
9: Scheduling: Proportional Share
Operating System: Three Easy Pieces

1Youjip Won

Proportional Share Scheduler

 Fair-share scheduler

 Guarantee that each job obtain a certain percentage of CPU time.

 Not optimized for turnaround or response time

2Youjip Won

Basic Concept

 Tickets

 Represent the share of a resource that a process should receive

 The percent of tickets represents its share of the system resource in

question.

 Example

 There are two processes, A and B.

 Process A has 75 tickets  receive 75% of the CPU

 Process B has 25 tickets  receive 25% of the CPU

3Youjip Won

Lottery scheduling

 The scheduler picks a winning ticket.

 Load the state of that winning process and runs it.

 Example

 There are 100 tickets

 Process A has 75 tickets: 0 ~ 74

 Process B has 25 tickets: 75 ~ 99

4Youjip Won

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63

Resulting scheduler: A B A A B B BA A A A A A A A

The longer these two jobs compete,
The more likely they are to achieve the desired percentages.

Ticket Mechanisms

 Ticket currency

 A user allocates tickets among their own jobs in whatever currency they

would like.

 The system converts the currency into the correct global value.

 Example

 There are 200 tickets (Global currency)

 Process A has 100 tickets

 Process B has 100 tickets

5Youjip Won

User A  500 (A’s currency) to A1  50 (global currency)
 500 (A’s currency) to A2  50 (global currency)

User B  10 (B’s currency) to B1  100 (global currency)

Ticket Mechanisms (Cont.)

 Ticket transfer

 A process can temporarily hand off its tickets to another process.

 Ticket inflation

 A process can temporarily raise or lower the number of tickets is owns.

 If any one process needs more CPU time, it can boost its tickets.

6Youjip Won

Implementation

 Example: There are there processes, A, B, and C.

 Keep the processes in a list:

7Youjip Won

head
Job:A
Tix:100

Job:B
Tix:50

Job:C
Tix:250 NULL

1 // counter: used to track if we’ve found the winner yet

2 int counter = 0;

3

4 // winner: use some call to a random number generator to

5 // get a value, between 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 // current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 // loop until the sum of ticket values is > the winner

12 while (current) {

13 counter = counter + current->tickets;

14 if (counter > winner)

15 break; // found the winner

16 current = current->next;

17 }

18 // ’current’ is the winner: schedule it...

Implementation (Cont.)

 U: unfairness metric

 The time the first job completes divided by the time that the second job

completes.

 Example:

 There are two jobs, each jobs has runtime 10.

 First job finishes at time 10

 Second job finishes at time 20

 U=
10

20
= 0.5

 U will be close to 1 when both jobs finish at nearly the same time.

8Youjip Won

Lottery Fairness Study

 There are two jobs.

 Each jobs has the same number of tickets (100).

9Youjip Won

When the job length is not very long,
average unfairness can be quite severe.

Stride Scheduling

 Stride of each process

 (A large number) / (the number of tickets of the process)

 Example: A large number = 10,000

 Process A has 100 tickets  stride of A is 100

 Process B has 50 tickets  stride of B is 200

 A process runs, increment a counter(=pass value) for it by its stride.

 Pick the process to run that has the lowest pass value

10Youjip Won

current = remove_min(queue); // pick client with minimum pass

schedule(current); // use resource for quantum

current->pass += current->stride; // compute next pass using stride

insert(queue, current); // put back into the queue

A pseudo code implementation

Stride Scheduling Example

11Youjip Won

Pass(A)
(stride=100)

Pass(B)
(stride=200)

Pass(C)
(stride=40)

Who Runs?

0
100
100
100
100
100
200
200
200

0
0

200
200
200
200
200
200
200

0
0
0
40
80
120
120
160
200

A
B
C
C
C
A
C
C
…

If new job enters with pass value 0,
It will monopolize the CPU!

 Disclaimer: This lecture slide set was initially developed for Operating System course in

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book

written by Remzi and Andrea at University of Wisconsin.

12Youjip Won

