1537 Virtual Machine Monitors

Chapter 101 (appendix)
Tyler Harter
10/08/14

Virtual Machines

Goal: run an OS over an OS

Who has done this”

Why might it be useful?

Virtual Machines

Goal: run an OS (guest) over an OS (host)

Who has done this”

Why might it be useful?

Motivation

Functionality: want Linux programs on Mac OS X
Consolidation: avoid light utilization
Cloud computing: fast scalability

Testing/Development: for example, xv6

Virtualization Software

Desktop: VMware, VirtualBox

Cloud: Amazon ec2, Microsoft Azure, DigitalOcean

Virtualization Software

Desktop: VMware, VirtualBox

Cloud: Amazon ec?2, Microsoft Azure, DigitalOcean

Demos. ..

Needs

An OS expects to run on raw hardware.
Need to give illusion to OS of private ownership of H/W.

Didn’t we already virtualize H/W? How is this different?

Process Virtualization

We have done two things:
- given illusion of private resources
- provided more friendly interface

The interface (what processes see/use):
- virtual memory (w/ holes)

- most instructions (but not lidt, etc)

- most registers (but not cr3, etc)

- syscalls, ftiles, etc

Process Virtualization

We have done two things:
- given illusion of private resources

- provided-mere-friendly-interface (get rid of this)

The interface (what processes see/use):
- virtual memory (w/ holes)

- most instructions (but not lidt, etc)

- most registers (but not cr3, etc)

- syscalls, ftiles, etc

Machine Virtualization

We have done two things:
- given illusion of private resources

- provided-mere-friendly-interface (get rid of this)

The interface (what guest OS’s see/use):

- “physical” memory (no holes), PT management
- all instructions (even dangerous ones!)

- all registers

- "physical” devices, interrupts, disks, etc

Before

Now

Now

BN R0 P2 RS e ez o

Now

BN R0 P2 RS e ez o

Now

BN R0 P2 RS e ez o

op)
-+
@p)
D
D
@)

Approach 1

Write a simulator.

For example:
- big array for “physical” memory
- run over OS instructions, call function for each

Approach 1

Write a simulator.

For example:

0Ig array for “physica

run over OS instructio

Problems?

" memory

ns, call function for each

Approach 1

Write a simulator.

For example:
- big array for “physical” memory
- run over OS instructions, call function for each

Problems”? (performance)
Solution”?

Approach 1

Write a simulator.

For example:
- big array for “physical” memory
- run over OS instructions, call function for each

Problems”? (performance)
Solution”? Limited Direct Execution!

Approach 2: Limited Direct Execution

—Hypervisor runs in kerne
mode and can do anything.

Processes and guest OS’s
‘un In user mode when
they don't need to do
anything privileged.

LDE is like baby proofing!

Process/Guest Privilege

Process: how do processes correctly do privileged ops?

Process/Guest Privilege

Process: how do processes correctly do privileged ops?

Guest: why can't guest OS’s do the same”?

Process/Guest Privilege

Process: how do processes correctly do privileged ops?
Guest: why can't guest OS’s do the same”?

Process: What should an OS do when a process tries to
call something like 1idt?

Process/Guest Privilege

Process: how do processes correctly do privileged ops?
Guest: why can't guest OS’s do the same”?

Process: What should an OS do when a process tries to
call something like 1idt?

Guest: What should a hypervisor do when a guest OS
tries to call something like 1idt?

Virtual CPU

Example

How to emulate an 1idt call.

Example

How to emulate an 1idt call.

Review IDT table...

Process P
/ AN

RAM

movl $6, %eax; int $64

struct gatedesc idt[256] (trap.c)

Process P
/ AN
RAM
movl $6, %eax; int $64

\

trap-table index
for syscalls

Process P

/

RAM

movl $6, %eax; int $64

\

trap-table index
for syscalls

Process P

/ N\

RAM

Process P
/ AN

S
e

keyboard timer segfault

Example

How to emulate an 1idt call.

Review IDT table...

Example

How to emulate an 1idt call.
Review |IDT table...

Bootup of VMM and guest OS.

VMM H/W Guest OS

time

VMM H/W Guest OS

create table

time

e [

VMM H/W Guest OS

create table
lIdt

time

T

dt

VMM H/W Guest OS

create table
lidt
switch to guest

time

T

dt

VMM H/W Guest OS

create table
lidt
switch to guest
user mode

T

dt

time

VMM H/W Guest OS

create table
lidt
switch to guest
user mode
create table

T

dt

time

VMM H/W Guest OS

create table
lidt
switch to guest
user mode

create table
lIdt

f f

dt 077

time

VMM H/W Guest OS

create table
lidt
switch to guest
user mode

create table
lIdt

T

dt

time

VMM H/W Guest OS

create table
lidt
switch to guest
user mode

create table
lIdt

time

kernel mode

T

dt

VMM H/W Guest OS

create table
lidt
switch to guest
user mode

create table
lIdt

time

kernel mode

store guest idt addr

T
dt

VMM H/W Guest OS

create table
lidt
switch to guest
user mode

create table
lIdt

time

kernel mode

store guest idt addr

veeor [

VMM H/W Guest OS

create table
lidt
switch to guest
user mode

time

create table
lidt
kernel mode
store guest idt addr

f f

vmm timer guest timer

Timer Interrupt Hanalers

Host Trap Handler Guest OS Trap Handler
tick() { tick() {
1f (..) { maybe switch process;
switch OS; return-from-trap;
} else { }
call OS tick;
}

}

timer interrupt!

ypervisor decides to keep running Linux

Linux tries to return-from-trap to P2,
H/W intercepts and switches to Hypervisor.

ypervisor switches to P2 for Linux.

timer interrupt!

timer interrupt!

ypervisor decides to switch to Windows.

Windows tries to return-from-trap to P2,
H/W intercepts and switches to Hypervisor.

timer interrupt!

Example

How to emulate an 1idt call.
Review |IDT table...

Bootup of VMM and guest OS.

Example

How to emulate an 1idt call.
Review IDT table...
Bootup of VMM and guest OS.

What it process in guest calls 1idt”

P1 calls lidt!

Linux kills P1. Privileged?

Linux tries to return-from-trap to P2. Privileged?

System Calls

System calls must also have the VMM in the middle...

Process Guest OS

system call:
trap to OS

time

Process Guest OS

system call:

trap to OS
process trapped:

call os Trap handler
(at reduced privilege)

time

Process Guest OS

system call:

trap to OS
process trapped:
call os Trap handler
(at reduced privilege)

time

OS trap handler:
decode trap, exec syscall
return-from-trap

Process Guest OS VMM
system call:
trap to OS

process trapped:
call os Trap handler
(at reduced privilege)

time

OS trap handler:
decode trap, exec syscall
return-from-trap
OS tried return-from-trap:
do real return-from-trap

Process

Guest OS

system call:
trap to OS

time

\4

resume execution:

(@PC after trap)

OS trap handler:
decode trap, exec syscall
return-from-trap

process trapped:
call os Trap handler
(at reduced privilege)

OS tried return-from-trap:
do real return-from-trap

Virtual Memory

How to get more pages”?

Process: asks politely, with sbrk or mmap syscall

OS: just uses it!

VMM needs to intercept such usage. How?
(assume software-managed TLB)

Virt Addr Space “Physical” Memory Machine Memory
0 0 0

]
2
3

OO~ LN =

~NOoO OB~ N =

OS Page Table VMM Page Table
VPN O => PEN 2 “FN O => MFN 1
VPN 1 =>PFENO PFN 2 => MEN 4
VPN 3 =>PFN 5 “FN5 => MEN 2
Virt Addr Space “Physical” Memory Machine Memory
0 0
1
2
3

~NOoO OB~ N =

OS Page Table VMM Page Table
VPN O => PEN 2 “FN O => MFN 1
VPN 1 =>PFENO PFN 2 => MEN 4
VPN 3 =>PFN 5 “FN5 => MEN 2

Strategy: store VPN => MFN mapping in TL

3.

OS Page Table VMM Page Table
VPN O => PEN 2 “FN O => MFN 1
VPN 1 =>PFENO PFN 2 => MEN 4
VPN 3 =>PFN 5 “FN5 => MEN 2

Strategy: store VPN => MFN mapping in TLB.

- OS tries to insert VPN => PFEN to TLB
- VMM intercepts it, looks up in its PT, inserts VPN => MFN

Examples...

OS Page Table VMM Page Table
VPN O => PEN 2 “FN O => MFN 1
VPN 1 =>PFENO PFN 2 => MEN 4
VPN 3 =>PFN 5 “FN5 => MEN 2

Strategy: store VPN => MFN mapping in TLB.

- OS tries to insert VPN => PFEN to TLB
- VMM intercepts it, looks up in its PT, inserts VPN => MFN

Examples...
Timeline...

Process Guest OS

time

Process Guest OS

Mem load
TLB miss: trap

time

Process Guest OS

Mem load

TLB miss: trap
Call OS TLB handler

(reducing privilege)

time

Process Guest OS

Mem load

TLB miss: trap
Call OS TLB handler

(reducing privilege)
Extract VPN from VA.
Do page table lookup.
Get PFN, update TLB

time

Process Guest OS VMM
Mem load
TLB miss: trap

Call OS TLB handler
(reducing privilege)
Extract VPN from VA.
Do page table lookup.
Get PFN, update TLB

time

Unprivileged code trying
to update TLB! Tried to
install VPN-to-PFN.
Insert VPN-to-MFN.
Jump back to OS.

Process

Guest OS

VMM

Mem load
TLB miss: trap

time

Extract VPN from VA.

Do page table lookup.

Get PFN, update TLB

return from trap

Call OS TLB handler
(reducing privilege)

Unprivileged code trying
to update TLB! Tried to
install VPN-to-PFN.
Insert VPN-to-MFN.
Jump back to OS.

Process

Guest OS

VMM

Mem load
TLB miss: trap

time

Extract VPN from VA.

Do page table lookup.

Get PFN, update TLB

return from trap

Call OS TLB handler
(reducing privilege)

Unprivileged code trying
to update TLB! Tried to
install VPN-to-PFN.
Insert VPN-to-MFN.
Jump back to OS.

Return from trap.

Process

Guest OS

VMM

Mem load
TLB miss: trap

time

resume execution:
(@PC of instruction)

Extract VPN from VA.

Do page table lookup.

Get PFN, update TLB

return from trap

Call OS TLB handler
(reducing privilege)

Unprivileged code trying
to update TLB! Tried to
install VPN-to-PFN.
Insert VPN-to-MFN.
Jump back to OS.

Return from trap.

Proplems

Information Gap

OS’s were not built to run on top of a VMM.
(less true than it used to be)

H/W interface does not give VMM enough info
about guest OS.

In particular, is the OS using all its resources”

Information Gap

OS’s were not built to run on top of a VMM.
(less true than it used to be)

H/W interface does not give VMM enough info
about guest OS.

In particular, is the OS using all its resources”

—xamples of waste from xve...

Waste 1 (proc.c)

()

struct *P ;
for(;3)4

sti();

acquire(&ptable. lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p—>state !'= RUNNABLE)
continue;

I3
release(&ptable. lock);

Waste 1 (proc.c)

void scheduler(void) {

struct proc *p;

for(;i)d
// Enable interrupts on this processor.
sti();
// Loop over process table looking for process to run.
acquire(&ptable. lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p—>state != RUNNABLE)
continue;

p How does the VMM know
release(&ptable. lock); to give CPU to another OS?

Waste 2 (kalloc.c)
struct {

struct spinlock lock;
struct run xfreelist:
} kmem:

extern char end[]:

void (void) {
char xp;

initlock(&kmem. lock, "kmem");
p = (charx)PGROUNDUP((uint)end);
for(; p + PGSIZE <= (charx)PHYSTOP; p += PGSIZE)

kfree(p);

Waste 2 (kalloc.c)
struct {

struct spinlock lock;

struct run xfreelist:
} kmem:
// Tirst address after kernel loaded from ELF file
extern char end[];

// Initialize free list of physical pages.

id kinit(void
Voéharl:;;(vm . How does the VMM
KNOW tO give pages

initlock(&kmem. lock, "kmem");

p = (char%)PGROUNDUP((uint)end); to another 057
for(; p + PGSIZE <= (charx)PHYSTOP; p += PGSIZE)
kfree(p);

Waste 3 (vm.c)

(pde_t xpgdir, uint oldsz, uint newsz) A

char skmem;
uint a;
a = PGROUNDUP(oldsz);
for(; a < newsz; a += PGSIZE){

mem = kalloc();

memset(mem, @, PGSIZE);

mappages(pgdir, (charx)a, PGSIZE, PADDR(mem), PTE_W|PTE_U);
s

return newsz;

Waste 3 (vm.c)

// Allocate page tables and physical memory to grow process.
// Returns new size or @ on error.

int (pde_t *pgdir, uint oldsz, uint newsz) {
char xmem:
uint a;
a = PGROUNDUP(oldsz); How does OS know page
for(; a < newsz; a += PGSIZE){ . A
nem = kalloc(): 'S already zeroed”

memset(mem, @, PGSIZE);
mappages(pgdir, (charx)a, PGSIZE, PADDR(mem), PTE_W|PTE_U);
}

return newsz;

summary

VM’s have overheads.

he existing H/W interface is restrictive.

New opportunities for sharing often outweigh the
disadvantages, as utilization is improved.

More fun...

The Turtles Project: Design and Implementation of Nested Virtualization

