
[537] Journaling
Chapter 42 
Tyler Harter 

11/12/14



FFS Review



Problem 1

What structs must be updates in addition to the 
data block itself?  [worksheet]



Problem 1

What structs must be updates in addition to the 
data block itself?  [worksheet] 
!

Data block bitmap. 
Group descriptor. 
Inode.



Fast File System
A few contributions: 
 - hybrid block size 
 - groups 
 - smart allocation



Fast File System
A few contributions: 
 - hybrid block size 
 - groups 
 - smart allocation



Problem 2

Compute waste in worksheet.



Hybrid: Blocks + Fragments
Big blocks: fast 
Small blocks: space efficient 
!

FFS split regular blocks into fragments when less 
than a block is needed. 
!

Saving less than fragment size wastes space. 
!

Appending less than block size causes copies.



New System Call
FFS gives new API to exposes block/fragment size: 
!
int fstatvfs(int fd, struct statvfs *buf); 
!
struct statvfs { 
 unsigned long  f_bsize;  // block size 
 unsigned long  f_frsize; // fragment size 
 ... 
};



Fast File System
A few contributions: 
 - hybrid block size 
 - groups 
 - smart allocation



Old UNIX File System

Data Blockssuper 
block inodes

0 N

bitmaps

slow



Fast File System is Fast

DS IB

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

fast fast fast

With groups, each inode has data blocks near it.



Fast File System
A few contributions: 
 - hybrid block size 
 - groups 
 - smart allocation



Challenge
The file system is one big tree. 
!

All directories and files have a common root. 
!

In some sense, all data in the same FS is related. 
!

Trying to put everything near everything else will 
leave us with the same mess we started with.



Revised Strategy

Put more-related pieces of data near each other. 
!

Put less-related pieces of data far from each other.



inode dir

file inode

dir inode

B1

B2

Ind

B1

B2

many

pointer

related

B3

B4



inode dir

file inode

dir inode

B1

B2

Ind

B1

B2

many

pointer

related

B3

B4
break

Move to new groups for new inodes. 
Utilizes inodes in all groups.



inode dir

file inode

dir inode

B1

B2

Ind

B1

B2

many

pointer

related

B3

B4
break

br
ea
k

Break up large files so as not to dominate 
all the data in one group.



Redundancy



Redundancy
Definition: if A and B are two pieces of data, and 
knowing A eliminates some or all the values B could 
B, there is redundancy between A and B. 
!
RAID examples: 
 - mirrored disk (complete redundancy) 
 - parity blocks (partial redundancy)



Subtle Example
Definition: if A and B are two pieces of data, and 
knowing A eliminates some or all the values B could 
B, there is redundancy between A and B. 
!
Superblock: field contains total blocks in FS. 
!
Inode: field contains pointer to data block. 
!
Is there redundancy between these fields?  Why?



Subtle Example
Superblock: field contains total blocks in FS. 
DATA = ??? 
!
Inode: field contains pointer to data block. 
DATA in {0, 1, 2, …, UINT_MAX}



Subtle Example
Superblock: field contains total blocks in FS. 
DATA = N 
!
Inode: field contains pointer to data block. 
DATA in {0, 1, 2, …, UINT_MAX}



Subtle Example
Superblock: field contains total blocks in FS. 
DATA = N 
!
Inode: field contains pointer to data block. 
DATA in {0, 1, 2, …, N - 1} 
!
Pointers to block N or after are invalid!



Subtle Example
Superblock: field contains total blocks in FS. 
DATA = N 
!
Inode: field contains pointer to data block. 
DATA in {0, 1, 2, …, N - 1} 
!
Pointers to block N or after are invalid! 
!
Total-blocks field has redundancy with inode pointers.



Problem 3
Give 5 examples of redundancy in FFS 
(or files systems in general).



Problem 3
Give 5 examples of redundancy in FFS 
(or files systems in general). 
!

Dir entries AND inode table. 
Dir entries AND inode link count. 
Data bitmap AND inode pointers. 
Data bitmap AND group descriptor. 
Inode file size AND inode/indirect pointers. 
…



Redundancy Uses
Redundancy may improve: 
 - performance 
 - reliability 
!
Redundancy hurts: 
 - capacity



Redundancy Uses
Redundancy may improve: 
 - performance (e.g., FFS group descriptor) 
 - reliability (e.g., RAID-5 parity) 
!
Redundancy hurts: 
 - capacity



Redundancy Challenges
Redundancy implies: 
certain combinations of values are illegal. 
!

Names for bad combinations: 
 - contradictions 
 - inconsistencies



Example
Superblock: field contains total blocks in FS. 
DATA = 1024 
!
Inode: field contains pointer to data block. 
DATA in {0, 1, 2, …, 1023} 



Example
Superblock: field contains total blocks in FS. 
DATA = 1024 
!
Inode: field contains pointer to data block. 
DATA = 241 
!
Consistent.



Example
Superblock: field contains total blocks in FS. 
DATA = 1024 
!
Inode: field contains pointer to data block. 
DATA = 2345 
!
Inconsistent.



Consistency Challenge
We may need to do several disk writes to redundant 
blocks. 
!
We don’t want to be interrupted between writes.



Consistency Challenge
We may need to do several disk writes to redundant 
blocks. 
!
We don’t want to be interrupted between writes. 
!
Things that interrupt us: 
 - power loss 
 - kernel panic, reboot 
 - user hard reset



Problem 4
Suppose we are appending to a file, and must 
update the following: 
 - inode 
 - data bitmap 
 - data block 
!

What happens if we crash after only updating 
some of these?



Partial Update
a) bitmap: lost block 
b) data: nothing bad 
c) inode: point to garbage, somebody else may use 
d) bitmap and data: lost block 
e) bitmap and inode: point to garbage 
f) data and inode: somebody else may use



Partial Update
a) bitmap: lost block 
b) data: nothing bad 
c) inode: point to garbage, somebody else may use 
d) bitmap and data: lost block 
e) bitmap and inode: point to garbage 
f) data and inode: somebody else may use 
!
What is in “garbage”?



FSCK



fsck
FSCK = file system checker. 
!
Strategy: after a crash, scan whole disk for 
contradictions.



fsck
FSCK = file system checker. 
!
Strategy: after a crash, scan whole disk for 
contradictions. 
!
For example, is a bitmap block correct? 
!
Read every valid inode+indirect.  If an inode points to 
a block, the corresponding bit should be 1



fsck
Other checks: 
!

Do superblocks match? 
Do number of dir entries equal inode link counts? 
Do different inodes ever point to same block? 
Do directories contain “.” and “..”? 
…



fsck
Other checks: 
!

Do superblocks match? 
Do number of dir entries equal inode link counts? 
Do different inodes ever point to same block? 
Do directories contain “.” and “..”? 
… 
!

How to solve problems?



Link Count (example 1)

Dir Entry

Dir Entry

inode!
link_count = 1



Link Count (example 1)

Dir Entry

Dir Entry

inode!
link_count = 2 fix!



Link Count (example 2)

inode!
link_count = 1



Link Count (example 2)

inode!
link_count = 1

Dir Entry fix!



Link Count (example 2)

inode!
link_count = 1

Dir Entry fix!

ls -l / 
total 150 
drwxr-xr-x  401 18432 Dec 31  1969 afs/ 
drwxr-xr-x.   2 4096  Nov  3 09:42 bin/ 
drwxr-xr-x.   5 4096  Aug  1 14:21 boot/ 
dr-xr-xr-x.  13 4096  Nov  3 09:41 lib/ 
dr-xr-xr-x.  10 12288 Nov  3 09:41 lib64/ 
drwx------.   2 16384 Aug  1 10:57 lost+found/ 
...



Data Bitmap

inode!
link_count = 1

block!
(number 123)

data bitmap!
0011001100

for block 123



Data Bitmap

inode!
link_count = 1

block!
(number 123)

data bitmap!
0011001101

for block 123

fix!



Data Bitmap

inode!
link_count = 1

block!
(number 123)

data bitmap!
0011001101

for block 123

fix! why in inode 
the authority?



Duplicate Pointers

inode!
link_count = 1

block!
(number 123)

inode!
link_count = 1



Duplicate Pointers

inode!
link_count = 1

block!
(number 123)

inode!
link_count = 1

block!
(number 789)

copy



Duplicate Pointers

inode!
link_count = 1

block!
(number 123)

inode!
link_count = 1

block!
(number 789)



Duplicate Pointers

inode!
link_count = 1

block!
(number 123)

inode!
link_count = 1

block!
(number 789)

fix!



Bad Pointer

inode!
link_count = 1

super block!
tot-blocks=8000

9999



Bad Pointer

inode!
link_count = 1

super block!
tot-blocks=8000

fix!



fsck
It’s not always obvious how to patch the file system 
back together. 
!

We don’t know the “correct” state, just a consistent 
one.



fsck
It’s not always obvious how to patch the file system 
back together. 
!

We don’t know the “correct” state, just a consistent 
one. 
!

Easy way to get consistency: reformat disk!



fsuck is very slow…

Checking a 600GB disk takes ~70 minutes.

ffsck: The Fast File System Checker 
!

Ao Ma, EMC Corporation and University of Wisconsin—Madison; Chris Dragga, Andrea C. 
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison



Journaling



Goals
It’s ok to do some recovery work after crash, 
but not to read entire disk. 
!

Don’t just get to a consistent state, get to a 
“correct” state.



Goals
It’s ok to do some recovery work after crash, 
but not to read entire disk. 
!

Don’t just get to a consistent state, get to a 
“correct” state. 
!

Strategy: atomicity.



Atomicity
Concurrency definition: 
operations in critical sections are not interrupted 
by operations on other critical sections. 
!

Persistence definition: 
collections of writes are not interrupted by 
crashes.  Get all new or all old data.



Consistency vs Correctness
Say a set of writes moves the disk from state A to B.

A B



Consistency vs Correctness
Say a set of writes moves the disk from state A to B.

A B

consistent states



Consistency vs Correctness
Say a set of writes moves the disk from state A to B.

A B

consistent states

all states



Consistency vs Correctness
Say a set of writes moves the disk from state A to B.

A B

consistent states

all states

fsck gives consistency.  Atomicity gives us A or B.



Consistency vs Correctness
Say a set of writes moves the disk from state A to B.

A B

consistent states

all states

fsck gives consistency.  Atomicity gives us A or B.

empty



General Strategy
Never delete ANY old data, until, 
ALL new data is safely on disk. 
!



General Strategy
Never delete ANY old data, until, 
ALL new data is safely on disk. 
!

Ironically, this means we’re adding redundancy 
to fix the problem caused by redundancy.



Fight Redundancy with Redundancy

Want to replace X with Y.  Original:

DISK

X f(X)
redundant



Fight Redundancy with Redundancy

Want to replace X with Y.  Original:

DISK

X f(X) good time to crash



Fight Redundancy with Redundancy

Want to replace X with Y.  Original:

DISK

Y f(X) bad time to crash



Fight Redundancy with Redundancy

Want to replace X with Y.  Original:

DISK

Y f(Y) good time to crash



Fight Redundancy with Redundancy

Want to replace X with Y.



Fight Redundancy with Redundancy

Want to replace X with Y.  With journal:

DISK

X f(X) good time to crash



Fight Redundancy with Redundancy

Want to replace X with Y.  With journal:

DISK

X f(X)

Y

good time to crash



Fight Redundancy with Redundancy

Want to replace X with Y.  With journal:

DISK

X f(X)

Y

good time to crash

f(Y)



Fight Redundancy with Redundancy

Want to replace X with Y.  With journal:

DISK

Y f(X)

Y

good time to crash

f(Y)



Fight Redundancy with Redundancy

Want to replace X with Y.  With journal:

DISK

Y f(Y)

Y

good time to crash

f(Y)



Fight Redundancy with Redundancy

Want to replace X with Y.  With journal:

DISK

Y f(Y) good time to crash

f(Y)



Fight Redundancy with Redundancy

Want to replace X with Y.  With journal:

DISK

Y f(Y) good time to crash



Fight Redundancy with Redundancy

Want to replace X with Y.  With journal:

DISK

Y f(Y) With journaling, it’s 
always a good time 

to crash!



Problem 5
Write an algorithm for a simple case of atomic 
block update.



Problem 5
Write an algorithm for a simple case of atomic 
block update.  Bad example:

Time Block 0: Alice Block 1: Bob extra extra extra
1 12 3 0 0 0
2 12 5 0 0 0
3 10 5 0 0 0



Problem 5
Write an algorithm for a simple case of atomic 
block update.  Bad example:

Time Block 0: Alice Block 1: Bob extra extra extra
1 12 3 0 0 0
2 12 5 0 0 0
3 10 5 0 0 0

don’t crash here!



Journal New Data
Time Block 0: Alice Block 1: Bob extra extra extra

1 12 3 0 0 0
2 12 3 10 0 0
3 12 3 10 5 0
4 12 3 10 5 1
5 10 3 10 5 1
6 10 5 10 5 1
7 10 5 10 5 0



void update_accounts(int cash1, int cash2) { 
 write(cash1 to block 2) // Alice backup 
 write(cash2 to block 3) // Bob backup 
 write(1 to block 4)     // backup is safe 
 write(cash1 to block 0) // Alice 
 write(cash2 to block 1) // Bob 
 write(0 to block 4)     // discard backup 
} 
!
void recovery() { 
 if(read(block 4) == 1) { 
  write(read(block 2) to block 0) // restore Alice 
  write(read(block 3) to block 1) // restore Bob 
  write(0 to block 4)             // discard backup 
 } 
}



Journal Old Data
Time Block 0: Alice Block 1: Bob extra extra extra

1 12 3 0 0 0
2 12 3 12 0 0
3 12 3 12 3 0
4 12 3 12 3 1
5 10 3 12 3 1
6 10 5 12 3 1
7 10 5 12 3 0



Terminology
The extra blocks we use are called a “journal”. 
!

The writes to it are a “journal transaction”. 
!

The last block where we write the valid bit is called 
a “journal commit block”. 
!

File systems typically write new data to the journal.



Small Disk

0 1 2 3 4

What if we want to use a larger disk?



Big Disk

0 N-1

What if we want to use a larger disk?

…
N 2N2N-1

Disadvantages?



Big Disk

0 N-1

What if we want to use a larger disk?

…
N 2N2N-1

Disadvantages? 
 - slightly <half of spaces is usable 
 - transactions copy all the data



Small Journals
Still need to write all the new data elsewhere first. 
!

Nice if we could use a small area for journalling, 
but it could be used as backup for any blocks. 
!

How?



Small Journals
Still need to write all the new data elsewhere first. 
!

Nice if we could use a small area for journalling, 
but it could be used as backup for any blocks. 
!

How? 
!

Store block numbers in a transaction header.



New Layout

0 5

0
6 12111 2 3 4 7 8 9 10

journal



New Layout

0 5

0
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2



New Layout

0 5

5,2 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2



New Layout

0 5

5,2 A 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2



New Layout

0 5

5,2 A B 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2



New Layout

0 5

5,2 A B 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2



New Layout

A
0 5

5,2 A B 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2



New Layout

A
0 5

B 5,2 A B 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2



New Layout

A
0 5

B 5,2 A B 0
6 12111 2 3 4 7 8 9 10

journal



New Layout

A
0 5

B 5,2 A B 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6



New Layout

A
0 5

B 4,6 A B 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6



New Layout

A
0 5

B 4,6 C B 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6



New Layout

A
0 5

B 4,6 C T 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6



New Layout

A
0 5

B 4,6 C T 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6



New Layout

C A
0 5

B 4,6 C T 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6



New Layout

C A T
0 5

B 4,6 C T 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6



New Layout

C A T
0 5

B 4,6 C T 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6



Optimizations
1. Reuse small area for journal 
2. Barriers 
3. Checksums 
4. Circular journal 
5. Logical journal



Ordering

C A T
0 5

B 4,6 C T 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6



Ordering

C A T
0 5

B 4,6 C T 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

write order: 9, 10, 11, 12, 4, 6, 12



Ordering

C A T
0 5

B 4,6 C T 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

write order: 9, 10, 11, 12, 4, 6, 12

Enforcing total ordering is inefficient.  Why?



Ordering

C A T
0 5

B 4,6 C T 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

write order: 9,10,11 | 12 | 4,6 | 12

Use barriers at key points in time.  Barrier does cache flush.



Optimizations
1. Reuse small area for journal 
2. Barriers 
3. Checksums 
4. Circular journal 
5. Logical journal



Checksum

C A T
0 5

B 4,6 C T 0
6 12111 2 3 4 7 8 9 10

journal

write order: 9,10,11 | 12 | 4,6 | 12



Checksum

C A T
0 5

B 4,6 C T (ck)
6 12111 2 3 4 7 8 9 10

journal

write order: 9,10,11,12 | 4,6 | 12

In last transaction block, store checksum of rest of transaction.



Optimizations
1. Reuse small area for journal 
2. Barriers 
3. Checksums 
4. Circular journal 
5. Logical journal



Write Buffering
Note: after journal write, there is no rush to checkpoint. 
!
Journaling is sequential, checkpointing is random. 
!
Solution?  Delay checkpointing for some time.



Write Buffering
Note: after journal write, there is no rush to checkpoint. 
!
Journaling is sequential, checkpointing is random. 
!
Solution?  Delay checkpointing for some time. 
!
Difficulty: need to reuse journal space.



Write Buffering
Note: after journal write, there is no rush to checkpoint. 
!
Journaling is sequential, checkpointing is random. 
!
Solution?  Delay checkpointing for some time. 
!
Difficulty: need to reuse journal space. 
!
Solution: keep many transactions for un-checkpointed data.



Circular Buffer

Journal:

0 128 MB



T1

Circular Buffer

Journal:

0 128 MB

transaction!



T1

Circular Buffer

Journal:

0 128 MB



T2T1

Circular Buffer

Journal:

0 128 MB

transaction!



T2T1

Circular Buffer

Journal:

0 128 MB



T3T2T1

Circular Buffer

Journal:

0 128 MB

transaction!



T3T2T1

Circular Buffer

Journal:

0 128 MB



T4T3T2T1

Circular Buffer

Journal:

0 128 MB

transaction!



T4T3T2T1

Circular Buffer

Journal:

0 128 MB



T4T3T2

Circular Buffer

Journal:

0 128 MB

checkpoint and cleanup



T4T3T2

Circular Buffer

Journal:

0 128 MB



T5 T4T3T2

Circular Buffer

Journal:

0 128 MB

transaction!



T5 T4T3T2

Circular Buffer

Journal:

0 128 MB



T5 T4T3

Circular Buffer

Journal:

0 128 MB

checkpoint and cleanup



Optimizations
1. Reuse small area for journal 
2. Barriers 
3. Checksums 
4. Circular journal 
5. Logical journal



Physical Journal

TxB 
length=3 

blks=4,6,1

0000000000 
0000000000 
0000000000 
0000100000

inode 
… 

addr[?]=521
data block TxE 

(checksum)



Physical Journal

TxB 
length=3 

blks=4,6,1

0000000000 
0000000000 
0000000000 
0000100000

inode 
… 

addr[?]=521
data block TxE 

(checksum)

Changes



Logical Journal

TxB 
length=1 list of 

changes
TxE 

(checksum)

Logical journals record changes to 
bytes, not changes to blocks.



Optimizations
1. Reuse small area for journal 
2. Barriers 
3. Checksums 
4. Circular journal 
5. Logical journal



File System Integration
How should FS use journal?



File System Integration
How should FS use journal?  Option 1:

FS

Journal

Scheduler

Disk



File System Integration
How should FS use journal?  Option 1:

FS

Journal

Scheduler

Disk

API?



Journal API
With RAID we built a fast, reliable logical disk. 
!

Can we build an atomic disk with the same API? 



Journal API
With RAID we built a fast, reliable logical disk. 
!

Can we build an atomic disk with the same API? 
!

Standard block calls: 
writeBlk() 
readBlk() 
flush()



Journal API
With RAID we built a fast, reliable logical disk. 
!

Can we build an atomic disk with the same API? 
!

Standard block calls: 
writeBlk() 
readBlk() 
flush()

which calls must be atomic?



Handle API
h = getHandle(); 
writeBlk(h, blknum, data); 
finishHandle(h); 



Handle API
h = getHandle(); 
writeBlk(h, blknum, data); 
finishHandle(h); 
!

Blocks in the same handle must be written 
atomically.



File System Integration
Observation: some data (e.g., user data) is less important. 
!
If we want to only journal FS metadata, we need tighter 
integration.

FS

Journal

Scheduler

Disk



File System Integration
Observation: some data (e.g., user data) is less important. 
!
If we want to only journal FS metadata, we need tighter 
integration.

FS!
Journal

Scheduler

Disk



Writeback Journal
Strategy: journal all metadata, including: 
superblock, bitmaps, inodes, indirects, directories 
!

For regular data, write it back whenever it’s 
convenient.  Of course, files may contain garbage.



Writeback Journal
Strategy: journal all metadata, including: 
superblock, bitmaps, inodes, indirects, directories 
!

For regular data, write it back whenever it’s 
convenient.  Of course, files may contain garbage. 
!

What is the worst type of garbage we could get?



Writeback Journal
Strategy: journal all metadata, including: 
superblock, bitmaps, inodes, indirects, directories 
!

For regular data, write it back whenever it’s 
convenient.  Of course, files may contain garbage. 
!

What is the worst type of garbage we could get? 
How to avoid?



Writeback Journal

?
0 5

B 0
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I



Writeback Journal

?
0 5

B TxB B’ I’ 0
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I



Writeback Journal

?
0 5

B TxB B’ I’ TxE
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I



Writeback Journal

?
0 5

B TxB B’ I’ TxE
6 1211

I’
1 2 3 4 7 8 9 10

journal

transaction: append to inode I



Writeback Journal

?
0 5

B’ TxB B’ I’ TxE
6 1211

I’
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

what if we crash now?  Solutions?



Ordered Journaling
Still only journal metadata. 
!

But write data before the transaction. 
!

May still get scrambled data on update. 
!

But appends will always be good. 
!

No leaks of sensitive data!



Ordered Journal

?
0 5

B 0
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I



Ordered Journal

D
0 5

B 0
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I



Ordered Journal

D
0 5

B TxB I’ B’ 0
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I



Ordered Journal

D
0 5

B TxB I’ B’ TxE
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I



Ordered Journal

D
0 5

B TxB I’ B’ TxE
6 1211

I’
1 2 3 4 7 8 9 10

journal

transaction: append to inode I



Ordered Journal

D
0 5

B’ TxB I’ B’ TxE
6 1211

I’
1 2 3 4 7 8 9 10

journal

transaction: append to inode I



Announcements
Exam this Friday 
 - 7-9pm, CHEM 1351 (same as last time) 
 - 1 sheet notes 
 - Chapters 30 to 41 (inclusive) 
!
Review today 
 - 7-9pm, room CS 1221.  Bring questions. 
!
No regular discussion this week. 
!
Office hours 
 - 1pm today, in office 
 - 2:30 - 3:45pm tomorrow, in lab



Conclusion
Most modern file systems use journals. 
!

FSCK is still useful for weird cases 
 - bit flips 
 - FS bugs 
!

Some file systems don’t use journals, but they still 
(usually) must write new data before deleting old.


