[537] Semaphores

Chapter 31
Tyler Harter
10/20/14

Producer/Consumer Problem

Producers generate data (like pipe writers).
Consumers grab data and process it (like pipe readers).

Producer/consumer problems are frequent in systems.

Producer/Consumer Problem

Producers generate data (like pipe writers).
Consumers grab data and process it (like pipe readers).
Producer/consumer problems are frequent in systems.

- examples”
- what primitives did we use?

Condition Variables

wait(cond_t *cv, mutex_t *lock)

- assumes the lock is held when walit() is called

- puts caller to sleep + releases the lock (atomically)
- when awoken, reacquires lock before returning

signal(cond_t *cv)
- wake a single waiting thread (if >= 1 thread is waitinQg)
- If there is no waliting thread, just return, doing nothing

broadcast(cond_t *cv)
- wake all waiting threads (if >= 1 thread is waiting)
- if there are no waiting thread, just return, doing nothing

Example: Bounded Buffer

void *producer(void *arg) { void *consumer(void *arg) {
for (int i=0; i<loops; i++) { while(1) {
Mutex_lock(&m); Mutex_lock(&m);
while(numfull == max) while(numfull == 0)
Cond_wait(&empty, &m); Cond_wait(&fill, &m);

do_fill(i); int tmp = do_get();
Cond_signal(&fill); Cond_signal(&empty);
Mutex_unlock(&m); Mutex_unlock(&m);

} printf(“%d\n”, tmp);

Example: Bounded Buffer

void *producer(void *arg) { void *consumer(void *arg) {
for (int i=0; i<loops; i++) { while(1) {
Mutex_lock(&m); Mutex_lock(&m);
while(numfull == max) while(numfull == 0)

Cond_wait(&empty, &m); Cond_wait(&fill, &m);

do_fill(1); >< int tmp = do_get();

Cond_signal(&fill); Cond_signal(&empty);
Mutex_unlock(&m); Mutex_unlock(&m);

) printf("%d\n”, tmp);

DiIsScuss

Can we do producer/consumer with only locks (no CVs)?

DiIsScuss

Can we do producer/consumer with only locks (no CVs)?

Do you like CVs?

DiIsScuss

Can we do producer/consumer with only locks (no CVs)?

Do you like CVs? No!

DiIsScuss

Can we do producer/consumer with only locks (no CVs)?

Do you like CVs? No!

Why are CVs hard to use?

DiIsScuss

Can we do producer/consumer with only locks (no CVs)?

Do you like CVs”? No!
Why are CVs hard to use?

What rules of thumb should we follow with CVs?

CV rules of thumb

Keep state in addition to CV'’s
Always do wait/signal with lock held

Whenever you acquire a lock, recheck state

Design T1p

fit's always recommendec

-/

se an abstraction the sam

{O
e way...

Design T1p

fit's always recommended to

-/

se an abstraction the same way...

...bulld a better abstraction
your first abstraction.

More Concurrency Abstractions

Linux Workgueues: list of function ptr's to call later.

Semaphores: today’s topic.

Condition Variable

Queue:

Condition Variable

Queue:

wait()

Condition Variable

Queue:

Condition Variable

Queue:

A.

wait()

Condition Variable

Queue:

A.

Condition Variable

Queue:

signal()

Condition Variable

Queue:

Condition Variable

Queue:

signal()

Condition Variable

Queue:

Condition Variable

Queue:

signal()

Condition Variable

Queue:

nothing to do!

signal()

Condition Variable

Queue:

Condition Variable

Queue:

wait()

Condition Variable

Queue:

Condition Variable

Queue:

It we weren'’t careful, C may sleep forever.

Semaphore

Thread Queue: Signal Queue:

Semaphore

Thread Queue: Signal Queue:

A

wait()

Semaphore

Thread Queue: Signal Queue:

A

Semaphore

Thread Queue: Signal Queue:

signal()

Semaphore

Thread Queue: Signal Queue:

Semaphore

Thread Queue: Signal Queue:

signal

signal()

Semaphore

Thread Queue: Signal Queue:

signal

Semaphore

Thread Queue: Signal Queue:

A signal

wait()

Semaphore

Thread Queue: Signal Queue:

wait()

Semaphore

Thread Queue: Signal Queue:
signal was not lost do to some race condition!

wait()

Semaphore

Thread Queue: Signal Queue:

Actual Implementation

Use counter instead of Signal Queue
- all signals are the same

If 1
at

ne counter Is positive, don't bother to queue

nread upon wait().

Actual Implementation

Use counter instead of Signal Queue
- all signals are the same

It the counter is positive, don't bother to queue
a thread upon walit().

CV’'s don't keep exira state, so CV users must.
Semaphores keep exira state, so users sometimes don't.

Actual Definition (see handout)

sem init(sem_t xs, int initval) {
s—>value = 1nitval
I3

sem_wait(sem_t *xs) {
s—>value —= 1
walt if s—>value < 0

}

sem_post(sem_t xs) {
s—>value += 1
wake one waiting thread (if there are any)

¥

Actual Definition (see handout)

sem init(sem_t xs, int initval) {
s—>value = 1nitval
I3

sem_wait(sem_t *xs) {
s—>value —= 1
walt if s—>value < 0

walit and post are atomic

}

sem_post(sem_t xs) {
s—>value += 1
wake one waiting thread (if there are any)

¥

Actual Definition (see handout)

sem init(sem_t xs, int initval) {
s—>value = 1nitval

}
_ value = 4: 4 walting signals
sem_wait(sem_t *s) 1 value = -3: 3 waiting threads
s—>value —= 1
wait if s—>value < 0
}

sem_post(sem_t xs) {
s—>value += 1
wake one waiting thread (if there are any)

¥

Join example

Join is simpler with semaphores than CV's.

int done = 0;
mutex_t m = MUTEX_INIT,; JO' n W/ C\/
cond_t ¢ = COND_INIT,;
void xchild(void *arg) {
printf(“child\n"”);
Mutex_lock(&m);
done = 1;
cond_signal(&c);
Mutex_unlock(&nm);

int main(int argc, char xargvl[]) {
pthread_t c;
printf(“parent: begin\n”);
Pthread_create(c, NULL, child, NULL);
Mutex_lock(&m);
while(done == 0)

Cond_wait(&c, &m);

Mutex_unlock(&nm);
printf(“parent: end\n”);

sem_t s;

void xchild(void =xarg) {
printf(“child\n");
sem_post(&s);

}

int main(int argc, char xargv([]) {
sem_init(&s, ?);
pthread_t c;
printf(“parent: begin\n”);
Pthread_create(c, NULL, child, NULL);
sem_wait(&s);
printf(“parent: end\n”);

sem_t s;

void xchild(void *arg) {
printf(“child\n”);
sem_post(&s);

¥

int main(int argc, char *argv[]) {
sem_init(&s, ?);
pthread_t c;
printf(“parent: begin\n”);
Pthread create(c, NULL, child, NULL);
sem_wait(&s);
printf(“parent: end\n”);

sem_t s;

void xchild(void *arg) {
printf(“child\n”);
sem_post(&s);

¥

int main(int arge, char xargv[]) {
sem_init(&s,(?))
pthread_t c;
printf(“parent: begin\n”);
Pthread create(c, NULL, child, NULL);
sem_wait(&s);
printf(“parent: end\n”);

sem_t s;

void xchild(void *arg) {
printf(“child\n”);
sem_post(&s);

¥

int main(int argc, char *argv[]) {
sem_init(&s, ?);
pthread_t c;
printf(“parent: begin\n”);
Pthread create(c, NULL, child, NULL);
sem_wait(&s);
printf(“parent: end\n”);

sem_t s;

void xchild(void *arg) {
printf(“child\n”);
sem_post(&s);

¥

int main(int argc, char *argv[]) {
sem_init(&s, 0);
pthread_t c;
printf(“parent: begin\n”);
Pthread create(c, NULL, child, NULL);
sem_wait(&s);
printf(“parent: end\n”);

sem_t s;

void xchild(void *arg) {
printf(“child\n”);
sem_post(&s);

¥

int main(int argc, char *argv[]) {
sem_init(&s, 0);
pthread_t c;
printf(“parent: begin\n”);
Pthread create(c, NULL, child, NULL);
sem_wait(&s);
printf(“parent: end\n”);

Worksheet

Problem 1: building locks with semaphores

Problem 2: building semaphores with locks and CV'’s

Equivalence Claim

Semaphores are equally powerful to Locks+CVs.
- what does this mean”

Equivalence Claim

Semaphores are equally powerful to Locks+CVs.
- what does this mean”

Either may be more convenient, but that's not relevant.

Equivalence means we can build each over the other.

Proof Steps

Want to show we can do these three things:

Proof Steps

Want to show we can do these three things:

done! done!
(problem 1) (problem 2)

Building CV's over Semaphores

Possible, but really hard to do right.

CV’s

http://research.microsoft.com/pubs/64242/ImplementingCVs.pdf

Building CV's over Semaphores

Possible, but really hard to do right.

Read about Microsoft Research’s attempts:
- http://research.microsoft.com/pubs/64242/ImplementingCVs.pdf

We won't go beyond our simple join example.

CV’s

http://research.microsoft.com/pubs/64242/ImplementingCVs.pdf

Bounded-Bufter w/ Semaphores

Write code.

R/W Lock w/ Semaphores

Worksheet, Problem 3.

summary

Locks+CVs are good primitives, but not always convenient.
Possible to build other abstractions such as semaphores.

Advice: if you always use an abstraction the same way,
build another abstraction over the first!

