use past to predict the future
• Advantages: With locality, LRU approximates OPT
• Disadvantages:

• Harder to implement, must track which pages have been accessed
• Does not handle all workloads well

8

Page Replacement
Example

Page reference string: ABCABDADBCB

OPT FIFO LRU
ABC

B
D

A

D

B

C
B

A
Three pages
of physical memory

Metric:
Miss count

5, 7, 5 misses

Page Replacement
Comparison

Add more physical memory, what happens to performance?
• LRU, OPT: Add more memory, guaranteed to have fewer (or

same number of) page faults

• Smaller memory sizes are guaranteed to contain a
subset of larger memory sizes

• Stack property: smaller cache always subset of bigger

• FIFO: Add more memory, usually have fewer page faults
• Belady’s anomaly: May actually have more page faults!

9

Fifo Performance may
Decrease!

Consider access stream: ABCDABEABCDE

Consider physical memory size: 3 pages vs. 4 pages

How many misses with FIFO?

3 pages: 9 misses
4 pages: 10 misses

Problems with
LRU-based Replacement

LRU does not consider frequency of accesses
• Is a page accessed once in the past equal to one accessed N times?

• Common workload problem:
• Scan (sequential read, never used again) one large data region flushes memory

Solution: Track frequency of accesses to page

Pure LFU (Least-frequently-used) replacement
• Problem: LFU can never forget pages from the far past

Examples of other more sophisticated algorithms:
• LRU-K and 2Q: Combines recency and frequency attributes
• Expensive to implement, LRU-2 used in databases

10

Implementing LRU

Software Perfect LRU
• OS maintains ordered list of physical pages by reference time
• When page is referenced: Move page to front of list
• When need victim: Pick page at back of list
• Trade-off: Slow on memory reference, fast on replacement

Hardware Perfect LRU
• Associate timestamp register with each page
• When page is referenced: Store system clock in register
• When need victim: Scan through registers to find oldest clock
• Trade-off: Fast on memory reference, slow on replacement (especially as

size of memory grows)

In practice, do not implement Perfect LRU
• LRU is an approximation anyway, so approximate more
• Goal: Find an old page, but not necessarily the very oldest

Clock Algorithm

Hardware
• Keep use (or reference) bit for each page frame
• When page is referenced: set use bit

Operating System
• Page replacement: Look for page with use bit cleared

(has not been referenced for awhile)
• Implementation:

• Keep pointer to last examined page frame

• Traverse pages in circular buffer

• Clear use bits as search
• Stop when find page with already cleared use bit, replace this page

11

Clock:
Look For a Page

0 1 2 3 …Physical Mem:

use=1 use=1 use=0 use=1

clock hand

Clock:
Look For a Page

0 1 2 3 …Physical Mem:

use=0 use=0 use=0 use=0

clock hand

evict page 1 because it has not been recently used

12

Clock Extensions

Replace multiple pages at once
• Intuition:

Expensive to run replacement algorithm and to write single block to disk
• Find multiple victims each time and track free list

Add software counter (“chance”)
• Intuition: Better ability to differentiate across pages (how much they are

being accessed)
• Increment software counter if use bit is 0
• Replace when chance exceeds some specified limit

Use dirty bit to give preference to dirty pages
• Intuition: More expensive to replace dirty pages

• Dirty pages must be written to disk, clean pages do not
• Replace pages that have use bit and dirty bit cleared

What if no
Hardware Support?

What can the OS do if hardware does not have use bit (or
dirty bit)?
• Can the OS “emulate” these bits?

Leading question:
• How can the OS get control (i.e., generate a trap) every time use

bit should be set? (i.e., when a page is accessed?)

13

Conclusions

Illusion of virtual memory:
Processes can run when sum of virtual address spaces > amount of
physical memory

Mechanism:
• Extend page table entry with “present” bit
• OS handles page faults (or page misses) by reading in desired page

from disk

Policy:
• Page selection – demand paging, prefetching, hints
• Page replacement – OPT, FIFO, LRU, others

Implementations (clock) perform approximation of LRU

