
4. The Abstraction: The Process
Operating System: Three Easy Pieces

1Youjip Won

How to provide the illusion of many CPUs?

 CPU virtualizing

 The OS can promote the illusion that many virtual CPUs exist.

 Time sharing: Running one process, then stopping it and running another

 The potential cost is performance.

2Youjip Won

A Process

 Comprising of a process:

 Memory (address space)

 Instructions

 Data section

 Registers

 Program counter

 Stack pointer

3Youjip Won

A process is a running program.

Process API

 These APIs are available on any modern OS.

 Create

 Create a new process to run a program

 Destroy

 Halt a runaway process

 Wait

 Wait for a process to stop running

 Miscellaneous Control

 Some kind of method to suspend a process and then resume it

 Status

 Get some status info about a process

4Youjip Won

Process Creation

1. Load a program code into memory, into the address space of the

process.

 Programs initially reside on disk in executable format.

 OS perform the loading process lazily.

 Loading pieces of code or data only as they are needed during program

execution.

2. The program’s run-time stack is allocated.

 Use the stack for local variables, function parameters, and return address.

 Initialize the stack with arguments argc and the argv array of main()

function

5Youjip Won

Process Creation (Cont.)

3. The program’s heap is created.

 Used for explicitly requested dynamically allocated data.

 Program request such space by calling malloc() and free it by calling

free().

4. The OS do some other initialization tasks.

 input/output (I/O) setup

 Each process by default has three open file descriptors.

 Standard input, output and error

5. Start the program running at the entry point, namely main().

 The OS transfers control of the CPU to the newly-created process.

6Youjip Won

Loading: From Program To Process

7Youjip Won

code
static data

heap

stack

Process

Memory

code
static data

heap

Program

Disk

Loading:
Takes on-disk program
and reads it into the

address space of
process

CPU

Process States

 A process can be one of three states.

 Running

 A process is running on a processor.

 Ready

 A process is ready to run but for some reason the OS has chosen not to run it

at this given moment.

 Blocked

 A process has performed some kind of operation.

 When a process initiates an I/O request to a disk, it becomes blocked and thus

some other process can use the processor.

8Youjip Won

Process State Transition

9Youjip Won

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

Data structures

 The OS has some key data structures that track various relevant pieces

of information.

 Process list

 Ready processes

 Blocked processes

 Current running process

 Register context

 PCB(Process Control Block)

 A C-structure that contains information about each process.

10Youjip Won

Example) The xv6 kernel Proc Structure

11Youjip Won

// the registers xv6 will save and restore

// to stop and subsequently restart a process

struct context {

int eip; // Index pointer register

int esp; // Stack pointer register

int ebx; // Called the base register

int ecx; // Called the counter register

int edx; // Called the data register

int esi; // Source index register

int edi; // Destination index register

int ebp; // Stack base pointer register

};

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

Example) The xv6 kernel Proc Structure (Cont.)

12Youjip Won

// the information xv6 tracks about each process

// including its register context and state

struct proc {

char *mem; // Start of process memory

uint sz; // Size of process memory

char *kstack; // Bottom of kernel stack

// for this process

enum proc_state state; // Process state

int pid; // Process ID

struct proc *parent; // Parent process

void *chan; // If non-zero, sleeping on chan

int killed; // If non-zero, have been killed

struct file *ofile[NOFILE]; // Open files

struct inode *cwd; // Current directory

struct context context; // Switch here to run process

struct trapframe *tf; // Trap frame for the

// current interrupt

};

 Disclaimer: This lecture slide set was initially developed for Operating System course in

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book

written by Remzi and Andrea at University of Wisconsin.

13Youjip Won

