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Chapters 4+5: Processes



How do we share?

CPU? 

Memory? 

Disk?



How do we share?

CPU? (a: time sharing) 

Memory? (a: space sharing) 

Disk? (a: space sharing)



How do we share?

CPU? (a: time sharing)        TODAY 

Memory? (a: space sharing) 

Disk? (a: space sharing)

Goal: processes should NOT even know they are 
sharing (each process will get its own virtual CPU)



What to Do with Processes 
That Are Not Running?

A: store context in OS struct 

Look in kernel/proc.h 
 context (CPU registers)  
 ofile (file descriptors)  
 state (sleeping, running, etc)



State Transitions

Running Ready

Blocked

Scheduled

Descheduled

I/O: initiate I/O: done



Chapters 6: LDE



CPU Time Sharing

Goal 1: efficiency 
 OS should have minimal overheard 

Goal 2: control 
 Processes shouldn’t do anything bad  
 OS should decide when processes run 

Solution: limited direct execution



What to limit?
General memory access 

Disk I/O 

Special x86 instructions like lidt!

How?  Get HW help, put processes in “user mode”



What to limit?
General memory access 

Disk I/O 

Special x86 instructions like lidt!

How?  Get HW help, put processes in “user mode”



RAM

Process P

trap-table index syscall-table index

lidt example



RAM

Process P

trap-table index syscall-table index

P tries to call lidt!

lidt example



RAM
trap-table index syscall-table index

CPU warns OS, OS kills P

goodbye, P

lidt example



Context Switch
Problem: when to switch process contexts? 

Direct execution => OS can’t run while process runs 

How can the OS do anything while it’s not running?  
A: it can’t 

Solution: switch on interrupts.  But which interrupt?



Chapters 7: Scheduling



Scheduling Basics
Metrics: 
 turnaround_time  
 response_time 
 

Schedulers: 
 FIFO 
 SJF 
 STCF 
 RR

Workloads: 
 arrival_time 
 run_time



Workloads
Arrival: time at which scheduler is aware of job 

Run time: how long does it take if run beginning to 
end?



Schedulers
FIFO: first in, first out 

SJF: shortest job first (not preemptive) 

STCF: shortest time to completion first 

RR: round robin



Turnaround Time

0 20 40 60 80

What is the average turnaround time? (Q1) 
!

(10 + 20 + 30) / 3 = 20s

A: 10s
B: 20s
C: 30s



FIFO vs. RR (Q5) — which is each?

0 5 10 15 200 5 10 15 20

A B CABC…

Avg Response Time? 
Q5

Avg Response Time? 
Q5



0 5 10 15 200 5 10 15 20

A B CABC…

Avg Response Time? 
(0+1+2)/3 = 1

Avg Response Time? 
(0+5+10)/3 = 5

FIFO vs. RR (Q5) — which is each?



Chapters 16: Segmentation



Match that Segment!
int x; 
int main(int argc, char *argv[]) { 
  int y; 
  int *z = malloc(sizeof(int));); 
}

x 
main 

y 
z

code 
data 
heap 
stack



Match that Segment!
int x; 
int main(int argc, char *argv[]) { 
  int y; 
  int *z = malloc(sizeof(int));); 
}

x 
main 

y 
z

code 
data 
heap 
stack



P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

same code



P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

P1 is running



P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

P2 is running



(free)

Program Code

Heap

0 KB

1 KB

2 KB

15 KB
Stack

16 KB

wasted space



Multi-segment translation
One (correct) approach:  
 - break virtual addresses into two parts 
 - one part indicates segment  
 - one part indicates offset within segment



Chapters 18: Paging



Paging
Segmentation is too coarse-grained. 
Either waste space OR memcpy often. 

We need a fine-grained alternative! 
 
Paging idea:  
 - break mem into small, fix-sized chunks (aka pages) 
 - each virt page is independently mapped to a phys page 
 - grow memory segments however we please!



Virt => Phys Mapping
For segmentation, we used a formula  
(e.g., phys = virt_offset + base_reg) 

Now, we need a more  
general mapping mechanism. 

What data structure is good?  
Big array, called a pagetable

0 1 0 1 0 1

VPN offset

1 1 0 1 0 11 0

PPN offset

Addr Mapper



Where Are Pagetable’s Stored?
How big is a typical page table?  
 - assume 32-bit address space  
 - assume 4 KB pages  
 - assume 4 byte entries (or this could be less)  
 - 2 ^ (32 - log(4KB)) * 4 = 4 MB!

Store in memory. 
CPU finds it via register (e.g., CR3 on x86)



Other PT info
What other data should go in pagetable entries 
besides translation? 

 - valid bit 
 - protection bits 
 - present bit 
 - reference bit 
 - dirty bit



Chapters 19: TLBs



Translation Steps
H/W: for each mem reference:  
 
 1. extract VPN (virt page num) from VA (virt addr)  
 2. calculate addr of PTE (page table entry)  
 3. fetch PTE  
 4. extract PFN (page frame num)  
 5. build PA (phys addr)  
 6. fetch PA to register 

Which expensive step can we avoid?

(cheap)

(cheap)

(cheap)
(cheap)

(expensive)

(expensive)



Array Iterator

int sum = 0;  
for (i=0; i<N; i++) {  
! sum += a[i];  
}



Array Iterator

load 0x3000 
 

load 0x3004 
 

load 0x3008 
 

load 0x300C 
…

Virt



Array Iterator

load 0x3000 
 

load 0x3004 
 

load 0x3008 
 

load 0x300C 
…

load 0x100C 
load 0x7000 
load 0x100C 
load 0x7004 
load 0x100C 
load 0x7008 
load 0x100C 
load 0x700C

Virt Phys
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Array Iterator

load 0x3000 
 

load 0x3004 
 

load 0x3008 
 

load 0x300C 
…

load 0x100C 
load 0x7000 
load 0x100C 
load 0x7004 
load 0x100C 
load 0x7008 
load 0x100C 
load 0x700C

Virt Phys



time
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Workload A
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Workload B

… …
Spatial Locality Temporal Locality



Address Space Identifier
Tag each TLB entry with an 8-bit ASID 
 - how many ASIDs to we get? 
 - why not use PIDs? 
 - what if there are more PIDs than ASIDs?



Security

Modifying TLB entries is privileged  
 - otherwise what could you do? 

Need same protection bits in TLB as pagetable 
 - rwx



Chapters 20: multi-level PTs



Motivation
Why do we want big virtual address spaces?  
 - programming is easier 
 - applications need not worry (as much) about fragmentation 

Paging goals: 
 - space efficiency (don’t waste on invalid data)  
 - simplicity (no bookkeeping should require contiguous pages)



code
heap

stack

Virt Mem Phys Mem

Waste!



Many invalid PT entries
PFN  valid prot 
10  1  r-x 
-  0  - 
23  1  rw- 
-  0  - 
-  0  - 
-  0  - 
-  0  - 

-  0  - 
-  0  - 
-  0  - 
-  0  - 
28  1  rw- 
4  1  rw- 

…many more invalid…



Multi-Level Page Tables
Idea: break PT itself into pages  
 - a page directory refers to pieces  
 - only have pieces with >0 valid entries 

Used by x86.

PT idx
16 012345678910111213141517

OFFSET
1819

PD idx

VPN



>2 Levels
Problem: page directories may not fit in a page 

Solution: split page directories into pieces.  
Use another page dir to refer to the page dir pieces.

PT idx
16 012345678910111213141517

OFFSET
1819

PD idx 1

VPN

PD idx 0
20212223



Chapters 22: cache policy



Cache
Upon access, we must load the desired page. 

Do we prefetch other adjacent pages?  
(remember disks have high fixed costs) 

Prefetching more means we will have to evict more. 

What to evict?



FIFO

Items are evicted in the order they are inserted 



Access Hit  State (after) 
1   no  1 
2   no  1,2 
3   no  1,2,3 
4   no  2,3,4 
1   no  3,4,1 
2   no  4,1,2 
5   no  1,2,5 
1   yes  1,2,5 
2   yes  1,2,5 
3   no  2,5,3 
4   no  5,3,4 
5   yes  5,3,4

(a) size 3 (b) size 4
Access Hit  State (after) 
1   no  1 
2   no  1,2 
3   no  1,2,3 
4   no  1,2,3,4 
1   yes  1,2,3,4 
2   yes  1,2,3,4 
5   no  2,3,4,5 
1   no  3,4,5,1 
2   no  4,5,1,2 
3   no  5,1,2,3 
4   no  1,2,3,4 
5   no  2,3,4,5

Belady’s Anomaly



LRU, MRU

LRU: evict least-recently used  
 - consider history 
!

MRU: evict most-recently used



Discuss
Can Belady’s anomaly happen with LRU? 
!

Stack property: smaller cache always subset of bigger 



LRU Hardware Support
What is needed? 
!

Timestamps.  Why can’t OS alone track this?



LRU Hardware Support
What is needed? 
!

Timestamps.  Why can’t OS alone track this? 
!

Cheap approximation: reference (or use) bits. 
 - set upon access, cleared by OS 
 - useful for clock algorithm



Thrashing
A machine is thrashing when there is not enough 
RAM, and we constantly swap in/out pages 
!

Solutions? 
 - admission control (like scheduler project) 
 - buy more memory 
 - Linux out-of-memory killer!



Chapters 26+27: threads



Strategy 2
New abstraction: the thread. 
!

Threads are just like processes, but they 
share the address space (e.g., using same PT).



CPU 1 CPU 2
running 
thread 1

running 
thread 2

RAM



CPU 1 CPU 2
running 
thread 1

running 
thread 2

RAM
PageDir A

PageDir B
…
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CPU 1 CPU 2
running 
thread 1

running 
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAP …Virt Mem 
(PageDir A)

IP IP



CPU 1 CPU 2
running 
thread 1

running 
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAP …Virt Mem 
(PageDir A)

IP IP

Each thread may be executing 
different code at the same time



CPU 1 CPU 2
running 
thread 1

running 
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAP …Virt Mem 
(PageDir A)

IP IP



CPU 1 CPU 2
running 
thread 1

running 
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAP …Virt Mem 
(PageDir A)

IP IPSP SP



CPU 1 CPU 2
running 
thread 1

running 
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAPVirt Mem 
(PageDir A)

IP IPSP SP

STACK 1 STACK 2



CPU 1 CPU 2
running 
thread 1

running 
thread 2

RAM
PageDir A

PageDir B
…PTBRPTBR

CODE HEAPVirt Mem 
(PageDir A)

IP IPSP SP

STACK 1 STACK 2

threads executing different functions need different stacks



Chapters 28: spinlocks



Lock Goals

Correctness 
!

Fairness 
!

Performance



Test-and-set Spinlock
void SpinLock(volatile unsigned int *lock) { 
    while (xchg(lock, 1) == 1) 
        ; // spin               
} 
!
void SpinUnlock(volatile unsigned int *lock) { 
    xchg(lock, 0); 
}



Test-and-set Spinlock (optimized)

void SpinLock(volatile unsigned int *lock) { 
    while (xchg(lock, 1) == 1) 
        ; // spin               
} 
!
void SpinUnlock(volatile unsigned int *lock) { 
    *lock = 0; 
}



Test-and-set Spinlock (optimized)

void SpinLock(volatile unsigned int *lock) { 
    while (xchg(lock, 1) == 1) 
        ; // spin               
} 
!
void SpinUnlock(volatile unsigned int *lock) { 
    *lock = 0; 
}

Works on newer x86 processors. 
Not on all CPUs (sometimes due to CPU bugs!)



spin spin spin spin

Basic Spinlocks are Unfair

A B

0 20 40 60 80 100 120 140 160

A B A B A B

lock
lockunlock lockunlock lockunlock lockunlock



spinspin spin spin spin

CPU Scheduler is Ignorant

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

CPU scheduler may run B instead of A 
even though B is waiting for A



Chapters 30: condition variables
(and sleeping locks)



Queue Lock
RUNNABLE: 

RUNNING: 
WAITING: 

A, B, C, D
<empty> 
<empty> 

0 20 40 60 80 100 120 140 160



Queue Lock
RUNNABLE: 

RUNNING: 
WAITING: 

B, C, D
A
<empty> 

0 20 40 60 80 100 120 140 160

A

lock



Queue Lock
RUNNABLE: 

RUNNING: 
WAITING: 

C, D, A
B
<empty> 

0 20 40 60 80 100 120 140 160

A

lock

B



Queue Lock
RUNNABLE: 

RUNNING: 
WAITING: 

C, D, A

B

0 20 40 60 80 100 120 140 160

A

lock

B

try lock 
(sleep)



Queue Lock
RUNNABLE: 

RUNNING: 
WAITING: 

D, A
C
B

0 20 40 60 80 100 120 140 160

A

lock

B

try lock 
(sleep)

C



Queue Lock
RUNNABLE: 

RUNNING: 
WAITING: 

A, C
D
B
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try lock 
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C D



Queue Lock
RUNNABLE: 
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WAITING: 

A, C

B, D
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try lock 
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C D

try lock 
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Queue Lock
RUNNABLE: 

RUNNING: 
WAITING: 

C
A
B, D

0 20 40 60 80 100 120 140 160

A

lock
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try lock 
(sleep)

C D

try lock 
(sleep)

A



Queue Lock
RUNNABLE: 

RUNNING: 
WAITING: 

A
C
B, D

0 20 40 60 80 100 120 140 160
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lock

B

try lock 
(sleep)

C D

try lock 
(sleep)

A C



Queue Lock
RUNNABLE: 

RUNNING: 
WAITING: 

C
A
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Queue Lock

0 20 40 60 80 100 120 140 160

A

lock

B

try lock 
(sleep)

C D

try lock 
(sleep)

A C A

unlock

RUNNABLE: 
RUNNING: 
WAITING: 

B, C
A
D



Queue Lock
RUNNABLE: 

RUNNING: 
WAITING: 

B, C
A
D

0 20 40 60 80 100 120 140 160
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lock
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try lock 
(sleep)
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try lock 
(sleep)

A C A

unlock



Queue Lock
RUNNABLE: 

RUNNING: 
WAITING: 

C, A
B
D

0 20 40 60 80 100 120 140 160

A

lock

B

try lock 
(sleep)

C D

try lock 
(sleep)

A C A

unlock

B

lock



Concurrency Objectives
Mutual exclusion (e.g., A and B don’t run at same time) 
 - solved with locks 
!
Ordering (e.g., B runs after A) 
 - solved with condition variables



Correct CV’s
wait(cond_t *cv, mutex_t *lock) 
 - assumes the lock is held when wait() is called 
 - puts caller to sleep + releases the lock (atomically) 
 - when awoken, reacquires lock before returning 
!
signal(cond_t *cv) 
 - wake a single waiting thread (if >= 1 thread is waiting) 
 - if there is no waiting thread, just return w/o doing anything

requires kernel 
support!



Produce/Consumer
Pipes 
Web servers 
Memory allocators 
Device I/O 
… 
!

General strategy: use condition variables to make 
consumers wait when there is nothing to consume, 
and make producers wait when buffers are full.



What about 2 consumers (v1)?

Producer:        p1 p2 p4 p5 p6 p1 p2 p3 
Consumer1: c1 c2 c3             
Consumer2:    c1 c2 c3         c2 c4 c5

wait()wait() wait() signal() signal()

Can you find a problematic timeline?



What about 2 consumers (v1)?

Producer:        p1 p2 p4 p5 p6 p1 p2 p3 
Consumer1: c1 c2 c3             
Consumer2:    c1 c2 c3         c2 c4 c5

wait()wait() wait() signal() signal()

does this wake producer or consumer2?

Can you find a problematic timeline?



How to wake the right thread?
One solution: 
!

!

!

!

!

!

Better solution (usually): use two condition variables.

wake all the threads!



Chapters 31: semaphores



CV’s vs. Semaphores
CV rules of thumb: 
 - Keep state in addition to CV’s 
 - Always do wait/signal with lock held 
 - Whenever you acquire a lock, recheck state 
!

How do semaphores eliminate these needs?



Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:
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Semaphore

Thread Queue:
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Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

signal

wait()

B

B



Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

wait()

B



Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

B



Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

B may wait forever 
(if not careful)



Thread Queue: Signal Queue:

Condition Variable (CV)

Semaphore

Thread Queue:

B may wait forever 
(if not careful)

just use counter



Chapters 37: disks



Platter

Disk Internals



Platter is covered with a magnetic film.



Spindle



Surface

Surface



Many platters may be bound to the spindle.





Each surface is divided into rings called tracks. 
A stack of tracks (across platters) is called a cylinder.



The tracks are divided into numbered sectors.

1
23

06
5 4

7
8

9

10
11

15
14

13
12

16

17

18

19

23

22

21

20



Heads on a moving arm can read from each surface.

1
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20



1
23

06
5 4

7
8

9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

spin

Spindle/platters rapidly spin.



Workload
So… 
 - seeks are slow 
 - rotations are slow 
 - transfers are fast 
!

What kind of workload is fastest for disks? 
Sequential: access sectors in order (transfer dominated) 
Random: access sectors arbitrarily (seek+rotation dominated)



Other Improvements
Track Skew 
!

Zones 
!

Cache



Other Improvements
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When reading 16 after 15, the head won’t settle 
quick enough, so we need to do a rotation.
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23

16

17

21
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18

enough time to settle now



Other Improvements
Track Skew 
!

Zones 
!

Cache











Other Improvements
Track Skew 
!

Zones 
!

Cache



Drive Cache
Drives may cache both reads and writes. 
!

OS does this to. 
!

What advantage does drive have for reads? 
!

What advantage does drive have for writes?



Schedulers
OS

Disk



Schedulers
OS

Disk

Scheduler

Scheduler

Where should the 
scheduler go?



SPTF (Shortest Positioning Time First)

Strategy: always choose the request that will take 
the least time for seeking and rotating. 
!

How to implement in disk? 
How to implement in OS?



SPTF (Shortest Positioning Time First)

Strategy: always choose the request that will take 
the least time for seeking and rotating. 
!

How to implement in disk? 
How to implement in OS? 
!

Disadvantages?



SCAN
Sweep back and forth, from one end of disk to the 
other, serving requests as you go. 
!

Pros/Cons?



SCAN
Sweep back and forth, from one end of disk to the 
other, serving requests as you go. 
!

Pros/Cons? 
!

Better: C-SCAN (circular scan) 
 - only sweep in one direction



Chapters 38: RAID



All RAID

Reliability Capacity

RAID-0 0 C*N

RAID-1 1 C*N/2

RAID-4 1 N-1

RAID-5 1 N-1



All RAID

Read Latency Write Latency

RAID-0 D D

RAID-1 D D

RAID-4 D 2D

RAID-5 D 2D



All RAID

Read Latency Write Latency

RAID-0 D D

RAID-1 D D

RAID-4 D 2D

RAID-5 D 2D

but RAID-5 can 
do more in parallel



All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-4 (N-1)*S (N-1)*S (N-1)*R R/2

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R



All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-4 (N-1)*S (N-1)*S (N-1)*R R/2

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R

RAID-5 is strictly better than RAID-4



All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R



All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R

RAID-0 is always fastest and has best capacity. 
(but at cost of reliability)



All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R



All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R

RAID-5 better than RAID-1 for sequential.



All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R



All RAID

Seq Read Seq Write Rand Read Rand Write

RAID-0 N * S N * S N * R N * R

RAID-1 N/2 * S N/2 * S N * R N/2 * R

RAID-5 (N-1)*S (N-1)*S N * R N/4 * R

RAID-1 better than RAID-4 for random write.



Chapters 39: File-System API



File Names
Three types of names: 
 - inode 
 - path 
 - file descriptor



Atomic File Update
Say we want to update file.txt. 
!

1. write new data to new file.txt.tmp file 
2. fsync file.txt.tmp 
3. rename file.txt.tmp over file.txt, replacing it 



Chapters 41: FFS
Treat a disk like a disk! 
!

Place related data together: hopefully makes 
future reads faster.
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Data Blockssuper 
block inodes

0 G

Technique 2: Groups

bitmaps

now: one (smallish) group



Technique 2: Groups

DS IB

zoom out
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Technique 2: Groups

DS IB

strategy: allocate inodes and data blocks in same group.

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

fast fast fast



inode dir

file inode

dir inode

B1

B2

Ind

B1

B2

many

pointer

related

B3

B4
break

br
ea

k

Allocation Policy



Chapters 42: Journaling



Redundancy
Definition: if A and B are two pieces of data, and 
knowing A eliminates some or all the values B could 
B, there is redundancy between A and B. 
!
RAID examples: 
 - mirrored disk (complete redundancy) 
 - parity blocks (partial redundancy)



Problem 3
Give 5 examples of redundancy in FFS 
(or files systems in general).



Problem 3
Give 5 examples of redundancy in FFS 
(or files systems in general). 
!

Dir entries AND inode table. 
Dir entries AND inode link count. 
Data bitmap AND inode pointers. 
Data bitmap AND group descriptor. 
Inode file size AND inode/indirect pointers. 
…



fsck
FSCK = file system checker. 
!
Strategy: after a crash, scan whole disk for 
contradictions. 
!
For example, is a bitmap block correct? 
!
Read every valid inode+indirect.  If an inode points to 
a block, the corresponding bit should be 1



Journal: General Strategy
Never delete ANY old data, until, 
ALL new data is safely on disk. 
!

Ironically, this means we’re adding redundancy 
to fix the problem caused by redundancy.
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New Layout

A
0 5

B 5,2 A B 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2



New Layout

A
0 5

B 5,2 A B 0
6 12111 2 3 4 7 8 9 10

journal



Optimizations
1. Reuse small area for journal 
2. Barriers 
3. Checksums 
4. Circular journal 
5. Logical journal



Chapters 43: LFS
Write data fastest way possible…  Sequentially! 
!

Reads may be slower later (scattered).
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Inode Numbers
Problem: for every data update, we need to do 
updates all the way up the tree. 
!

Why?  We change inode number when we copy it. 
!

Solution: keep inode numbers constant.  Don’t 
base on offset. 
!

Before we found inodes with math.  How now?



Data Structures (attempt 2)
What can we get rid of from FFS? 
 - allocation structs: data + inode bitmaps 
!

Inodes are no longer at fixed offset. 
 - use imap struct to map number => inode.



Garbage Collection
Is data alive?  Use segment summary. 
!

How to clean?  Copy clean data out of M segments 
into N new segments (N < M). 
!

Which segments to clean?  Cold, invalid, etc.



Chapters 44: Integrity
Checksums…



Chapters 47: Distributed Systems



Channels
UDP: unreliable 
!

TCP: reliable 
 - seq numbers, buffering, retry



RPC
int main(…) { 
!
}

Machine A
int foo(char *msg) { 
 … 
}

Machine B
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RPC
int main(…) { 
 int x = foo(); 
} 
!
int foo(char *msg) { 
 send msg to B 
 recv msg from B 
}

Machine A
int foo(char *msg) { 
 … 
}

Machine B

Want main() on A to call foo() on B.



RPC
int main(…) { 
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} 
!
int foo(char *msg) { 
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int foo(char *msg) { 
 … 
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RPC
int main(…) { 
 int x = foo(); 
} 
!
int foo(char *msg) { 
 send msg to B 
 recv msg from B 
}

Machine A
int foo(char *msg) { 
 … 
} 
!
void foo_listener() { 
 while(1) { 
  recv, call foo 
 } 
}

Machine B

Actual calls.



RPC
int main(…) { 
 int x = foo(); 
} 
!
int foo(char *msg) { 
 send msg to B 
 recv msg from B 
}

Machine A
int foo(char *msg) { 
 … 
} 
!
void foo_listener() { 
 while(1) { 
  recv, call foo 
 } 
}

Machine B

What it feels like for programmer.



RPC
int main(…) { 
 int x = foo(); 
} 
!
int foo(char *msg) { 
 send msg to B 
 recv msg from B 
}

Machine A
int foo(char *msg) { 
 … 
} 
!
void foo_listener() { 
 while(1) { 
  recv, call foo 
 } 
}

Machine B

Wrappers.

client 
wrapper

server 
wrapper



RPC Tools
RPC packages help with this with two components. 
!

(1) Stub generation 
      - create wrappers automatically 
!

(2) Runtime library 
      - thread pool 
      - socket listeners call functions on server



Chapters 48: NFS



General Strategy: Export FS

Local FSLocal FS

Client Server

NFS

mount
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General Strategy: Export FS

Local FSLocal FS

Client Server

NFS
read



Stateless
Requests understandable without any context 
about clients. 
!

No fds!



Idempotent
Design API so that there is no harm is executing a 
call more than once. 
!

An API call that has this is “idempotent”.  If f() is 
idempotent, then: 
f() has the same effect as f(); f(); … f(); f()



Cache Consistency
Know update visibility, stale cache.



Chapters 49: AFS



AFS Goals
Primary goal: scalability!  (many clients per server) 
!
More reasonable semantics for concurrent file access. 
!
Not good about handling some failure scenarios.



AFS Design
NFS: export local FS 
!
AFS: present big file tree, store across many machines.

Break tree into “volumes.” 
I.e., partial sub trees.



Update Visibility
Clients updates not seen on servers yet. 
!

AFS solution: 
 - flush on close 
 - buffer whole files on local disk 
!

Concurrent writes?  Last writer (i.e., closer) wins. 
!

Never get mixed data.



Stale Cache
AFS solution: tell clients when data is overwritten. 
!

When clients cache data, ask for “callback” from 
server. 
!

No longer stateless!



Callbacks
What if client crashes? 
!

What if server runs out of memory? 
!

What if server crashes?



GFS



Architecture

Master

Client Worker

(one)

(many)

[metadata]

local FS’s

RPCRPC

RPC

metadata consistency easy

large capacity



Chunk Layer
Break GFS files into large chunks (e.g., 64MB). 
!
Workers store physical chunks in Linux files. 
!
Master maps logical chunk to physical chunk locations.



File Namespace
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chunk map:
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Worker w2

Local FS!
/chunks/942 => data1 
/churks/521 => data2 
…

client

… …

file namespace:
/foo/bar => 924,813 
/var/log => 123,999
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File Namespace

Master

chunk map:
logical 

924 
phys 

w2,w5,w7 

Worker w2

Local FS!
/chunks/942 => data1 
/churks/521 => data2 
…

client

… …

file namespace:
/foo/bar => 924,813 
/var/log => 123,999

read 942: 
offset=0MB 
size=1MB



Master: Crashes + Consistency
File namespace and chunk map are 100% in RAM. 
 - allows master to work with 1000’s of workers 
 - what master crashes?



MapReduce



public void map(LongWritable key, Text value) { 
 String line = value.toString(); 
 StringToke st = new StringToke(line); 
 while (st.hasMoreTokens()) 
  output.collect(st.nextToken(), 1); 
} 
!
public void reduce(Text key, 
                   Iterator<IntWritable> values) { 
  int sum = 0; 
  while (values.hasNext()) 
    sum += values.next().get(); 
  output.collect(key, sum); 
}

what does!
this do?



Flash



Single- vs. Multi- Level Cell

SLC
ch

ar
ge

ch
ar

ge

MLC

expensive 
robust

cheap 
sensitive



Wearout
Problem: flash cells wear out after being 
overwritten too many times. 
!

MLC: ~10K times 
SLC: ~100K times 
!

Usage strategy: wear leveling. 
 - prevents some cells from wearing out while  
   others still fresh.
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one page



Flash Hierarchy
Plane: 1024 to 4096 blocks 
 - planes accessed in parallel 
!

Block: 64 to 256 pages 
 - unit of erase 
!

Page: 2 to 8 KB 
 - unit of read and program



APIs
disk flash

re
ad read sector read page

write sector

w
rit

e

program page 
(0’s)

erase block 
(1’s)



Flash Translation Layer
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Flash Translation Layer
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block 1

11
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11 
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0 1 2 3 4 5 6 7

physical:

logical:
must eventually 

be garbage collected



Search Engines
PageRank: important? 
!

Inverted index: relevant?



Crawler Web 
Servers

Snapshot 
of Pages IndexesIndexing

Internet

Search 
Engine

Webpages Searchers



Strategy: Count Backlinks
Importance: 
A = 1 
B = 3.5 
C = 0.5 (from B’s vote) 
D = 0 
E = 0.5 (from A’s vote) 
F = 0.5

A B

C

DE

F

0.5

0.5

0.5 0.5

Why do A and B get same votes?  B is more important.



Circular Votes
Want: number of votes you get determines number 
of votes you give. 
!

Problem: changing A’s votes changes B’s votes 
changes A’s votes… 
!

Fortunately, if you just keep updating every 
PageRank, it eventually converges.



Intuition: Random Surfer
Imagine! 
!

1. a bunch of web surfers start on various pages 
2. they randomly click links, forever 
3. you measure webpage visit frequency 
!

Visit frequency will be proportional to PageRank.
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Graph 1

A B C

0.50.25 0.25

Rank(B) = (0.25 / 1) + (0.25 / 1) = 0.5 
Rank(A) = (0.5 / 2) = 0.25 
Rank(C) = (0.5 / 2) = 0.25

Rank(x) = c
y∈LinksTo(x)

Σ Rank(y)
Ny



Graph 3
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C D



Graph 3

A B

Problem: Surfers get stuck in C and D. 
C+D called a rank “sink”.  A and B get 0 rank.

C D
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Inverted Index

docID wordID
1442 5
1442 922
1442 2
1442 66
1442 42
1442 5

… …

forward index
wordID docID

5 1442
922 1442
2 1442
66 1442
42 1442
5 1442
… …

swap columns



Inverted Index

docID wordID
1442 5
1442 922
1442 2
1442 66
1442 42
1442 5

… …

forward index
wordID docID

1 244
2 1442
5 1442
5 1442
5 999
6 133
… …

sort by wordID



Inverted Index

docID wordID
1442 5
1442 922
1442 2
1442 66
1442 42
1442 5

… …

forward index inverted index
wordID docID

1 244
2 1442
5 1442,1442,999
6 133,411
7 1442,133,999
9 411,875
… …


