
10. Multiprocessor Scheduling 
(Advanced)

Operating System: Three Easy Pieces

1Youjip Won



2Youjip Won



Multiprocessor Scheduling

 The rise of the multicore processor is the source of multiprocessor-

scheduling proliferation.

 Multicore: Multiple CPU cores are packed onto a single chip.

 Adding more CPUs does not make that single application run faster. 

 You’ll have to rewrite application to run in parallel, using threads.

3Youjip Won

How to schedule jobs on Multiple CPUs?



Single CPU with cache

4Youjip Won

CPU

Cache

Memory

By keeping data in cache, the system can make slow memory 
appear to be a fast one

• Small, fast memories
• Hold copies of popular data that is found 

in the main memory.
• Utilize temporal and spatial locality

• Holds all of the data
• Access to main memory is slower than cache.

Cache

Main Memory



Cache coherence

 Consistency of shared resource data stored in multiple caches.

5Youjip Won

Bus

𝐷 Memory

0 1 2 3

0. Two CPUs with caches sharing memory 1. CPU0 reads a data at address 1.

CPU 0

C
a
ch

e

CPU 1

C
a
ch

e

Bus

𝐷 Memory

0 1 2 3

CPU 0

C
a
ch

e

CPU 1

C
a
ch

e

𝐷



Cache coherence (Cont.)

6Youjip Won

Bus

𝐷 Memory

0 1 2 3

2. 𝐷 is updated and CPU1 is scheduled. 3. CPU1 re-reads the value at address A

CPU 0

C
a
ch

e

CPU 1

C
a
ch

e

Bus

𝐷 Memory

0 1 2 3

CPU 0

C
a
ch

e

CPU 1

C
a
ch

e

𝐷′𝐷′ 𝐷

CPU1 gets the old value 𝑫
instead of the correct value 𝑫′.



Cache coherence solution

 Bus snooping

 Each cache pays attention to memory updates by observing the bus.

 When a CPU sees an update for a data item it holds in its cache, it will 

notice the change and either invalidate its copy or update it.

7Youjip Won



Don’t forget synchronization

 When accessing shared data across CPUs, mutual exclusion primitives 

should likely be used to guarantee correctness.

8Youjip Won

1 typedef struct __Node_t {

2 int value;

3 struct __Node_t *next;

4 } Node_t;

5

6 int List_Pop() {

7 Node_t *tmp = head; // remember old head ...

8 int value = head->value; // ... and its value

9 head = head->next; // advance head to next pointer

10 free(tmp); // free old head

11 return value; // return value at head

12 }

Simple List Delete Code



Don’t forget synchronization (Cont.)

 Solution

9Youjip Won

1 pthread_mtuex_t m;

2 typedef struct __Node_t {

3 int value;

4 struct __Node_t *next;

5 } Node_t;

6

7 int List_Pop() {

8 lock(&m)

9 Node_t *tmp = head; // remember old head ...

10 int value = head->value; // ... and its value

11 head = head->next; // advance head to next pointer

12 free(tmp); // free old head

13 unlock(&m)

14 return value; // return value at head

15 }

Simple List Delete Code with lock



Cache Affinity

 Keep a process on the same CPU if at all possible

 A process builds up a fair bit of state in the cache of a CPU.

 The next time the process run, it will run faster if some of its state is 

already present in the cache on that CPU.

10Youjip Won

A multiprocessor scheduler should consider cache affinity
when making its scheduling decision.



Single queue Multiprocessor Scheduling (SQMS)

 Put all jobs that need to be scheduled into a single queue.

 Each CPU simply picks the next job from the globally shared queue.

 Cons:

 Some form of locking have to be inserted  Lack of scalability

 Cache affinity

 Example:

 Possible job scheduler across CPUs:

11Youjip Won

Queue A NULLB C D E

CPU0 A E D C B

CPU1 B A E D C

CPU2 C B A E D

CPU3 D C B A E

… (repeat) …

… (repeat) …

… (repeat) …

… (repeat) …



Scheduling Example with Cache affinity

 Preserving affinity for most

 Jobs A through D are not moved across processors.

 Only job e Migrating from CPU to CPU.

 Implementing such a scheme can be complex.

12Youjip Won

Queue A NULLB C D E

CPU0 A E A A A

CPU1 B B E B B

CPU2 C C C E C

CPU3 D D D D E

… (repeat) …

… (repeat) …

… (repeat) …

… (repeat) …



Multi-queue Multiprocessor Scheduling (MQMS)

 MQMS consists of multiple scheduling queues.

 Each queue will follow a particular scheduling discipline.

 When a job enters the system, it is placed on exactly one scheduling 

queue.

 Avoid the problems of information sharing and synchronization.

13Youjip Won



MQMS Example

 With round robin, the system might produce a schedule that looks 

like this:

14Youjip Won

Q0 A B D

CPU0

CPU1

Q1

A A C C A A C C A A C C

B B D D B B D D B B D D

MQMS provides more scalability and cache affinity.

…

…

C



Load Imbalance issue of MQMS

 After job C in Q0 finishes:

 After job A in Q0 finishes:

15Youjip Won

Q0 A B D

CPU0

CPU1

Q1

A A A A A A A A A A A A

B B D D B B D D B B D D

…

…

A gets twice as much CPU as B and D.

Q0 B D

CPU0

CPU1

Q1

B B D D B B D D B B D D

…

…

CPU0 will be left idle!



How to deal with load imbalance?

 The answer is to move jobs (Migration).

 Example:

16Youjip Won

Q0 B DQ1

Q0 BD Q1

Q0 B DQ1

Or

The OS moves one of B or D to CPU 0



How to deal with load imbalance? (Cont.)

 A more tricky case:

 A possible migration pattern:

 Keep switching jobs

17Youjip Won

Q0 B DQ1A

CPU0

CPU1

A A A A B A B A B B B B

B D B D D D D D A D A D

…

…

Migrate B to CPU0 Migrate A to CPU1



Work Stealing

 Move jobs between queues

 Implementation:

 A source queue that is low on jobs is picked.

 The source queue occasionally peeks at another target queue.

 If the target queue is more full than the source queue, the source will “steal” 

one or more jobs from the target queue.

 Cons:

 High overhead and trouble scaling

18Youjip Won



Linux Multiprocessor Schedulers

 O(1)

 A Priority-based scheduler

 Use Multiple queues

 Change a process’s priority over time

 Schedule those with highest priority

 Interactivity is a particular focus

 Completely Fair Scheduler (CFS)

 Deterministic proportional-share approach

 Multiple queues

19Youjip Won



Linux Multiprocessor Schedulers (Cont.)

 BF Scheduler (BFS)

 A single queue approach

 Proportional-share

 Based on Earliest Eligible Virtual Deadline First(EEVDF)

20Youjip Won



 Disclaimer: This lecture slide set was initially developed for Operating System course in 

Computer Science Dept. at Hanyang University. This lecture slide set is for OSTEP book 

written by Remzi and Andrea at University of Wisconsin.

21Youjip Won


