
2. Introduction to Operating Systems
Operating System: Three Easy Pieces

1Youjip Won

What a happens when a program runs?

 A running program executes instructions.

1. The processor fetches an instruction from memory.

2. Decode: Figure out which instruction this is

3. Execute: i.e., add two numbers, access memory, check a condition, jump

to function, and so forth.

4. The processor moves on to the next instruction and so on.

2Youjip Won

Operating System (OS)

 Responsible for

 Making it easy to run programs

 Allowing programs to share memory

 Enabling programs to interact with devices

3Youjip Won

OS is in charge of making sure the system operates
correctly and efficiently.

Virtualization

 The OS takes a physical resource and transforms it into a virtual form

of itself.

 Physical resource: Processor, Memory, Disk …

 The virtual form is more general, powerful and easy-to-use.

 Sometimes, we refer to the OS as a virtual machine.

4Youjip Won

System call

 System call allows user to tell the OS what to do.

 The OS provides some interface (APIs, standard library).

 A typical OS exports a few hundred system calls.

 Run programs

 Access memory

 Access devices

5Youjip Won

The OS is a resource manager.

 The OS manage resources such as CPU, memory and disk.

 The OS allows

 Many programs to run  Sharing the CPU

 Many programs to concurrently access their own instructions and data 

Sharing memory

 Many programs to access devices  Sharing disks

6Youjip Won

Virtualizing the CPU

 The system has a very large number of virtual CPUs.

 Turning a single CPU into a seemingly infinite number of CPUs.

 Allowing many programs to seemingly run at once

 Virtualizing the CPU

7Youjip Won

Virtualizing the CPU (Cont.)

8Youjip Won

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/time.h>

4 #include <assert.h>

5 #include "common.h"

6

7 int

8 main(int argc, char *argv[])

9 {

10 if (argc != 2) {

11 fprintf(stderr, "usage: cpu <string>\n");

12 exit(1);

13 }

14 char *str = argv[1];

15 while (1) {

16 Spin(1); // Repeatedly checks the time and

returns once it has run for a second

17 printf("%s\n", str);

18 }

19 return 0;

20 }

Simple Example(cpu.c): Code That Loops and Prints

Virtualizing the CPU (Cont.)

 Execution result 1.

9Youjip Won

prompt> gcc -o cpu cpu.c -Wall

prompt> ./cpu "A"

A

A

A

ˆC

prompt>

Run forever; Only by pressing “Control-c” can we halt the program

Virtualizing the CPU (Cont.)

 Execution result 2.

10Youjip Won

prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &

[1] 7353

[2] 7354

[3] 7355

[4] 7356

A

B

D

C

A

B

D

C

A

C

B

D

...

Even though we have only one processor, all four of
programs seem to be running at the same time!

Virtualizing Memory

 The physical memory is an array of bytes.

 A program keeps all of its data structures in memory.

 Read memory (load):

 Specify an address to be able to access the data

 Write memory (store):

 Specify the data to be written to the given address

11Youjip Won

Virtualizing Memory (Cont.)

 A program that Accesses Memory (mem.c)

12Youjip Won

1 #include <unistd.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include "common.h"

5

6 int

7 main(int argc, char *argv[])

8 {

9 int *p = malloc(sizeof(int)); // a1: allocate some

memory

10 assert(p != NULL);

11 printf("(%d) address of p: %08x\n",

12 getpid(), (unsigned) p); // a2: print out the

address of the memmory

13 *p = 0; // a3: put zero into the first slot of the memory

14 while (1) {

15 Spin(1);

16 *p = *p + 1;

17 printf("(%d) p: %d\n", getpid(), *p); // a4

18 }

19 return 0;

20 }

Virtualizing Memory (Cont.)

 The output of the program mem.c

 The newly allocated memory is at address 00200000.

 It updates the value and prints out the result.

13Youjip Won

prompt> ./mem

(2134) memory address of p: 00200000

(2134) p: 1

(2134) p: 2

(2134) p: 3

(2134) p: 4

(2134) p: 5

ˆC

Virtualizing Memory (Cont.)

 Running mem.c multiple times

 It is as if each running program has its own private memory.

 Each running program has allocated memory at the same address.

 Each seems to be updating the value at 00200000 independently.

14Youjip Won

prompt> ./mem &; ./mem &

[1] 24113

[2] 24114

(24113) memory address of p: 00200000

(24114) memory address of p: 00200000

(24113) p: 1

(24114) p: 1

(24114) p: 2

(24113) p: 2

(24113) p: 3

(24114) p: 3

...

Virtualizing Memory (Cont.)

 Each process accesses its own private virtual address space.

 The OS maps address space onto the physical memory.

 A memory reference within one running program does not affect the

address space of other processes.

 Physical memory is a shared resource, managed by the OS.

15Youjip Won

The problem of Concurrency

 The OS is juggling many things at once, first running one process,

then another, and so forth.

 Modern multi-threaded programs also exhibit the concurrency

problem.

16Youjip Won

Concurrency Example

 A Multi-threaded Program (thread.c)

17Youjip Won

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "common.h"

4

5 volatile int counter = 0;

6 int loops;

7

8 void *worker(void *arg) {

9 int i;

10 for (i = 0; i < loops; i++) {

11 counter++;

12 }

13 return NULL;

14 }

15

16 int

17 main(int argc, char *argv[])

18 {

19 if (argc != 2) {

20 fprintf(stderr, "usage: threads <value>\n");

21 exit(1);

22 }

Concurrency Example (Cont.)

 The main program creates two threads.

 Thread: a function running within the same memory space. Each thread start

running in a routine called worker().

 worker(): increments a counter

18Youjip Won

23 loops = atoi(argv[1]);

24 pthread_t p1, p2;

25 printf("Initial value : %d\n", counter);

26

27 Pthread_create(&p1, NULL, worker, NULL);

28 Pthread_create(&p2, NULL, worker, NULL);

29 Pthread_join(p1, NULL);

30 Pthread_join(p2, NULL);

31 printf("Final value : %d\n", counter);

32 return 0;

33 }

Concurrency Example (Cont.)

 loops determines how many times each of the two workers will

increment the shared counter in a loop.

 loops: 1000.

 loops: 100000.

19Youjip Won

prompt> gcc -o thread thread.c -Wall -pthread

prompt> ./thread 1000

Initial value : 0

Final value : 2000

prompt> ./thread 100000

Initial value : 0

Final value : 143012 // huh??

prompt> ./thread 100000

Initial value : 0

Final value : 137298 // what the??

Why is this happening?

 Increment a shared counter  take three instructions.

1. Load the value of the counter from memory into register.

2. Increment it

3. Store it back into memory

 These three instructions do not execute atomically.  Problem of

concurrency happen.

20Youjip Won

Persistence

 Devices such as DRAM store values in a volatile.

 Hardware and software are needed to store data persistently.

 Hardware: I/O device such as a hard drive, solid-state drives(SSDs)

 Software:

 File system manages the disk.

 File system is responsible for storing any files the user creates.

21Youjip Won

Persistence (Cont.)

 Create a file (/tmp/file) that contains the string “hello world”

22Youjip Won

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <assert.h>

4 #include <fcntl.h>

5 #include <sys/types.h>

6

7 int

8 main(int argc, char *argv[])

9 {

10 int fd = open("/tmp/file", O_WRONLY | O_CREAT

| O_TRUNC, S_IRWXU);

11 assert(fd > -1);

12 int rc = write(fd, "hello world\n", 13);

13 assert(rc == 13);

14 close(fd);

15 return 0;

16 }

open(), write(), and close() system calls are routed to the part of OS

called the file system, which handles the requests

Persistence (Cont.)

 What OS does in order to write to disk?

 Figure out where on disk this new data will reside

 Issue I/O requests to the underlying storage device

 File system handles system crashes during write.

 Journaling or copy-on-write

 Carefully ordering writes to disk

23Youjip Won

Design Goals

 Build up abstraction

 Make the system convenient and easy to use.

 Provide high performance

 Minimize the overhead of the OS.

 OS must strive to provide virtualization without excessive overhead.

 Protection between applications

 Isolation: Bad behavior of one does not harm other and the OS itself.

24Youjip Won

Design Goals (Cont.)

 High degree of reliability

 The OS must also run non-stop.

 Other issues

 Energy-efficiency

 Security

 Mobility

25Youjip Won

 Disclaimer: This lecture slide set was initially developed for Operating System course in

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book

written by Remzi and Andrea at University of Wisconsin.

26Youjip Won

