
[537] Final Review
Tyler Harter

12/14/14

Chapters 4+5: Processes

How do we share?

CPU?

Memory?

Disk?

How do we share?

CPU? (a: time sharing)

Memory? (a: space sharing)

Disk? (a: space sharing)

How do we share?

CPU? (a: time sharing) TODAY

Memory? (a: space sharing)

Disk? (a: space sharing)

Goal: processes should NOT even know they are
sharing (each process will get its own virtual CPU)

What to Do with Processes
That Are Not Running?

A: store context in OS struct

Look in kernel/proc.h 
 context (CPU registers)  
 ofile (file descriptors)  
 state (sleeping, running, etc)

State Transitions

Running Ready

Blocked

Scheduled

Descheduled

I/O: initiate I/O: done

Chapters 6: LDE

CPU Time Sharing

Goal 1: efficiency 
 OS should have minimal overheard

Goal 2: control 
 Processes shouldn’t do anything bad  
 OS should decide when processes run

Solution: limited direct execution

What to limit?
General memory access

Disk I/O

Special x86 instructions like lidt!

How? Get HW help, put processes in “user mode”

What to limit?
General memory access

Disk I/O

Special x86 instructions like lidt!

How? Get HW help, put processes in “user mode”

RAM

Process P

trap-table index syscall-table index

lidt example

RAM

Process P

trap-table index syscall-table index

P tries to call lidt!

lidt example

RAM
trap-table index syscall-table index

CPU warns OS, OS kills P

goodbye, P

lidt example

Context Switch
Problem: when to switch process contexts?

Direct execution => OS can’t run while process runs

How can the OS do anything while it’s not running?  
A: it can’t

Solution: switch on interrupts. But which interrupt?

Chapters 7: Scheduling

Scheduling Basics
Metrics: 
 turnaround_time  
 response_time 

Schedulers: 
 FIFO 
 SJF 
 STCF 
 RR

Workloads: 
 arrival_time 
 run_time

Workloads
Arrival: time at which scheduler is aware of job

Run time: how long does it take if run beginning to
end?

Schedulers
FIFO: first in, first out

SJF: shortest job first (not preemptive)

STCF: shortest time to completion first

RR: round robin

Turnaround Time

0 20 40 60 80

What is the average turnaround time? (Q1)
!

(10 + 20 + 30) / 3 = 20s

A: 10s
B: 20s
C: 30s

FIFO vs. RR (Q5) — which is each?

0 5 10 15 200 5 10 15 20

A B CABC…

Avg Response Time?
Q5

Avg Response Time?
Q5

0 5 10 15 200 5 10 15 20

A B CABC…

Avg Response Time?
(0+1+2)/3 = 1

Avg Response Time?
(0+5+10)/3 = 5

FIFO vs. RR (Q5) — which is each?

Chapters 16: Segmentation

Match that Segment!
int x;
int main(int argc, char *argv[]) {
 int y;
 int *z = malloc(sizeof(int)););
}

x
main

y
z

code
data
heap
stack

Match that Segment!
int x;
int main(int argc, char *argv[]) {
 int y;
 int *z = malloc(sizeof(int)););
}

x
main

y
z

code
data
heap
stack

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

same code

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

P1 is running

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

P2 is running

(free)

Program Code

Heap

0 KB

1 KB

2 KB

15 KB
Stack

16 KB

wasted space

Multi-segment translation
One (correct) approach:  
 - break virtual addresses into two parts 
 - one part indicates segment  
 - one part indicates offset within segment

Chapters 18: Paging

Paging
Segmentation is too coarse-grained. 
Either waste space OR memcpy often.

We need a fine-grained alternative! 
 
Paging idea:  
 - break mem into small, fix-sized chunks (aka pages) 
 - each virt page is independently mapped to a phys page 
 - grow memory segments however we please!

Virt => Phys Mapping
For segmentation, we used a formula  
(e.g., phys = virt_offset + base_reg)

Now, we need a more  
general mapping mechanism.

What data structure is good?  
Big array, called a pagetable

0 1 0 1 0 1

VPN offset

1 1 0 1 0 11 0

PPN offset

Addr Mapper

Where Are Pagetable’s Stored?
How big is a typical page table?  
 - assume 32-bit address space  
 - assume 4 KB pages  
 - assume 4 byte entries (or this could be less)  
 - 2 ^ (32 - log(4KB)) * 4 = 4 MB!

Store in memory. 
CPU finds it via register (e.g., CR3 on x86)

Other PT info
What other data should go in pagetable entries
besides translation?

 - valid bit 
 - protection bits 
 - present bit 
 - reference bit 
 - dirty bit

Chapters 19: TLBs

Translation Steps
H/W: for each mem reference:  
 
 1. extract VPN (virt page num) from VA (virt addr)  
 2. calculate addr of PTE (page table entry)  
 3. fetch PTE  
 4. extract PFN (page frame num)  
 5. build PA (phys addr)  
 6. fetch PA to register

Which expensive step can we avoid?

(cheap)

(cheap)

(cheap)
(cheap)

(expensive)

(expensive)

Array Iterator

int sum = 0;  
for (i=0; i<N; i++) {  
! sum += a[i];  
}

Array Iterator

load 0x3000 
 

load 0x3004 
 

load 0x3008 
 

load 0x300C 
…

Virt

Array Iterator

load 0x3000 
 

load 0x3004 
 

load 0x3008 
 

load 0x300C 
…

load 0x100C 
load 0x7000 
load 0x100C 
load 0x7004 
load 0x100C 
load 0x7008 
load 0x100C 
load 0x700C

Virt Phys

Array Iterator

load 0x3000 
 

load 0x3004 
 

load 0x3008 
 

load 0x300C 
…

load 0x100C 
load 0x7000 
load 0x100C 
load 0x7004 
load 0x100C 
load 0x7008 
load 0x100C 
load 0x700C

Virt Phys

Array Iterator

load 0x3000 
 

load 0x3004 
 

load 0x3008 
 

load 0x300C 
…

load 0x100C 
load 0x7000 
load 0x100C 
load 0x7004 
load 0x100C 
load 0x7008 
load 0x100C 
load 0x700C

Virt Phys

Array Iterator

load 0x3000 
 

load 0x3004 
 

load 0x3008 
 

load 0x300C 
…

load 0x100C 
load 0x7000 
load 0x100C 
load 0x7004 
load 0x100C 
load 0x7008 
load 0x100C 
load 0x700C

Virt Phys

time

ad
dr

es
s

Workload A

time
ad

dr
es

s

Workload B

… …
Spatial Locality Temporal Locality

Address Space Identifier
Tag each TLB entry with an 8-bit ASID 
 - how many ASIDs to we get? 
 - why not use PIDs? 
 - what if there are more PIDs than ASIDs?

Security

Modifying TLB entries is privileged  
 - otherwise what could you do?

Need same protection bits in TLB as pagetable 
 - rwx

Chapters 20: multi-level PTs

Motivation
Why do we want big virtual address spaces?  
 - programming is easier 
 - applications need not worry (as much) about fragmentation

Paging goals: 
 - space efficiency (don’t waste on invalid data)  
 - simplicity (no bookkeeping should require contiguous pages)

code
heap

stack

Virt Mem Phys Mem

Waste!

Many invalid PT entries
PFN valid prot
10 1 r-x
- 0 -
23 1 rw-
- 0 -
- 0 -
- 0 -
- 0 -

- 0 -
- 0 -
- 0 -
- 0 -
28 1 rw-
4 1 rw-

…many more invalid…

Multi-Level Page Tables
Idea: break PT itself into pages  
 - a page directory refers to pieces  
 - only have pieces with >0 valid entries

Used by x86.

PT idx
16 012345678910111213141517

OFFSET
1819

PD idx

VPN

>2 Levels
Problem: page directories may not fit in a page

Solution: split page directories into pieces.  
Use another page dir to refer to the page dir pieces.

PT idx
16 012345678910111213141517

OFFSET
1819

PD idx 1

VPN

PD idx 0
20212223

Chapters 22: cache policy

Cache
Upon access, we must load the desired page.

Do we prefetch other adjacent pages?  
(remember disks have high fixed costs)

Prefetching more means we will have to evict more.

What to evict?

FIFO

Items are evicted in the order they are inserted

Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 2,3,4
1 no 3,4,1
2 no 4,1,2
5 no 1,2,5
1 yes 1,2,5
2 yes 1,2,5
3 no 2,5,3
4 no 5,3,4
5 yes 5,3,4

(a) size 3 (b) size 4
Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 1,2,3,4
1 yes 1,2,3,4
2 yes 1,2,3,4
5 no 2,3,4,5
1 no 3,4,5,1
2 no 4,5,1,2
3 no 5,1,2,3
4 no 1,2,3,4
5 no 2,3,4,5

Belady’s Anomaly

LRU, MRU

LRU: evict least-recently used  
 - consider history
!

MRU: evict most-recently used

Discuss
Can Belady’s anomaly happen with LRU?
!

Stack property: smaller cache always subset of bigger

LRU Hardware Support
What is needed?
!

Timestamps. Why can’t OS alone track this?

LRU Hardware Support
What is needed?
!

Timestamps. Why can’t OS alone track this?
!

Cheap approximation: reference (or use) bits.
 - set upon access, cleared by OS
 - useful for clock algorithm

Thrashing
A machine is thrashing when there is not enough
RAM, and we constantly swap in/out pages
!

Solutions?
 - admission control (like scheduler project)
 - buy more memory
 - Linux out-of-memory killer!

Chapters 26+27: threads

Strategy 2
New abstraction: the thread.
!

Threads are just like processes, but they
share the address space (e.g., using same PT).

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

IP IP

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAP …Virt Mem
(PageDir A)

IP IP

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAP …Virt Mem
(PageDir A)

IP IP

Each thread may be executing
different code at the same time

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAP …Virt Mem
(PageDir A)

IP IP

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAP …Virt Mem
(PageDir A)

IP IPSP SP

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAPVirt Mem
(PageDir A)

IP IPSP SP

STACK 1 STACK 2

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAPVirt Mem
(PageDir A)

IP IPSP SP

STACK 1 STACK 2

threads executing different functions need different stacks

Chapters 28: spinlocks

Lock Goals

Correctness
!

Fairness
!

Performance

Test-and-set Spinlock
void SpinLock(volatile unsigned int *lock) {
 while (xchg(lock, 1) == 1)
 ; // spin
}
!
void SpinUnlock(volatile unsigned int *lock) {
 xchg(lock, 0);
}

Test-and-set Spinlock (optimized)

void SpinLock(volatile unsigned int *lock) {
 while (xchg(lock, 1) == 1)
 ; // spin
}
!
void SpinUnlock(volatile unsigned int *lock) {
 *lock = 0;
}

Test-and-set Spinlock (optimized)

void SpinLock(volatile unsigned int *lock) {
 while (xchg(lock, 1) == 1)
 ; // spin
}
!
void SpinUnlock(volatile unsigned int *lock) {
 *lock = 0;
}

Works on newer x86 processors.
Not on all CPUs (sometimes due to CPU bugs!)

spin spin spin spin

Basic Spinlocks are Unfair

A B

0 20 40 60 80 100 120 140 160

A B A B A B

lock
lockunlock lockunlock lockunlock lockunlock

spinspin spin spin spin

CPU Scheduler is Ignorant

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

CPU scheduler may run B instead of A
even though B is waiting for A

Chapters 30: condition variables
(and sleeping locks)

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

A, B, C, D
<empty>
<empty>

0 20 40 60 80 100 120 140 160

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

B, C, D
A
<empty>

0 20 40 60 80 100 120 140 160

A

lock

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

C, D, A
B
<empty>

0 20 40 60 80 100 120 140 160

A

lock

B

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

C, D, A

B

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

D, A
C
B

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

A, C
D
B

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

A, C

B, D

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

try lock
(sleep)

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

C
A
B, D

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

try lock
(sleep)

A

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

A
C
B, D

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

try lock
(sleep)

A C

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

C
A
B, D

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

try lock
(sleep)

A C A

Queue Lock

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

try lock
(sleep)

A C A

unlock

RUNNABLE:
RUNNING:
WAITING:

B, C
A
D

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

B, C
A
D

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

try lock
(sleep)

A C A

unlock

Queue Lock
RUNNABLE:

RUNNING:
WAITING:

C, A
B
D

0 20 40 60 80 100 120 140 160

A

lock

B

try lock
(sleep)

C D

try lock
(sleep)

A C A

unlock

B

lock

Concurrency Objectives
Mutual exclusion (e.g., A and B don’t run at same time)
 - solved with locks
!
Ordering (e.g., B runs after A)
 - solved with condition variables

Correct CV’s
wait(cond_t *cv, mutex_t *lock)
 - assumes the lock is held when wait() is called
 - puts caller to sleep + releases the lock (atomically)
 - when awoken, reacquires lock before returning
!
signal(cond_t *cv)
 - wake a single waiting thread (if >= 1 thread is waiting)
 - if there is no waiting thread, just return w/o doing anything

requires kernel
support!

Produce/Consumer
Pipes
Web servers
Memory allocators
Device I/O
…
!

General strategy: use condition variables to make
consumers wait when there is nothing to consume,
and make producers wait when buffers are full.

What about 2 consumers (v1)?

Producer: p1 p2 p4 p5 p6 p1 p2 p3
Consumer1: c1 c2 c3
Consumer2: c1 c2 c3 c2 c4 c5

wait()wait() wait() signal() signal()

Can you find a problematic timeline?

What about 2 consumers (v1)?

Producer: p1 p2 p4 p5 p6 p1 p2 p3
Consumer1: c1 c2 c3
Consumer2: c1 c2 c3 c2 c4 c5

wait()wait() wait() signal() signal()

does this wake producer or consumer2?

Can you find a problematic timeline?

How to wake the right thread?
One solution:
!

!

!

!

!

!

Better solution (usually): use two condition variables.

wake all the threads!

Chapters 31: semaphores

CV’s vs. Semaphores
CV rules of thumb:
 - Keep state in addition to CV’s
 - Always do wait/signal with lock held
 - Whenever you acquire a lock, recheck state
!

How do semaphores eliminate these needs?

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

Thread Queue: Signal Queue:

A

wait()

Condition Variable (CV)

Semaphore

Thread Queue:

A

Thread Queue: Signal Queue:

A

Condition Variable (CV)

Semaphore

Thread Queue:

A

Thread Queue: Signal Queue:

A

Condition Variable (CV)

Semaphore

Thread Queue:

A

signal()

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

signal()

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

signal()

signal

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

signal

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

signal

wait()

B

B

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

wait()

B

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

B

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

B may wait forever
(if not careful)

Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

B may wait forever
(if not careful)

just use counter

Chapters 37: disks

Platter

Disk Internals

Platter is covered with a magnetic film.

Spindle

Surface

Surface

Many platters may be bound to the spindle.

Each surface is divided into rings called tracks.
A stack of tracks (across platters) is called a cylinder.

The tracks are divided into numbered sectors.

1
23

06
5 4

7
8

9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

Heads on a moving arm can read from each surface.

1
23

06
5 4

7
8

9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

1
23

06
5 4

7
8

9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

spin

Spindle/platters rapidly spin.

Workload
So…
 - seeks are slow
 - rotations are slow
 - transfers are fast
!

What kind of workload is fastest for disks?
Sequential: access sectors in order (transfer dominated)
Random: access sectors arbitrarily (seek+rotation dominated)

Other Improvements
Track Skew
!

Zones
!

Cache

Other Improvements
Track Skew
!

Zones
!

Cache

8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

When reading 16 after 15, the head won’t settle
quick enough, so we need to do a rotation.

8
9

10
11

15
14

13
12

23

23

16

17

21

20

19

18

8
9

10
11

15
14

13
12

23

23

16

17

21

20

19

18

enough time to settle now

Other Improvements
Track Skew
!

Zones
!

Cache

Other Improvements
Track Skew
!

Zones
!

Cache

Drive Cache
Drives may cache both reads and writes.
!

OS does this to.
!

What advantage does drive have for reads?
!

What advantage does drive have for writes?

Schedulers
OS

Disk

Schedulers
OS

Disk

Scheduler

Scheduler

Where should the
scheduler go?

SPTF (Shortest Positioning Time First)

Strategy: always choose the request that will take
the least time for seeking and rotating.
!

How to implement in disk?
How to implement in OS?

SPTF (Shortest Positioning Time First)

Strategy: always choose the request that will take
the least time for seeking and rotating.
!

How to implement in disk?
How to implement in OS?
!

Disadvantages?

SCAN
Sweep back and forth, from one end of disk to the
other, serving requests as you go.
!

Pros/Cons?

SCAN
Sweep back and forth, from one end of disk to the
other, serving requests as you go.
!

Pros/Cons?
!

Better: C-SCAN (circular scan)
 - only sweep in one direction

Chapters 38: RAID

All RAID

Reliability Capacity

RAID-0 0 C*N

RAID-1 1 C*N/2

RAID-4 1 N-1

RAID-5 1 N-1

All RAID

Read Latency Write Latency

RAID-0 D D

RAID-1 D D

RAID-4 D 2D

RAID-5 D 2D

All RAID

Read Latency Write Latency

RAID-0 D D

RAID-1 D D

RAID-4 D 2D

RAID-5 D 2D

but RAID-5 can
do more in parallel

All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-4 (N-1)*S (N-1)*S (N-1)*R R/2

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R

All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-4 (N-1)*S (N-1)*S (N-1)*R R/2

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R

RAID-5 is strictly better than RAID-4

All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R

All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R

RAID-0 is always fastest and has best capacity.
(but at cost of reliability)

All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R

All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R

RAID-5 better than RAID-1 for sequential.

All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R

All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R

RAID-1 better than RAID-4 for random write.

Chapters 39: File-System API

File Names
Three types of names:
 - inode
 - path
 - file descriptor

Atomic File Update
Say we want to update file.txt.
!

1. write new data to new file.txt.tmp file
2. fsync file.txt.tmp
3. rename file.txt.tmp over file.txt, replacing it

Chapters 41: FFS
Treat a disk like a disk!
!

Place related data together: hopefully makes
future reads faster.

Data Blockssuper
block inodes

0 N

Technique 2: Groups

bitmaps

before: whole disk

fast

Data Blockssuper
block inodes

0 N

Technique 2: Groups

bitmaps

before: whole disk

slow

Data Blockssuper
block inodes

0 N

Technique 2: Groups

bitmaps

before: whole disk

slower

Data Blockssuper
block inodes

0 N

Technique 2: Groups

bitmaps

before: whole disk

slowest

Data Blockssuper
block inodes

0 N

Technique 2: Groups

bitmaps

before: whole disk

Data Blockssuper
block inodes

0 G

Technique 2: Groups

bitmaps

now: one (smallish) group

Technique 2: Groups

DS IB

zoom out

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Technique 2: Groups

DS IB

strategy: allocate inodes and data blocks in same group.

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

fast fast fast

inode dir

file inode

dir inode

B1

B2

Ind

B1

B2

many

pointer

related

B3

B4
break

br
ea

k

Allocation Policy

Chapters 42: Journaling

Redundancy
Definition: if A and B are two pieces of data, and
knowing A eliminates some or all the values B could
B, there is redundancy between A and B.
!
RAID examples:
 - mirrored disk (complete redundancy)
 - parity blocks (partial redundancy)

Problem 3
Give 5 examples of redundancy in FFS
(or files systems in general).

Problem 3
Give 5 examples of redundancy in FFS
(or files systems in general).
!

Dir entries AND inode table.
Dir entries AND inode link count.
Data bitmap AND inode pointers.
Data bitmap AND group descriptor.
Inode file size AND inode/indirect pointers.
…

fsck
FSCK = file system checker.
!
Strategy: after a crash, scan whole disk for
contradictions.
!
For example, is a bitmap block correct?
!
Read every valid inode+indirect. If an inode points to
a block, the corresponding bit should be 1

Journal: General Strategy
Never delete ANY old data, until,
ALL new data is safely on disk.
!

Ironically, this means we’re adding redundancy
to fix the problem caused by redundancy.

New Layout

0 5

0
6 12111 2 3 4 7 8 9 10

journal

New Layout

0 5

0
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

0 5

5,2 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

0 5

5,2 A 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

0 5

5,2 A B 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

0 5

5,2 A B 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

A
0 5

5,2 A B 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

A
0 5

B 5,2 A B 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

A
0 5

B 5,2 A B 0
6 12111 2 3 4 7 8 9 10

journal

Optimizations
1. Reuse small area for journal
2. Barriers
3. Checksums
4. Circular journal
5. Logical journal

Chapters 43: LFS
Write data fastest way possible… Sequentially!
!

Reads may be slower later (scattered).

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Inode Numbers
Problem: for every data update, we need to do
updates all the way up the tree.
!

Why? We change inode number when we copy it.
!

Solution: keep inode numbers constant. Don’t
base on offset.
!

Before we found inodes with math. How now?

Data Structures (attempt 2)
What can we get rid of from FFS?
 - allocation structs: data + inode bitmaps
!

Inodes are no longer at fixed offset.
 - use imap struct to map number => inode.

Garbage Collection
Is data alive? Use segment summary.
!

How to clean? Copy clean data out of M segments
into N new segments (N < M).
!

Which segments to clean? Cold, invalid, etc.

Chapters 44: Integrity
Checksums…

Chapters 47: Distributed Systems

Channels
UDP: unreliable
!

TCP: reliable
 - seq numbers, buffering, retry

RPC
int main(…) {
!
}

Machine A
int foo(char *msg) {
 …
}

Machine B

RPC
int main(…) {
 int x = foo();
}

Machine A
int foo(char *msg) {
 …
}

Machine B

Want main() on A to call foo() on B.

RPC
int main(…) {
 int x = foo();
}

Machine A
int foo(char *msg) {
 …
}

Machine B

Want main() on A to call foo() on B.

RPC
int main(…) {
 int x = foo();
}
!
int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}

Machine B

Want main() on A to call foo() on B.

RPC
int main(…) {
 int x = foo();
}
!
int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}
!
void foo_listener() {
 while(1) {
 recv, call foo
 }
}

Machine B

Want main() on A to call foo() on B.

RPC
int main(…) {
 int x = foo();
}
!
int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}
!
void foo_listener() {
 while(1) {
 recv, call foo
 }
}

Machine B

Actual calls.

RPC
int main(…) {
 int x = foo();
}
!
int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}
!
void foo_listener() {
 while(1) {
 recv, call foo
 }
}

Machine B

What it feels like for programmer.

RPC
int main(…) {
 int x = foo();
}
!
int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}
!
void foo_listener() {
 while(1) {
 recv, call foo
 }
}

Machine B

Wrappers.

client
wrapper

server
wrapper

RPC Tools
RPC packages help with this with two components.
!

(1) Stub generation
 - create wrappers automatically
!

(2) Runtime library
 - thread pool
 - socket listeners call functions on server

Chapters 48: NFS

General Strategy: Export FS

Local FSLocal FS

Client Server

NFS

mount

General Strategy: Export FS

Local FSLocal FS

Client Server

NFS

General Strategy: Export FS

Local FSLocal FS

Client Server

NFS
read

General Strategy: Export FS

Local FSLocal FS

Client Server

NFS
read

Stateless
Requests understandable without any context
about clients.
!

No fds!

Idempotent
Design API so that there is no harm is executing a
call more than once.
!

An API call that has this is “idempotent”. If f() is
idempotent, then:
f() has the same effect as f(); f(); … f(); f()

Cache Consistency
Know update visibility, stale cache.

Chapters 49: AFS

AFS Goals
Primary goal: scalability! (many clients per server)
!
More reasonable semantics for concurrent file access.
!
Not good about handling some failure scenarios.

AFS Design
NFS: export local FS
!
AFS: present big file tree, store across many machines.

Break tree into “volumes.”
I.e., partial sub trees.

Update Visibility
Clients updates not seen on servers yet.
!

AFS solution:
 - flush on close
 - buffer whole files on local disk
!

Concurrent writes? Last writer (i.e., closer) wins.
!

Never get mixed data.

Stale Cache
AFS solution: tell clients when data is overwritten.
!

When clients cache data, ask for “callback” from
server.
!

No longer stateless!

Callbacks
What if client crashes?
!

What if server runs out of memory?
!

What if server crashes?

GFS

Architecture

Master

Client Worker

(one)

(many)

[metadata]

local FS’s

RPCRPC

RPC

metadata consistency easy

large capacity

Chunk Layer
Break GFS files into large chunks (e.g., 64MB).
!
Workers store physical chunks in Linux files.
!
Master maps logical chunk to physical chunk locations.

File Namespace

Master

chunk map:
logical

924
phys

w2,w5,w7

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

… …

file namespace:
/foo/bar => 924,813
/var/log => 123,999

File Namespace

Master

chunk map:
logical

924
phys

w2,w5,w7

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

… …

file namespace:
/foo/bar => 924,813
/var/log => 123,999

lookup /foo/bar

File Namespace

Master

chunk map:
logical

924
phys

w2,w5,w7

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

… …

file namespace:
/foo/bar => 924,813
/var/log => 123,999

924: [w2,w5,w7]
813: […]

File Namespace

Master

chunk map:
logical

924
phys

w2,w5,w7

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

… …

file namespace:
/foo/bar => 924,813
/var/log => 123,999

File Namespace

Master

chunk map:
logical

924
phys

w2,w5,w7

Worker w2

Local FS!
/chunks/942 => data1
/churks/521 => data2
…

client

… …

file namespace:
/foo/bar => 924,813
/var/log => 123,999

read 942:
offset=0MB
size=1MB

Master: Crashes + Consistency
File namespace and chunk map are 100% in RAM.
 - allows master to work with 1000’s of workers
 - what master crashes?

MapReduce

public void map(LongWritable key, Text value) {
 String line = value.toString();
 StringToke st = new StringToke(line);
 while (st.hasMoreTokens())
 output.collect(st.nextToken(), 1);
}
!
public void reduce(Text key,
 Iterator<IntWritable> values) {
 int sum = 0;
 while (values.hasNext())
 sum += values.next().get();
 output.collect(key, sum);
}

what does!
this do?

Flash

Single- vs. Multi- Level Cell

SLC
ch

ar
ge

ch
ar

ge

MLC

expensive
robust

cheap
sensitive

Wearout
Problem: flash cells wear out after being
overwritten too many times.
!

MLC: ~10K times
SLC: ~100K times
!

Usage strategy: wear leveling.
 - prevents some cells from wearing out while
 others still fresh.

Block

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

Block

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

one block

Block

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

one page

Flash Hierarchy
Plane: 1024 to 4096 blocks
 - planes accessed in parallel
!

Block: 64 to 256 pages
 - unit of erase
!

Page: 2 to 8 KB
 - unit of read and program

APIs
disk flash

re
ad read sector read page

write sector

w
rit

e

program page
(0’s)

erase block
(1’s)

Flash Translation Layer

00
01

block 0

00
10

00
11

00
00

10
01

block 1

11
11

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:

Flash Translation Layer

00
01

block 0

00
10

00
11

00
00

10
01

block 1

11
11

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:

write 1101

Flash Translation Layer

00
01

block 0

00
10

00
11

00
00

10
01

block 1

11
01

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:

write 1101

Flash Translation Layer

00
01

block 0

00
10

00
11

00
00

10
01

block 1

11
01

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:

write 1101

Flash Translation Layer

00
01

block 0

00
10

00
11

00
00

10
01

block 1

11
01

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:

Flash Translation Layer

00
01

block 0

00
10

00
11

00
00

10
01

block 1

11
01

11
11

11
11

0 1 2 3 4 5 6 7

physical:

logical:
must eventually

be garbage collected

Search Engines
PageRank: important?
!

Inverted index: relevant?

Crawler Web
Servers

Snapshot
of Pages IndexesIndexing

Internet

Search
Engine

Webpages Searchers

Strategy: Count Backlinks
Importance:
A = 1
B = 3.5
C = 0.5 (from B’s vote)
D = 0
E = 0.5 (from A’s vote)
F = 0.5

A B

C

DE

F

0.5

0.5

0.5 0.5

Why do A and B get same votes? B is more important.

Circular Votes
Want: number of votes you get determines number
of votes you give.
!

Problem: changing A’s votes changes B’s votes
changes A’s votes…
!

Fortunately, if you just keep updating every
PageRank, it eventually converges.

Intuition: Random Surfer
Imagine!
!

1. a bunch of web surfers start on various pages
2. they randomly click links, forever
3. you measure webpage visit frequency
!

Visit frequency will be proportional to PageRank.

Graph 1

A B C

Graph 1

A B C

0.50.25 0.25

Graph 1

A B C

0.50.25 0.25

Rank(B) = (0.25 / 1) + (0.25 / 1) = 0.5
Rank(A) = (0.5 / 2) = 0.25
Rank(C) = (0.5 / 2) = 0.25

Rank(x) = c
y∈LinksTo(x)

Σ Rank(y)
Ny

Graph 3

A B

Problem: ???

C D

Graph 3

A B

Problem: Surfers get stuck in C and D.
C+D called a rank “sink”. A and B get 0 rank.

C D

Inverted Index

docID wordID
1442 5
1442 922
1442 2
1442 66
1442 42
1442 5

… …

forward index

Inverted Index

docID wordID
1442 5
1442 922
1442 2
1442 66
1442 42
1442 5

… …

forward index
docID wordID
1442 5
1442 922
1442 2
1442 66
1442 42
1442 5

… …

Inverted Index

docID wordID
1442 5
1442 922
1442 2
1442 66
1442 42
1442 5

… …

forward index
wordID docID

5 1442
922 1442
2 1442
66 1442
42 1442
5 1442
… …

swap columns

Inverted Index

docID wordID
1442 5
1442 922
1442 2
1442 66
1442 42
1442 5

… …

forward index
wordID docID

1 244
2 1442
5 1442
5 1442
5 999
6 133
… …

sort by wordID

Inverted Index

docID wordID
1442 5
1442 922
1442 2
1442 66
1442 42
1442 5

… …

forward index inverted index
wordID docID

1 244
2 1442
5 1442,1442,999
6 133,411
7 1442,133,999
9 411,875
… …

